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ABSTRACT

Specifying a vehicle cruise controller is a standard case
study for software development methods. We apply a new
agent-oriented modelling technique to this problem to
animate the requirement for testing. Our approach relates
reactive system modelling to the identification of
characteristic sets of observations. Its relationship to other
approaches is briefly discussed.

BACKGROUND

Good engineering practice involves understanding the
relationship between general scientific and engineering
knowledge and a particular physical construction. Relevant
knowledge includes properties of materials (e.g. Young's
moduli, expansion coefficients, meiting points), physical
laws, characteristics of components (e.g. response times,
power output) and mechanical principles. General
knowledge of this kind can be acquired by experiment
independently of a specific engineering task.

Analysing and solving a particular engineering problem
involves identifying how to apply general knowledge. For
instance, predicting safe limits for loading requires
knowledge of both general characteristics of the
construction material and of where the groatest stresses
occur. Relating the performance of an engineering device or
system to general scientific knowledge and environmental
assumptions in this way is a most important aspect of
engineering. Understanding this relationship enables the
engineer to justify the design, to make modifications, to
diagnose faults and to enhance reliability.

Current software specification practice doesn't really
support engineering in this sense. The goal of software
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specification is to define a formal mathematical model for
system behaviour that can be interpreted independently of
the physical system to be built. in a recent paper [9], Harel
has argued that effective methods for developing reactive
systems can be based upon mathematical models of this
nature. By implication, this suggests that it is not necessary
to construct computer models that closely reflect the
architectural and physical characteristics of reactive systems
in order to analyse their behaviour effectively in engineering
terms. Techniques for deriving programs from abstract
specifications of their behaviour in the simpler context of
"one-person programming” [9] have probably been a major
influencs in shaping this view.

In this paper, we present an approach to reactive
systems modelling that has more in common with traditional
engineering. An engineer will relate the successful
development of a system to precise knowledge of how
components interact and of what physical laws operate. We
shall describe and illustrate a method of modelling a
reactive system that is closely linked with the task of eliciting
and documenting this engineering knowledge. The
principles we adopt for knowledge representation are
outside the logicist framework; in particular, we invoke
classical physical models rather than "naive physics®. Our
approach can be viewed in two ways: as an informal method
of animating requirements for testing or, more pretentiously
and contentiously, as a principled alternative method of
reactive systems specification. A fuller discussion of this
issuse, in the form of a commentary on [13}, appears in [1].

Our case study is a vehicle cruise control system that has
been used as an example in previous software specification
studies [6,7,8]. Our model has been extended to include the
vehicle dynamics. It is specified using the agent-oriented




notation LSD [2,3] and animated using the Scout-Donald-
Eden environment for visualisation (cf [4]).

Our approach can be viewed as an extension of the
scenario-oriented approach of Deutsch, but uses a different
underlying computational paradigm that is not object-based.
This paradigm shares the original philosophy behind object-
oriented programming, as in Simula [5]: programming is a
particular form of system description. We follow Deutsch's
dictumn [7): "fundamental scenarios describing the behaviour
of objects are more significant to the system engineer than
the characteristics of objects in isolation". The essence of
our method is faithful modelling of the behaviour of objects
in combination as reflected in indivisibly associated
changes in observations. [Here "observation” is used in a
broad sense — closer to its scientific meaning, rather than its
everyday meaning — to refer to anything that could
conceptually be observed by experiment.] The principles
behind this approach will be described in more detail in
connection with our example.

1. THE VEHICLE CRUISE CONTROLLER

The vehicle to be modelled has a cruise controller that
maintains a set speed under varying load conditions. The
cruise control system is an embedded system within the
vehicle — the primary objective of our model is to specify its
operation in the context of the "engine-vehicle-driver”
environment. The user plays the role of the driver in the
animation. Engine and vehicle have approximate dynamical
models adequate for animating representative transactions.

Our specification makes use of the agent-oriented
modelling notation LSD [3] — see Listing 1. In this
specification the agents that define the dynamic model are:
throttle_manager, engine, vehicle, speed_transducer and environment.
These agents are complemented by driver and cruise_cutout
agents that define the interface.

The throttle_manager determines the engine throttle
position. Its mode of operation (off, manual or automatic) is
determined by the status of the engine and cruise controller.
In manual mode, the throttle position is specified by the
accelerator position. In automatic mode, when the speed is
being maintained by the cruise controller, the throttie
position is determined by a control law based on the
discrepancy between the speed as measured and the
intended cruise speed.

The engine model is grossly simplified: vehicle traction
power is presumed directly proportional to throttle position.
This discounts effects such as time lag between changes in
throttle position and traction power, gearbox transmission
efficiency, engine characteristic torque vs rpm profiles, gear
selection criteria.

