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ABSTRACT

Concurrent Engineering depends in a profound way on the use
of computers. In this paper, we shall argue that we can best
enhance the concurrent engineering process by improving
the computational models that we use. We propose a multi-
agent computational model to describe the parties involved in
a concurrent engineering process.

Our approach involves identifying a hierarchy in which the
function of a design agent at one level of abstraction is served
by an agent who coordinates the activities of design agents at
the next level. The concurrent engineering process is

Jinterpreted as the complementary construction of a
computational object — the virtual prototype — that can be
examined. used and altered by all parties. We explain and
illustrate our methods and tools through a case-study based on
the design of a machine tool drive shaft.

INTRODUCTION

The management of design is often based on specialisation —
product generation tasks are grouped so that the
responsibility for one function is with one particular phase of
many products. In the past, each function was dealt with
independently, with little interaction with other functions;
consultative documents provided inputs and outputs to and
from the other functions. Feedback in the form of negative
comment from other functions led to a long time-span from
congception to production.

Concurrent engineering is an attempt to get the best of both
specialisation and integration. Design teams accept joint
_responsibility for a single product. This makes use of

specialist skills whilst promoting feedback through iteration
rather than criticism. For concurrency to operate each
member of the team has to have up-to-date information about
the state of the design. This necessitates many meetings and
multiple copies of documents pertaining to the design.
Design management in such circumstances becomes a
significant problem because of the potentially damaging
prospect of copies not being in step with one another. Voss
(Voss 1989). in his investigation of organisational links for
CAD/CAM implementation, suggested some remedial steps.
It is essential to have a database that is shared by all
functions. Putting different groups of people in physical
proximity also helps. However, the most significant feature
identified by Voss in his empirical study of a motor vehicle
company was the need for a coordinator with an overall
knowledge of the CAD system and with multiple functional
and integrating skills.

In this paper. we introduce a agent-oriented framework for the

design process. In management terms, an agent is a person
whose responsibilities can be met largely independently of
other tasks in the overall process. At the highest level of
abstraction, the members of the design team are the agents.
We introduce a design coordinator as a special member of the
design team. whose responsibilities include strategic
decisions concerning management of the interaction between
design agents. specification of milestones for the design
process, and identification of the evolving design
constraints.

In our approach to concurrent engineering, the design process
involves the construction of a computational object - the
virtual prototype — which lies at the focus of the design
activity of all participants. In this context, our
interpretation of ‘virtual' is not to be confused with its
common usage in "virtual reality”. The virtual prototype is
synthesised from constituent views (constituents) associated
with highly specialised roles within the design process. Each
constituent is an environment within which to simulate
experiments and observations appropriate to that role, and
the metaphors used in simulation are not concerned with
realism in the colloquial sense. For instance, a circuit diagram
is a better metaphor for an electrical component than a
photographic image of its wiring.

The design coordinator's brief is to oversee the synthesis of
the virtual prototype from its constituents. In our framework.
this activity can be interpreted as directing the design process
according to a schedule by dictating the pattern of interaction
between design agents and arbitrating amongst conflicting
recommendations.

Constructing a virtual prototype makes exceptional demands
on the computational model. The exploratory nature of the
design activity demands support for what-if analysis. There
are data representations peculiar to each specialisation and
different metaphors are needed to represent them to the human
interpreter. Intelligible interfaces between design agents are
required, dependencies amongst views have to be maintained
and incomplete specifications have to be accommodated. The
design coordinator must also have the means to specify where
and when design agents are privileged to make changes, and
be able to provide appropriate interfaces for interaction for
non-specialist computer users.

The state representation methods we have been developing
over recent years specifically address these issues. They have
already been successfully used to construct one constituent of
the virtual prototype to be discussed in this paper (Beynon
and Cartwright 1992), and to simulate a variety of physical
processes, including a vehicle cruise controller, the operation
of a sailboat, and the arrival and departure protocols at a
railway station (Beynon et al. 1992; Ness et al. 1994,




Beynon and Yung 1992). The key concepts in our research
are: the use of a definitive script to represent the state of a
complex system, and the use of agent-oriented methods of
specification and animation. Details of these techniques will
be described and illustrated in connection with a particular
case-study in engineering design.

CONSTRUCTING THE VIRTUAL PROTOTYPE

We illustrate the principles of virtual prototyping in our
framework with reference to a case-study: the design of a shaft
such as the main spindle of a lathe. We have already applied
our methods to the analysis of the stress/strain regimes in a
stepped shaft (Beynon and Cartwright 1989). We now
consider the design of a lathe spindle in a broader context.

