Applying Agent-oriented Design to a Sail Boat Simulation
Paul Ness Meurig Beynon Yun Pui Yung

Department of Computer Science
University of Warwick CV4 7AL

Abstract

This paper describes the application of an agent-oriented modelling
technique outlined in [BBY92] to a sail boat simulation. This case-study
is chosen to demonstrate the principles of the modelling method,
which is based on the systematic construction of definitive
environments associated with different modes of observation of a real-
world system. The potential for integrating several different views of
physical phenomena is also illustrated.

Introduction

Computer-based modelling and simulation plays an increasingly significant
role in the design of modern engineering systems. Traditional computer
packages for engineering design typically provide toolkits for numerical
solution of differential equations, user-interaction and visualisation. Such
packages are very effective in constructing models for systems whose
behaviour can be completely described analytically, but have several
significant limitations. In this paper, we identify some of these limitations,
and explain and illustrate how they can be overcome by adopting a new
modelling paradigm.

Our chosen case-study is a Sail Boat Simulation (SBS). The physical properties
of the sail, rig and hull are all described within the model. Interaction is via
the sailor agent who adjusts the main-sheet (and hence sail) and rudder.
Following the principles introduced in [BBY92], the state of the SBS is
described using a definitive script, and an agent-oriented design method is
used to determine and construct each of the sail boat components: sail, rig,
hull and sailor. The resulting simulation program combines a model of the
sail boat dynamics, a simple graphical animation and an interface through
which the user can play the role of the sailor (see Figure 1).

The SBS case study illustrates several advantages of our design method.
These include:

* a close correspondence between values of variables in the computer
model and physical observations such as might be made of a real
sail boat. This makes the simulation model easy to interpret.

¢ direct feedback through convenient animation of the model from
the early stages of the design. This speeds the development process
by allowing the user to identify any misconceptions at an early stage.

* a generality intrinsic to the modelling technique that means that
the latent functionality of the model at every stage is far greater
than that represented in the final simulation. This ensures that the
model can be easily modified to meet new requirements.

These advantages will be discussed in connection with an exposition of the
modelling method that describes: how the relationships between agents and
observations are represented in definitive environments, how the agent
development order is determined, and what issues arise in the interface
design. The SBS case-study will be used to illustrate the principles of situated
modelling and to motivate possible improvements to the method and
supporting tools.

1. Background
1.1. Motivation: from Systems Engineering to Software Engineering

The application of computing principles and techniques to engineering
modelling has a long history. The first and most enduring applications of the
high-level language Fortran were to the numerical solution of equations for
engineering applications. The development of computer graphics and
windowing environments introduced visualisation to engineering models.
More recently, object-oriented methods have been a major influence on the
framework for engineering design.

At the present time, the relationship between computer science and
engineering is undergoing a radical change, as the processes of modern
engineering systems design and software development have more and more
in common. As computer modelling plays an ever more significant part in
the design of engineering systems, and computer applications increasingly
concern hybrid reactive systems [H92] in which electronic devices, mechanical
components and human agents interact, the boundaries between systems
engineering and software engineering are no longer well-defined.

In this context, it is interesting to consider the scepticism of Brooks in his
well-known paper No Silver Bullet [Br87]. Brooks argues that none of the
developments of computer science that have so far been widely applied to
computer modelling for engineering, such as the use of high-level languages,
windowing environments and object-oriented methods, has addressed the
essence of complex system design.

Brooks' characterises the essence of a 'software entity' in terms of four
attributes: complexity, conformity, changeability and invisibility. The
considerations that Brooks applies to software systems increasingly apply to
the computer models of engineering systems:
¢ complexity

Brooks makes an important distinction between models of physical

systems that depend upon simplification through mathematical

abstraction and a software system whose relation to its

o

environment must be specified in precise detail. Mathematical
models of an engineering system that describe the behaviour using
differential equations are no longer appropriate when the control of
processes is influenced in a complex manner by discrete events.
Control of this nature is a feature of systems that are designed for
"intelligent" response.

* conformity
The environment in which a software system operates is typically
specified by artificial constraints and conventions rather than
natural laws. The more we try to make comprehensive computer
models of engineering systems, the more we shall need to take
account of arbitrary empirical constraints and data values.

¢ changeability
Brooks draws attention to the unprecedented degree of
maintenance and revision to which software systems are subject. As
programmed electronic components play an ever greater role in
engineering systems, so similar considerations will apply. What is
more, the future development of complex systems will demand
better methods of incremental modelling based on systematic
revision of a design.