The vehicle model is specified by the Newtonian
equations of motion. Retarding forces due to wind, rolling
resistance and braking act on the vehicle. The road gradient
is an environmental factor that may advance or retard

motion. The traction force is determined by the engine .
power and the vehicle speed. These forces determine the
vehicle acceleration; this is integrated to determine the
speed. This discounts the effect of braking by the engine.

The speed_transducer mode! presumes that a transducer on
a wheel emits one pulse per revolution; the speed is
measured by a counter/timer that estimates pulse-rate. With
this model of the speed transducer, it is possible to assess
the effect of quantising the measured distance into multiples
of the wheel circumference and of finite counter length.

The environment is modelled by a road gradient parameter.
Gradient is treated as a random environmental factor,
though it is a function of vehicle position and direction.

Listing 1 illustrates most of the principal features of the
LSD notation. The agent specifications define the
characteristics of agent instances that are in general
dynamically created and destroyed during simulation. The
simulation model comprises one persistent instance of each
agent apart from the autoThrottle_manager(); this agent exists
when its special variable LIVE is true i.e. when the throttle is
operating in automatic mode (throttleStts==tsAuto). The value
of initAutoThrottle is initialised to the current position of the
accelerator on each invocation of this agent. Appropriate
initial conditions for simulation presume that the car is at rest
on level ground with the engine switched off.

The state variables! are the variables owned by an
agent. Owned variables represent observations associated
with an agent instance, in a sense to be developed below.
Variables bound to an agent instance may be directly
manipulated by another agent: for example, the driver agent
can change the engine status (esOn / esOff) — cf an object-
oriented paradigm.

The LSD specification can be viewed as describing the
stimulus-response patterns in the application (cf [7,8]). The
oracle variables represent values to which an agent
responds. These variables are typically — but not necessarily
— owned by other agents. Their values may be transmitted to
the agent in several ways: e.g. via a communication
channel, a mechanical linkage, or through sensory input.
The variable throttlePos in the engine agent is an example of
such a variable.

The stimulus-response patterns for an agent are
modelled in two ways, according to how stimuli and
responses are coupled. The derivate variables are used to
represent stimulus-response relationships that are
indivisibly coupled in a sense to be explained. The
definitions of physical forces acting upon the vehicle are of
this nature; any change in the speed of the vehicle is
reflected in a simultaneous change of wind resistance and
traction force.

1The syntactic conventions adopted for the LSD notation in this
paper differ from those used in previous papers, but the essential
concepts are unchanged.




Looser coupling of stimulus and response can be
modelled in an agent protocol. This consists of a set of
guarded actions, each of which takes the form of an
enabling condition and an associated sequence of variable
redefinitions or agent instance invocations. Each guarded
action is viewed as expressing a privilege to act: if an
enabling condition pertains, a particular action may be
performed. In interpreting a protocol for simulation purposes,
application specific assumptions are invoked to model the
way in which an agent exercises its privileges for action [3].
There is no general principle to decide which action to
perform when there is non-determinism (i.e. two or more
enabling conditions hold), nor is it always appropriate to
presume that a privilege that is enabled will be exercised.
The driver agent specification illustrates this principle.

typedef
cruiseStts_Type = enum (csOn, csMaintain, csOff)
throttleSits_Type = enum (tsOff, tsMan, tsAuto)
engineStts_Type = enum (esOn, esOff)

agent vehicle {

const
mass = 1500 /* total mass of car & contents [kg] */
windK = 10 /* wind resistance factor [N m2 s2] */
rollK = 100  /* rolling resistance factor [N m-! s] */
gravK =9.81 /* acceleration due to gravity [N m2 s2] */
brakK = 150 /* braking constant [N m-! s] */

state

actSpeed :analog /* actual speed*/
accel :analog /* acceleration */
windF :analog /* wind resistance force */
roliF :analog /" rolling resistance force */
gradF :analog /* gradient force */
tracF :analog /" engine traction force */
brakF :analog /* braking resistance force */
brakePos :analog (0.0, 1.0) /* normalised */
accelPos :@analog (0.0, 1.0) /* positon */
oracle brakePos
derivate
windF = windK * actSpeed?
rollF = rollK * actSpeed
gradF = gravK * mass * sin ( gradient * £/ 200 )

brakF = brakK * actSpeed * brakePos

tracF = enginePower / actSpeed

accel = (tracF-brakF—gradF~rollF—windF) / mass
actSpeed = integ_wrt_time (accel, 0)