We identify three agents in the design process: the Analyst,
responsible for analysis of the shaft design, the Detailer, for
the choice of standardised and available elements, and the
Manufacturer, for appropriate geometry and material for ease
of manufacture. Each agent has tasks within the design brief,
as determined by the Design Coordinator for the shaft design.
In the choice of design parameters, each agent has its own

- repertoire methods of making pertinent observations, as set
out in Table 1. Design decisions are based on specialist
knowledge and experience. much of which is directly or
indirectly associated with experiment and observation. The
virtual prototype is intended to serve as a computer
environment within which such experiments can be
simulated, and their implications recorded.

Agent
Analyst | Detailer | Manufacturer
Design
Parameter Typical observation procedure
min. shaft measure loads | get nearest measure with
diameter and compute standard micrometer
diameter
step sizes, consult check avail. machine tool
positions bearing, gear bearing, gear | set up time and
sizes sizes cost
static and measure loads.
dynamic mass,
characteristics | geometry:
compute
matenal compute stress | consult heat treatment
conditions catalogue process &
measure
spindle simulate use.
operation study cutting
dynamics
manufacturing get quotation investigate cost
cost from of each manuf.
contractor process
matenial cost get catalogue | actual cost
cost
assemblability | assign check standard | measure
tolerances components fit | dimensions
Table 1

In abstracting the design of the lathe spindle from the total
lathe design, we have already reduced the scope of the
concurrency problem. The nature of the management function
within each specialism is still too complex for us to be able
to describe a suitable virtual prototype directly. For instance,
the work of the Analyst involves two different kinds of

observation of the shaft - one concerned with static
properties of the shaft under load. the other with analysis of
the shaft dynamics in suitable scenarios for operation. We
address this problem through a recursive subdivision of the
design task.

Each agent typically adopts many different perspectives on
the design task in arriving at a judgement. These perspectives
resemble different modes of observation of a physical system
(Bohr 1961) — they are derived from essentially independent
experiments and cannot necessarily be integrated into a
unifying view. A good Analyst will be aware that the design
decisions suggested by a static and dynamic analysis can
conflict, and is skilled in finding appropriate compromises.
In constructing the virtual prototype. we model this by
treating the Analyst as coordinating work carried out under
two separate roles, that of Static and Dynamic Analyst. The
principle behind this decomposition of complex agents is
similar to that advocated by Minsky in his Society of Mind
(Minsky 1988). The hierarchical framework for the
conceurrent engineering task developed in this way is
represented in Figure 1.
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In this paper, we describe how we can exploit the
decomposition of the design agents in the synthesis of the
virtual prototype. To this end. we first review the methods we
have already applied in constructing virtual prototypes to
meet the needs of the primitive design agents. We then
discuss how we propose to extend these methods to construct
virtual prototypes for more complex design agents — for
instance, to synthesise a virtual prototype for the Analyst
from constituent environments appropriate for the Static and
Dynamic Analyst. By a recursive application of this process,

~ we develop a bottom-up specification for a comprehensive

virtual prototype that complements the top-down

decomposition of the design agents.

CONSTITUENTS OF THE VIRTUAL PROTOTYPE

An agent-oriented model for the virtual prototype is
constructed from relatively simple constituents whose form is
abstractly represented in Figure 2. Each constituent is
associated with a primitive design agent — represented by a

.




leaf in the agent hierarchy depicted in Figure 1, and by the
human agent in Figure 2 — whose role is defined by a highly
specialised mode of observation and experimentation. The
environment for static analysis of the lathe shaft described in
(Beynon & Cartwright 1989) is an example of one of these
constituents. Other papers (Beynon et al. 1992; Ness et al.
1994) illustrate how the same principles can be used to
construct the simulation of the lathe shaft in operation that is
required in dynamic analysis.
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In Figure 2. the central rectangle represents a definitive script
that has conceptually three components, denoted by P. M and
I respectively: variables concerned with visualisation (or in
general perceptualisation), those concerned with maintaining
a faithful internal model of external values such as would be
involved in experiments on a physical prototype, and those
whose values can be assigned through direct manipulation of
the interface. Note that changes in values may propagate
between variables in different categories via definitions. For
instance, the visualisation of a geometric element will
typically be indivisibly related to its coordinates as stored in
the internal model.