¢ invisibility
The structure of a complex software entity cannot be conveniently
represented visually, in contrast to conventional electro-mechanical
systems that can be described by scale models, engineering drawings
and circuit diagrams. Different considerations apply to the
conception of mechanical and electrical systems, whose structure
has a physical embodiment.

1.2. The Case Study: a Sail Boat Simulation

Our sail boat simulation is based on a simple dynamical model that is
informally described in [G63]. The essential principles of sail boat motion can
be explained with reference to Figure 1:

absolute wind

l l l ‘/ative wind
hutl

n <
/’ wind generated by
motion of boat

rudder

mast
sheet \
boom
sail

Figure 1

The motive force for the boat is generated by the action of the wind on the
sail. This is due to two effects [M88]:

* a suction effect: when the wind blows across the face of the sail, it
acts as an aerofoil;
* a pushing effect: when the wind blows at right-angles to the sail, it
generates pressure on the sail.
The interaction between these effects is subtle, and, according to the Glénans
Sailing Manual ([G63] p115), "controversy surrounds the aerodynamics of the
sail". Our modelling approach gives us the flexibility to investigate different
theories about sail aerodynamics, but such theories are not our primary
concern in this paper. The model for the driving force on a sail we have
studied in our simulation is based on empirical evidence from wind-tunnel
experiments with model sails (cf. [G63] p148). A feature of our method is that
we can readily run the simulation using different definitions of the driving
force. For instance, we could adapt this definition interactively to take account
of any influence of wind speed upon the profile of the driving force. We
could also adapt the simulation to reflect the fact that the driving force
depends not only upon sail orientation, but also on the manner in which the
sail is manipulated into this orientation.

The forces exerted on the sail are transmitted to the boat via the rig, which
consists of the boom, the sheet (the rope attached to the sail that is
manipulated by the sailor), and the mast. The force upon the boat due to the
wind resolves into three components:

e a force that tends to move the boat laterally in the water;

e a thrust that propels the boat along its axis of symmetry;

e a heeling force that pushes the sail sideways, and tends to capsize
the boat.

The hull of the boat counteracts sideways motion of the boat in the water. The
hull is ballasted to counteract heeling. The boat may also have a turning
moment, depending on where the lateral thrust acts upon it.

1.3. Basic principles of the modelling method

Our modelling principles are similar to those discussed in [BBY92], where the
specification of a Vehicle Cruise Control System is given. Our approach
combines an agent-oriented analysis with a representation of system state by
definitive scripts []. In this paper, we briefly review these techniques before
examining the modelling process in more detail.

1.3.1. Agent-oriented Analysis

In agent-oriented analysis, the relevant observations of a system are identified
and classified with respect to the state-changing agents. A special purpose
specification notation LSD is used for this purpose [BBY92]. An illustrated
extract from the LSD specification of the SBS appears in Listing 1 below. A
distinctive feature of our approach is the way in which the synchronisation
between changes to observations is represented.

agent sailor {
oracle
sheetlenmin, sheetlenmax
sheet_len
handle
heading
sheet_len
derivate
turn = user_input(turn_type)
sheetdir = user_input(sheet_type)
protocol
turn == starboard — inc(heading)
turn == port — dec(heading)
(sheetdir == out) && (sheet_len < sheetlenmax) — inc(sheet_len)
(sheetdir == in) && (sheet_len > sheetlenmin) — dec(sheet_len)

}

agent sail {

const
drivingFminK = 29.0
drivingFmaxK = 20.0

turbulence = / 4 // relative angle of the sail to wind when turbulence occurs
state
sail_dir // sail direction as bearing [rad]
driving_dir // sail driven anti/clockwise [1/-1]
driving_force // driving force of sail [N]
sheet_angle // angle between keel and sail [rad]
sail_area / / effective sail area [m2]
oracle
rel_wind_dir // wind direction experienced by the sail [rad]
rel_wind_speed // wind speed experienced by the sail [ms2]
sailAvel
derivate

sail_area = boom_len x mast_len x cos(list)
sail_dir = heading + n + sheet_angle
rel_wind_speed =

\/ wind _speed” + hull_speed® — 2 x wind_speed x huli_speed x cos(wind _ dir — heading)
rel_wind_dir = heading - asin(sin(wind_dir-heading) x wind_speed / rel_wind_speed)+n
sail_wind = rel_wind_dir - sail_dir // angle between apparent wind and sail
driving_dir = (sin(sail_wind) x sin(sheet_angle) >0) ? 1: -1
drivingFmin is drivingFminK x sail_area
drivingFmax = drivingFmaxK x sail_area
driving_force =

(abs(sin(sail_wind)) > abs(sin(turbulence))) ? drivingFmin:

abs(sin(4 x sail_wind)) x drivingFmax + drivingFmin / turbulence x abs(sail_wind)

}

Listing 1: LSD specifications of sailor and sail agents in a Sail Boat Simulation

In the SBS, the principal agents are identified as the sail, the rig, the hull and
the sailor. The relevant observations include: the physical attributes of the
boat, the current values of variable parameters associated with a particular
configuration of the sail and rig and the forces and velocities associated with
the boat in motion. In discussing the behaviour of agents, we tend to adopt an
anthropomorphic view, similar in spirit to [BSG84].