}
agent speed_transducer {
const
wheelDiam =0.45 /* wheel diameter [m] */
wheelCirc =1t * wheelDiam

* wheel circumference [m] */

countPeriod =0.2 /* counter/timer period */

maxCountVal = 65535 /* 16-bit counter */
state

measSpeed : analog

pulseRate :analog /* wheelrevs/sec[s]*/
countVal : analog /* counter/timer value [s-1] */
derivate

pulseRate = actSpeed div wheelCirc
/* integer division */
(pulseRate * countPeriod) mod
maxCountVal
measSpeed = (countVal * wheelCirc) / countPeriod

countVal

I

}

agent throttle_manager {

agent autoThrottle_manager {
const initAutoThrottle = |accelPos|

state
deltaAutoThrottle : analog
autoThrottle :analog
speedErr : analog
derivate

LIVE = (throttleStts == tsAuto)
speedErr = cruiseSpeed - measSpeed
deltaAutoThrottle = ((GainK * speedErr) —

autoThrottle) / TimeK
autoThrottle = integ_wrt_time (deltaAutoThrottle,
initAutoThrottie)
}
const

GainK = 0.5 /* auto throttle controller gain */
TimeK = 2.0 /* auto throttle controller time const. */

state
throttieStts  : throttleStts_Type
throttlePos : analog (0.0, 1.0)
/* normalised position */
oracle

measSpeed, cruiseSpeed,
cruiseStts, engineStts, accelPos
derivate
throttiePos =  (throttleStts == tsOff) ? 0.0 :
(throttleStts == tsMan) ? accelPos :
(throttleStts == tsAuto) ?
min(max(autoThrottle, accelPos), 1)
handle throttleStts
protocol
(engineStts == esOff) — throttleStts = tsOff
(cruiseStts |= csMaintain) A (engineStts == esOn) —»
throttleStts = tsMan
(cruiseStts == csMaintain) A (engineStts == esOn) —
throttleStts = tsAuto




agent engine {

const maxEnginePower = 74500
/* watts (i.e. approx 100 hp) */

state

engineStts  : engineStts_Type

enginePower :analog
oracile

throttiePos : analog
derivate

enginePower = maxEnginePower * throttiePos

}

agent environment {
state  gradient : analog (-25.0, 25.0)
/* realistic gradient [%] */
derivate
gradient = rand ( analog (-25.0, 25.0) )

}

agent cruise_cutout {
const minCruiseSpeed = 20.0 /* miles/hour */
state  cruiseStts = csOff : cruiseStts_Type
cruiseSpeed = minCruiseSpeed : analog
handle cruiseStts
oracle cruiseStts, brakePos
derivate
braking = brakePos != 0.0
protocol
braking A cruiseStts == csMaintain -

cruiseStts = csOn /* brake */

}

agent driver {
const maxCruiseSpeed =70.0 /* miles/hour */
minCruiseSpeed =20.0 /" miles/hour */
handle engineStts, cruiseStts, cruiseSpeed
oracle
engineStts, cruiseStts,
cruiseSpeed, measSpeed, brakePos
derivate
brakePos = user_input (brakePos_Type)
accelPos = user_input (accelPos_Type)
protocol
engineStts == esOff » engineStts = esOn
engineStts == esOn — engineStts = esOff
cruiseStts |= csOff » cruiseStts = csOff
/* switch off cruise controller */
cruiseStts == csOff — cruiseStts = csOn
/* switch on cruise controlier */
cruiseStts == csMaintain — cruiseStts = csOn
/* return to manual control */
cruiseStts == csOn - cruiseStts = csMaintain
/* resume to cruiseSpeed */

/*on*
* off */

cruiseStts == csOn — /* maintain the current speed */
cruiseSpeed = | measSpeed |;
cruiseStts = csMaintain
cruiseStts |= csOff A cruiseSpeed < maxCruiseSpeed
- cruiseSpeed = | cruiseSpeed | + 1
/* increase cruiseSpeed */
cruiseStts |= csOff A cruiseSpeed > minCruiseSpeed
— cruiseSpeed = | cruiseSpeed | - 1
/* decrease cruiseSpeed */

Listing 1

2. INTERPRETING THE LSD SPECIFICATION

An LSD specification is intended to document the way in
which the behaviour of a system depends upon the
characteristics and interrelationship of its components. This
information is expressed in terms of the observations of the
system that define the role of each agent. An "observation”
refers to a measurement that could in principle be tested by
experiment. The constants and state variables of the vehicle
agent in Listing 1 are illustrative examples.