The different categories of variables P, M and I can be
illustrated with reference to the Vehicle Cruise Control
simulation described in (Beynon et al. 1992). A typical
variable in M represents a parameter of the dynamic model,
such as the acceleration of the vehicle, a variable in P
‘represents a display element, such as the line depicting the
magnitude and direction of the wind force, and a typical
variables in I would record the status and location of the
mouse, as required for menu button selection.

The circle to the right represents an archetypal human agent
interacting with the computer by redefining variables in the
script. Such an agent can respond to the perceived state of the
model by directly redefining a variable in M or by perturbing
a value in L. The circles to the left represent archetypal
autonomous agents. that are typically pre-programmed by the
user (or by a design agent at a higher-level in the hierarchy)
and can serve a variety of functions. One such agent might
redefine a variable in M in response to a change of an
interface variable — as in a programmed response to the
selection of a button. Another might react to changes in the
value of variables in one part of the internal model by
redefining variables elsewhere in the model, as is required for
instance when undoing definitions that violate constraints,

and when using analogue variables to simulate dynamic
processes (Beynon et al. 1992).

The values of the perceptualisation variables in the script
faithfully reflect the current state of the shaft as viewed from
the perspective of the design agent. The relationship
between the values of variables in the definitive script and
these real-world observations is defined by a different
metaphor according to which agent is involved, and what
kind of experimental context is being simulated. Using our
present tools, the state of a real-world system can be
represented — in a way that respects collections of
observations that change indivisibly in combination - by
displays that comprise text, line-drawings and geometric
models. For this purpose, we have developed suitable
definitive notations within which to formulate appropriate
scripts. By means of such notations, the technical issues
involved in specifying complex displays are hidden from the
user, who is free to concentrate on the analysis of
observations in the real-world interpretation. In this respect,
the formulation of scripts is well-suited for use by a specialist
who has a thorough understanding of the real-worid
application and the metaphor used in the model, but will not
typically have expert programming skills. As our system
matures, we expect to be able to extend the range of
metaphors accessible to the naive user in this manner. For
instance, we propose to introduce definitive notations that
hide the implementation details presently involved in
formulating relationships between analogue variables, and in
describing the graphs of real-valued functions.

AGENT INTERACTION WITHIN CONSTITUENTS

The directed edges in Figure 2 represent the stimulus-response
patterns that underlie the behaviour of agents. Those on the
right-hand side reflect the manner in which a human agent
redefines parameters in the model in response to the perceived
state of the virtual prototype. The scope for redefinition is
restricted by the external semantics (e.g. the deflection of the
shaft under load is determined by well-tested predictions of
theory, and cannot be arbitrarily redefined), by intrinsic
constraints {e.g. the choice of Young's modulus is restricted
to a range determined by known materials) and by the context
for the design agent's actions (e.g. the agent is carrying out
static analysis of a shaft of specified dimensions). As the
design process progresses, the privileges to redefine
parameters may change. For instance, there may be a stage
after which the choice of material is no longer in doubt.

In our approach, the agent privileges are specified in a special
notation LSD. In an LSD specification, a variable that can be
observed by an agent is identified as an oracle for the agent,
and a variable whose value can be conditionally redefined is a
handle. Each agent has certain privileges to change state:
each privilege is represented by a guarded sequence of
redefinitions of handle variables. The set of privileges of an
agent specifies its protocel. In describing the behaviour of
an agent, it is often necessary to represent values that are
derived from others by fixed rules of interpretation or
computation. A value of this nature is specified as a
derivate for the agent. For instance, a derivate such as:

detailer.shaft_len_in_inches = sa.shaft_len_in_cm / 2.54




may represent the detailer's interpretation of the shaft
analyst's measurement of the lathe drive shaft length.

The LSD specification of the agent's protocols places
restrictions upon how changes of state within a constituent
can occur, but does not of itself determine the behaviour of a
constituent. Only when there are autonomous agents with a
known pattern of behaviour that can be preconceived is it
appropriate to animate them through systematic execution of
their privileges. For instance, in simulating the operation of
the lathe during dynamic analysis, we would follow the
pattern of animation previously applied to other systems (cf
(Beynon et al. 1992: Ness et al. 1994)), introducing a clock
agent and computing the values of analogue variables. such as
force, acceleration and velocity. with reference to it. Such
agents are represented in Figure 2 by the directed edges on the
left of the diagram. In general, it is impossible to predict the
precise pattern by which other agents — such as the design
agents — exercise their privileges to modify the virtual
prototype.