Ul

Our primary concern is to analyse the stimulus-response patterns governing
the behaviour of agents (cf [D88]). A typical agent action is conceived as a
redefinition of system parameters in response to a perceived change in its
environment. In LSD, the parameters to which an agent can respond are
classified as oracles of the agent, and those parameters it can change as
handles. The possible actions of an agent are recorded in its protocol. Each
action is specified as a guarded sequence of redefinitions of variables.

Observations in a real-world system are often related in such a way that (for
the purpose of a particular modelling exercise) they are indivisibly coupled
when they change. For instance, in the sail boat, the angle between the sail
and the wind is defined in such a way that it changes instantaneously
according to the sail orientation and the wind direction. Observations whose
value is determined in this way are recorded as derivates in the LSD
specification.

We associate the existence of each observation with the presence of an agent.
For instance, driving_force and sail_area are attributes whose very existence
presumes the presence of a sail. In LSD, an observation that is bound to an
agent in this way is designated as a state variable of the agent. Each
observation is associated with exactly one state variable instance that can be
regarded as holding its authentic value. It is to the value of this variable that
other agents refer in connection with stimulus and response.

1.3.2. Simulation of Behaviour from an LSD Specification

An LSD specification cannot be interpreted directly as a prescription for
system behaviour. In engineering terms, we may relate this to the Frame
Problem: the effects of agent actions can only be determined with reference to
assumptions about the context for action. For instance, the interaction
between the sail, rig and hull of the sail boat depends upon all kinds of
implicit assumptions about the environment in which they operate and the
reliability of stimulus-response patterns.

In animation from an LSD specification, we model the system state using
"definitive scripts” [BBY92, BY90]. A definitive script comprises a family of
variables, each of which has a value defined by a formula to be interpreted in
the same way as the defining formula of a spreadsheet cell. When the value
of a variable in a definitive script is redefined, all the variables whose values
depend upon it are updated automatically. In modelling a concurrent system,
this mechanism serves to represent an atomic transition of the system
involving a synchronised pattern of changes to many observations.

Our development method exploits the unusual characteristics of definitive
scripts as a medium for representing system behaviour. A definitive script
can be used either to represent a system that has no autonomous behaviour,
or one whose autonomous behaviour has been suspended or eliminated. The
modeller can interact with such a script by redefining a variable in order to:

e observe the effect on the values of other variables (as in the use of a
spreadsheet);
* represent a new perceived relationship between observations (as in
setting up a spreadsheet);
e simulate the effect of agent actions (as in debugging the execution of
a program).
By introducing programmed actions in the form of guarded sequences of
redefinitions, the modeller can specify autonomous behaviour by agents,
whilst retaining the power to modify or override their actions when required.
A model of this nature will be described as a definitive environment.

1.3.3. The Computer Model

The overall aim of the modelling method is the development of an LSD
specification and an associated computer model in the form of a definitive
environment. The LSD specification is non-executable, but documents the
real-world analysis involved in the construction of the computer model. The
extent to which the computer model has an autonomous behaviour depends
upon what assumptions we make about the stimulus-response behaviour of
agents. Typically, completely autonomous behaviour of the system is only
required when a particular scenario is to be analysed. In the SBS, much of the
agent behaviour is concerned with communication of forces between
components, and it is appropriate to model this as autonomous response. The
sailor's actions cannot be predicted in this way, however, so that the role of
the sailor in the simulation is played by the modeller.

Interaction between the modeller and the system is most significant during
the development of a computer model. In this process, it is essential for the
modeller to consider fragments of the system behaviour in isolation, and to
verify that the stimulus-response behaviour of components has been
appropriately captured. This activity is analogous to physical experiment on
components of a system, such as an engineer might perform in the design
process.

Because of the freedom with which we can interact with our computer
model, it is inappropriate to regard it as specifying the system behaviour. In
many respects, it is similar to the real-world system it represents, in that its
behaviour can be explored in different scenarios, but cannot be circumscribed.
It is on this basis, so as to emphasise the distinctive nature of our model, that
we refer to it as a definitive environment. In passing from an LSD
specification to a definitive environment, we introduce additional definitions
that reflect reasonable generic assumptions about the scenarios of interest. For
instance, it is appropriate that the image of the sail boat is indivisibly linked
to its physical location, though in point of fact this presumes that it is not
being viewed from absurdly far away (cf [FBY93)).