The way in which stimulus-response pairs are modelled
reflects the convention that the designer adopts in making
observations of the system. A derivate variable is
appropriate when this convention precludes observing the
system in a state in which the variable and its defining
formula have distinct values. An action models a situation in
which the system can be observed after a stimulus has been
received (i.e. when an enabling condition is satisfied), but
prior to response (i.e. before a commitment to act has been
made).

The classification of variables in an LSD specification
reflects an important distinction between different kinds of
observation. The behaviour of the vehicle depends
intrinsically upon its mass: no engineering is needed to
ensure that the speed of the vehicle is affected by a change
in mass. In contrast, the position of the brake affects the
dynamics of the vehicle via a mechanism for
communication, such as a mechanical linkage. The
classification of brakePos as an oracle to the vehicle agent
indicates that it is potentially an unreliable observation,
subject to qualification as the system model is refined.

The specification of the speed_transducer illustrates the
refinement principle. This transducer is the engineering
component that converts the actual speed of the vehicle into
a measured speed that is communicated to the throttle-
_manager via the oracle measSpeed. A more primitive form of
the cruise control specification might model the actual speed
of the vehicle as a parameter that could be directly observed
by the throttle_manager. By introducing the speed_transducer
agent to the specification, it is possible to relate the speed of
the vehicle as recorded to observations that correspond
more accurately to the engineering model — for example, to
assess the effect of changing the period or register size of




the counter/timer upon the accuracy and range of speed
measurement.

Functional dependence is a fundamental aspect of
measurement and observation. Basic physical laws, such as
Hooke's Law and Newton's Second Law of Motion, express
functional relationships between simultaneous
observations. In LSD agent specifications, derivates are
used to represent such relationships. For example, the
derivate for the variable accel in the LSD specification of the
vehicle agent expresses how Newton's 2nd law defines the
acceleration of the vehicle. In other contexts, a derivate may
represent an idealised relationship, as in the definition of the
engine power output in the engine agent, where a change in
the throttle position is deemed to have a simple
instantaneous effect.

In understanding a system in engineering terms, a further
distinction must be made between observations that are
conditionally under the control of an agent, and those that
are beyond its control. In an LSD specification, the variables
that an agent can redefine are implicit in its protocol: for
example, in Listing 1, the throttle_manager agent alters the
status of the throttle to reflect manual or automatic control.
Variables conditionally under an agent's control are
classified as handles.

There are two principal respects in which the LSD
modelling paradigm differs from an object-oriented
approach. In general — as is appropriate in a realistic
engineering model — an agent can directly change the value
of a variable owned by another agent. What is more,
derivates can express the way in which indivisible change of
state is propagated across object boundaries, as typically
happens in a mechanical system.

In our modelling approach, the primitive abstraction is
the observation rather than the object. As explained in [2],
the indivisible updating of sets of dependent values in a
spreadsheet-like model is a powerful way of expressing the
systems of transformational methods that define objects in
an object-oriented framework. In effect, we can regard
observations as a low-level abstraction: objects are
apprehended and described in terms of observations of
them.

The connection between an LSD specification and
potential observations of a physical system serves two
functions. On the one hand, the specification documents the
engineering requirement and directly reflects information
about the engineering application. The conventions for
specifying variables in LSD enable us to record where
transmission of information between agents is crucial to
correct operation of the system, even if the transmission
mechanism is unspecified — as in the case of the oracle
brakePos in Listing 1. It is also a routine matter to adapt the
specification to reflect "what if?" experiments, as in
simulating brake failure, changing wind resistance,

modifying the characteristics of the counter/timer or .
investigating worst-case scenarios.

On the other hand, the LSD specification can not be
interpreted in isolation from the engineering application. The
use of variables in the specification is similar to that in a
spreadsheet; values are interpreted in connection with
external observations that are primary intuitions of a
procedural nature. [In contrast, mathematical variables do
not admit a procedural interpretation, and a mathematical
model of behaviour is unaffected by the substitution of
definitions for variables.] The LSD specification is
incomplete and ambiguous as a behavioural model; it must
be interpreted with reference to conventions not explicit in
the model. For example, Listing 1 does not specify how the
vehicle speed, as calculated by the speed_transducer, is
transmitted to the throttle manager. Both actSpeed and
autoThrottle are defined by an integral, but one of these
models a continuous physical relationship, the other a
relationship that must be maintained by a control circuit that
embodies an integrator. In animating the model, these
ambiguities are resolved by making appropriate
assumptions about the environment and engineering
framework in which it operates.