An operational interpretation of an LSD specification can be
developed using the Abstract Definitive Machine (ADM)
(Beynon & Yung 1992). The key concept of the ADM is that
the current state of a computation is represented by a
definitive script, the latent transitions by a set of actions,
and the pre-programmed agents by a set of entities. These are
respectively associated with a definition store D, an action
store A and an entity store E. An entity is a group of
definitions and actions, and an action is a guarded sequences
of primitive actions, where a primitive action is either a
redefinition, or the instantiation or deletion of an entity
instance. On each execution cycle of the ADM, the actions
with true guards are executed in parallel.

As a computational model, the ADM has some useful
characteristics:

« parallel redefinition. Several agent actions can be
performed simultaneously.

« automatic detection of conflicts. When two agents
simultaneously redefine the same variable, or redefine
variables in a way that introduces cyclic dependency, the
ADM will prompt the user to resolve the situation.

« exceptional privilege of the user. The ADM runs in an
interactive mode: the user is able to perform actions as if
in the role of an invisible and previously unspecified
ADM entity. This makes it possible to redirect an ADM
computation interactively.

These features are seen to their best advantage in the
concurrent development of constituent views of the virtual
prototype that is carried out under the guidance of the design
coordinator.

COMBINING THE CONSTITUENTS

When combining constituent views, we can distinguish two
different mechanisms for dealing with observations that refer
to a common entity. Where there is consistency between
such observations in two or more views, the relationship
between them can be expressed by formulating suitable
bridging definitions. In general, the consistency of
observations is related to the level of coordination of agent

activity, and can be most conveniently modelled as the
inheritance of information from an agent at a higher level of
abstraction in the design hierarchy. Consistency that is
guaranteed by absolute constraints on the design process,
such as compliance to physical laws, is a special case of such
inheritance. Where there is a possibility of inconsistency
beween observations common to two views. there is a design
issue to be resolved, and interaction amongst agents has to be
considered.

There are many patterns of interaction for the parties in the
concurrent engineering process. In exploring a new design,
the Analyst will typically investigate the static and dynamic
characteristics of many shaft design variants. Design
variants may be incomplete (e.g. a candidate design produced
during static analysis may make no reference to the moment
of inertia of the shaft) and may have observations in common
(e.g. both static and dynamic analysis presumes knowledge of
the gear locations on the shaft). When observations overlap,
the choice of design parameters for static and dynamic
analysis will not necessarily be consistent. In effect, the
Analyst is switching between two roles until a suitable
compromise between optimal parameters for the static and
dynamic models is found. At any intermediate stage, there
may be several candidate designs with good qualities in
respect of one or other static or dynamic criteria.

The design activity of the Analyst, viewed as coordination of
work done in the two roles of Static and Dynamic Analyst,
resembles the whole design process in microcosm. It is
characteristic of the design process that many variants are
developed by independent parties, that some of these remain
incompletely specified and that the coherence of independent
design proposals can only be guaranteed through a
coordination process.

The LSD specification below expresses the way in which a
design coordinator can exercise control over the patterns of
interaction between agents. In the specification, the agents
own_work and listen_to_detailer represents two modes in
which the static_analyst can operate: in the one case,
exercising independent control over the choice of material, in
the other, working with the material chosen by the detailer.
The state variables in the specification designate
observations that are bound to an agent. so that maxdefl_sa
refers to the value of maximum deflection that the
static_analyser has in mind. The variable pattern is a handle
for the design_coordinator, by means of which a new patten
of communication can be imposed upon the detailer and the
static-analyst.

agent design_coordinator {

state pattern

oracle material_sa, maxdefl_sa

oracle material_d, maxdef]_d

handle pattern, role_sa, role_d

protocol

true -> pattern = FUNC(material _sa,

maxdefl_sa, material_d,
maxdefl_d, time_constraint, ... )




agent static_analyst {

state maxdefl_sa, material_sa
state role_sa

oracle pattern

derivate
role_sa = (pattern == "independent") ?
"independent"
: (pattern == "detailer_determines_material") ?