2. About the Modelling Process

The modelling process involves many applications of an iterative process, to
be called a construction. Each construction takes place in the context of a
particular mode of observation. For instance, in the SBS, one mode of
observation is concerned with describing the geometry of the components of
the boat, so as to enable simple visualisation (as in the bird's-eye and front
projections of the sail boat depicted in Figure 2). Another is concerned with
observing the forces acting upon the sail boat according to the speed of the
boat, and the orientation of the boat and sail (as represented in the frame on
the left in Figure 2, in which the arrows represent the relative wind direction,
the driving force on the sail and the drag on the hull).

=) Sail Boat Simulation k
[STARBOARD] [SHEET IN| [Speed -5 1.069891]
[Port__] [SEEET ouT]

\
[~

N ——— A —

IDrivang Yorce

Clock

h ON | OFF | RST _'J

Figure 2: A Snapshot from the Simulation Screen

A construction involves iteration through three phases of activity:
* analysis of the real-world system, leading to the enhancement of an
LSD specification;
* complementary synthesis of a computer model, leading to the
enhancement of a definitive environment;
¢ evaluation of the computer model.
Each iteration is based on the principles for system analysis and computer
model synthesis outlined in §1.3. Its function is to identify a family of
observations and agents in the real-world system, and to construct a computer
model that represents their inter-relationship as faithfully as possible.
Iteration is necessary in general because some experimentation is required to
generate an appropriate computer model. To this end, during the evaluation
phase of a construction, we typically simulate familiar scenarios within our
definitive environment and see if the results confirm our expectations.
Discrepancies encountered in evaluating our computer model may reflect
errors in the analysis or synthesis aspects of the construction process.
Examples of such errors that arose in developing the sail-boat simulation are:

e overlooking the need to compute sail dynamics with reference to
the relative rather than the absolute wind velocity;
* incorrect formulation of the trigonometrical relationship between
the length of the sheet and the orientation of the sail.
One virtue of our method is that, through animation, we are able to uncover
mistakes of this nature that might easily pass unnoticed in a paper
specification (cf Harel [H92]). We are also able to deal in a similar fashion with
uncertain information that we can only determine empirically. For instance,
in order to simulate heeling, we have to estimate the moment of inertia of a
typical sailing boat. We can gain some guidance on this point by carrying out
sailing simulations, and applying our knowledge of the handling
characteristics of an actual sail boat.

In overall structure, the modelling process consists of constructions relative
to each relevant mode of observation. The modeller has much discretion
over the order in which constructions are performed, but is constrained by
hierarchical relationships between modes of observation. In our
development of the SBS, for example, a preliminary construction identifies
the geometrical attributes of the sail, rig and hull agents, and leads to their
visual representation in a definitive environment in which the developer
can experiment with the geometry of the boat and the configurations of the
rig. A subsequent construction introduces the dynamics of the sail-boat,
relating the motion of the boat to the orientation of the sail with respect to
the wind and hull.

The early stages of the modelling method, in which the principal agents and
their state variables are identified, has the flavour of object-oriented design
[B86, SM92], but there are significant differences. In simulation, one agent can
directly manipulate a handle that is a state variable of another agent. In the
modelling process, there is an even more significant distinction: each
construction typically embellishes agents with new attributes, enriching the
model of an object by taking account of another mode of observation. In this
respect, our approach conforms to our intuition: a real-world object
transcends any model circumscribed by a particular mode of observation.

An important feature of the modelling process is that the modeller has
discretion over the point at which a construction process is terminated. It is
possible to recover and resume previous constructions if required, in much
the same way that we revisit an experimental framework in the light of new
evidence or a new requirement in the process of engineering design. The
power of our modelling technique stems from two complementary virtues:

e since definitive environments are readily integrated, environments
for exploring complex system behaviours can be constructed from
ones that represent simple experiments with components;

 when we have synthesised a definitive environment to explore a
complex system behaviour, it is conceptually easy to retrieve from
the environment those definitions and actions that represent
experimental contexts associated with its development.

The revision of a construction within a hierarchy can be problematic. For
instance, if the force of the wind on the sail is defined without reference to
the area of the sail, changing the dimensions of the sail will invalidate the
dynamic model. In general, derivates and definitive scripts provide a useful
mechanism for adapting interfaces between agents to accommodate potential
changes [BY90].