3. ANIMATION AND VISUALISATION

In animating LSD specifications, scripts of definitions
resembling the relationships between cells that underlie a
spreadsheet are used to describe a state-transition model.
The principles behind such animation, as they apply to
concurrent systems in which there is a high degree of non-
determinism, have been described elsewhere [3]. In
animating agent actions, it is in general necessary to refer to
their intended interpretation. For instance: agents typically
operate at different speeds; communication of data between
agents can follow many different patterns; plausible models
of action must be devised where there is non-determinism.
In the case of the cruise control specification, these
problems are minimised by the event-driven nature of the
activity of the engineering components.

Our chosen medium for animation is the EDEN
interpreter [4]. Two principal features of EDEN are required:
scripts of definitions over real variables, and actions -
procedures triggered by changes to the values of variables
in these scripts. There is a close correspondence between
the LSD specification in Listing 1 and the EDEN animation;
the derivates determine the definitive script that defines the
state of the system and actions are used to implement
protocols.

The interpretation of analog variables is a subtle point in
animating the LSD specification. An analog variable has a
value of type "real function of time"; in animation, its value is
represented by a real number, but the definition of an
analog variable may involve reference to the history of its
values (as e.g. in the definition of actSpeed and autoThrottle). In




the animation, the values of analog variables are
necessarily digitised, irrespective of their interpretation. For
example, the integration used to define actSpeed and
autoThrottle is explicitly defined with reference to a simulated
clock. In this context, there is an important distinction
between approximation to an exact value, such as physical
laws of motion specify for actSpeed, and simulation of a value
computed by an engineering device, such as an integrator
of a particular sampling rate specifies for autoThrottle.

The use of EDEN for animation has practical advantages
for visualisation. The definitive notations SCOUT and
DoNalLD are implemented as filters to EDEN; this makes it
relatively easy to represent the state of the cruise control
system to the user in an appropriate graphical form [4].
Figure 1 depicts the interface to the cruise control system as
defined by these tools. The buttons on the display conform
to the specification for the cruise controller as specified in
Booch [6]. The user interacts with the animation in the role of
the driver agent — as specified in Listing 1 at an appropriate
level of abstraction. For example, pushing a button
corresponds to redefining the status of the engine or the
cruise controlier.

2 Vehicle Cruise Control System

Cruise Speed

0. 350000
[ SET JRESUMEJMANUAL]

Cruise Status

Brake Accelerator
100% 100%

ox ox

Figure 1

In a recent paper [9), Haret recommends the use of visual
formalisms for describing conceptual models of reactive
systems. Our approach offers the same advantages that
Harel ascribes to a visual formalism: it offers a specification
that is both exacutable and amenable to visualisation. A
brief comparison between our contrasting approaches is
instructive.

Harel distinguishes his conceptual model from a physical
model of the system. For him, a major concern in

visualisation is representing the conceptual construct
underlying a complex reactive system — a problem he has
addressed with considerable success by using statecharts.
Harel's conceptual model is an abstract mathematical model
that is independent of the physical model, but captures its
required functional and behavioural characteristics.

Harel's rationale for a formalism is expressed in the
following terms [9]: "A prerequisite to being able to execute
models of complex systems is the availability of a formal
semantics for those models, most notably, for the medium
that captures the behavioural view". An LSD specification is
not a formalism in Harel's sense. lts behavioural
interpretation is ambiguous until implicit assumptions about
the physical system to which it refers have been considered.
However much the specification is refined, there will always
be assumptions about the physical system that have not
been made explicit. In this respect, the spaecification
resembles an engineer's justification of why a particular
physical system functions correctly. This justification may
appeal to physical laws, to familiar properties of standard
mechanical components, but rests ultimately upon faith in
the reliability of patterns of behaviour that are suggested by
experimental observation.

Despite this informality, the methods proposed in this
paper appear well-suited to achieving the practical
objectives that Harel identifies. The guiding principle is that
a reactive system model can be developed in terms of a
characteristic set of observations selected by the designer.
This establishes a close connection between requirements
analysis and testing: the same set of observations that is
used to guarantee that the system fulfils requirements can
also serve as an effective basis for testing. Selecting
appropriate observations to be made of a system is a good
basis on which to initiate visualisation; it identifies the
parameters that have to be displayed to the designer to
convey the system state. It also provides a natural technique
for refinement; a particular concern identified by Harel.

CONCLUSION

This paper has described and illustrated a new approach
to the spadification of reactive systems. The objective of this
approach is to enable the engineer to construct a system
mode! that closely reflects the physical characteristics,
capabilities and interrelationship of its components. The
underlying principle is to express the system behaviour in
terms of values of variables that represent potential
experimental observations upon which the validity of the
design depends. Animation and visualisation of such
specifications can be performed using state-transition
models that combine actions (resembling rules in rule-
based systems) and definitive representations of state
(resembling interconnections between cells of a
sproadsheet).
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