"listen_to_detailer"

agent own_work {
handle material_sa
derivate
ACTIVE = role_sa == "independent"
maxdefl_sa = f(material_sa)
protocol
true -> material_sa = FUNC_choose()
}
agent listen_to_detailer {
oracle material_d. maxdefl_d
derivate
ACTIVE = role_sa == "listen_to_detailer"
material_sa = material_d
maxdefl_sa = maxdefl_d

}
protocol
suspend_work * role_sa == "independent"” ->
save(static_analyst, storename)
role_sa == "independent" ->

retrieve(static_analyst, storename)

}

agent detailer {

state maxdefl_d, material_d
state role_d

oracle pattern

derivate
role_d = (pattern == "independent") ?
"independent”
: (pattern == "detailer_determines_material") ?
"independent"
}
Listing 1

When interpreting the LSD specification, it should be noted
that the precise nature of the communication between agents
is determined in detail only through animation in the ADM.
In this process, there are many different possible
conventions for implementing oracles, for instance. By a
way of illustration, suppose that the detailer and the static
analyst collaborate in such a way that the static analyst works
with the material selected by the detailer. In one scenario, the
analyst adopts the detailer's choice of material and proceeds
to explore its implications through independent experiment.
In another scenario. the detailer acts in the experimental
environment of the static analyst, and can change the choice
of material intercatively.

Listing 1 is a fragment that merely indicates the kind of
mechanism that can be used to set up communication patterns
in the design process. In general, there are many ways in

which such mechanisms can operate within a broader
framework for design management (cf (Sonnenwald 1994)). In
developing the LSD specification in Listing 1, it is
simplistic to treat the shaft analyst as if there were but one
instance of the Static Analyst agent,whose activity is at all
times directed towards a corporate goal under the direction of
the design coordinator. In practice, the real design agents
may be developing many tentative design fragments in
parallel, and in some instances the design coordinator may be
in a position to stipulate interaction between two specific
instances of design activity on the part of the detailer and
shaft analyst. A proper exploration of the issues raised by
multiple versions of design and multiple instances of design
agents is beyond the scope of this paper; we instead conclude
our discussion by considering how the goal-directed public
interaction between an official Shaft Analyst and Detailer
guided by the Design Coordinator can fit into the framework
of a formal design project.

A typical interaction between Static Analyst and Detailer
concerned with the choice of material for the shaft. The Static
Analyst seeks a material that best conforms to a particular
strength and stiffness pattern; the Detailer the cheapest and
most readily available standard material within the specified
property range. Each agent has a valid justification for
selecting a particular material, but their choices have different
implications for the design. Within their constituent
environments, the agents are free to explore variants of the
current prototype, which in turn generate numerous scenarios
for future development of the design. When a decision has to
be made, the task of the design coordinator is to adjudicate on
what constitutes the "current prototype" and what are the
local variants. These choice-points can serve as the
milestones of the design.

When a milestone is reached, the design_coordinator may
restrict the patterns of work that are currently allowed, so
placing constraints on the design interaction. At the same
time, certain parameters may be fixed or confined to a limited
range of values. Where relevant, such constraints on the
values of variables can be imposed in constituent
environments through the introduction of enforcement
agents, as discussed above. Such specification of constituent
environments is part of a broader aspect of the design
coordinator's work - that of identifying modes of interaction
that are most effective in achieving specific design goals, and
customising the interfaces supplied to the design agents to
suit their needs. For instance, an effective way to restrict
access to variables in a definitive script is to introduce direct
manipulation interfaces (such as the control panel for the
vehicle cruise control simulation in (Beynon et al. 1992))
through which a circumscribed family of redefinitions can be
performed.

As Figure 1 indicates, there are two perspectives on the work
of the design coordinator. One is concerned with the

management of subagents, the other with the generation of an
acceptable design. The full LSD specification of the role of
the shaft design coordinator must include a specification of
the shaft itself as the subject of the concurrent engineering
process. An outline LSD specification for the shaft has the
form:




agent shaft
state
material, maxdefl.
t_start. t_finish.
[(stage_1, deadline_1), (stage_2. deadline_2). ... ]
design_pattern,
design_state

agent shaft_sa {

state
material_sa.
maxdefl_sa

Listing 2

The state variables in this specification represent those
attributes that are most significant for the current phase of the
design — here presumed to include maxdefl and material. Other
state variables reflect the stages and deadlines in the design
timetable associated with the choice of these parameters. The
entire phase is presumed to extend from time t_start to
t_finish — within this period of time, there are intermediate
stages. The variable design_state reflects the general status
of the project, to be assessed by the shaft design coordinator
at the end of each substage. The state variables in the shaft
are handles for the shaft design coordinator, who has sole
responsibility for specifying their values. In this context,
the subagent shaft_sa within shaft represents the shaft
analyst's official view of the current status of the shaft
design.

CONCLUSION

Design is rapidly becoming computer-based rather than
computer-aided, as the demands for greater complexity,
optimisation and concurrency in the design process make
computers indispensable. The work described in this paper is
part of a long-term research programme aimed at developing a
new mode of using computer systems in design that in itself
encourages a proper understanding of the design process.
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