Constructions are not confined to modes of observation that embrace the
whole system. When the essential characteristics of the agents have been
constructed and visualised, there is a role for detailed experiments directed at
particular components. In the SBS, the agent specifications were refined in
the sequence: sail, rig, hull. This reflects the chain of causation in the system:
the wind acts upon the sail, the force upon the sail is transmitted to the boat
via the rig, and reactions to these forces are generated by the ballasted hull.

Figure 3 shows a test rig that was constructed to check the plausibility of
different models of the sail dynamics. In practice such a test rig could be
constructed by securing a boat so that it cannot move and measuring the
forces acting upon it under different test conditions. The graphs in Figure 3
depict the way in which the driving force on the sail, and the propulsion and
heeling forces on the boat vary with the sheet angle when other parameters
are set to constant values. The projection of the boat is depicted with the sheet
angle set to zero and the wind direction relative to the boat indicated by an
arrow. The test rig is associated with a definitive environment in which the
significant parameters that affect the sail dynamics in animation can be
redefined. These include the sail area, the velocity of the boat and the velocity
of the wind.

] A Test Rig g!

o/ t
£ - - -

Pl Tpi/2/
: B/

:—pi ;p1/2 ;:i/’Z p

force on sail vs sheet angle propulsion force vs sheet angle heeling force vs sheet angle

L
Figure 3: A Test Rig for analysing forces generated by the wind

By using the test rig, we have explored the possibilit); of explaining the
driving force in Figure 3, which is based on empirical evidence, in terms of an

10

interaction between simple pushing and suction effects. The visualisation
illustrated in Figure 3, where the functional relationships between significant
parameters are depicted in graphical form, is a more traditional application of
spreadsheet principles that is oriented towards an engineer's rather than a
sailor's viewpoint. Both Figure 2 and Figure 3 are examples of constructions
within the modelling process, based on the applying the same principles, but
illustrating different modes of observation. This illustrates how our method
can integrate the views of many different human interpreters. In this respect,
it performs a useful educational function.

In this connection, it is of particular interest that the model of the driving
force in Figure 3 was originally devised by Ness on the basis of his sailing
experience — only subsequently did we find independent evidence in [G63] for
its validity. This was one reason for our interest in finding a satisfactory
theoretical explanation for Ness's model, and indeed for first seeking a more
plausible theoretically-inspired model for the driving force. This illustrates
that, in developing insight into sail boat dynamics, there is a significant
interplay between theoretical knowledge of physical laws, experimental
evidence from constrained environments, and experience gained from
practical sailing. Our modelling methods help to address the problems of
integrating these perspectives, with a view to holistic understanding.

Simulating the role of the sailor agent in the SBS is a difficult issue. In our
model, it is possible for the user to simulate manipulation of the sheet and
rudder through a menu-driven interface. In adding this interface, we place an
enormous restriction upon the functionality of the underlying definitive
environment, confining the user to one or two simple modes of redefinition
of variables. The effect of the rudder is simulated very crudely by directly
redefining the orientation of the boat. This feature is included to illustrate
how the models of components can co-exist within the SBS at quite different
levels of abstraction. Though the simulation of sheet manipulation is more
subtle, it is a poor analogue of the actual experience of manipulating a rope
under tension.

3. The Nature of the Modelling Method
3.1. Computer Models of System Behaviour

A typical application of computer modelling in engineering involves the
simulation of the behaviour of a system in a particular scenario. Many
simulations are based on a theory about the system behaviour that supplies a
mathematical model. In using the model, we extract information about the
initial state of the system, then compute the expected behaviour. Two kinds
of observation of real-world systems are implicitly involved in this process:
the observations that informed the theory itself, and the particular
observations that establish the initial conditions for its application.

The usefulness of computer models based on these principles depends
crucially on the context in which they are invoked. How far the actual system

11

behaviour conforms to the predictions of the computer model will be
determined by how well the frame of reference presumed by the theory
applies. This frame of reference is defined, largely implicitly, by the
conventions for observation and interpretation of the system, and
assumptions about their reliability. This relationship between the system
behaviour and the computer model can be shown schematically thus:

within frame of reference:

system behaviour © computer model
I l
simulation of © execution of
system behaviour computer model

In computer modelling of this nature, the frame of reference puts a
straitjacket around the relationship between the computer model and the
real-world system. The execution of the computer model can only be related
to those observations of the system that are pre-determined by the frame of
reference. The only knowledge about the system behaviour that informs the
execution of the computer model is preconceived.

A computer model of a system behaviour resembles a conventional
computer program. The primary focus of research on improved computer
modelling techniques has been on making it easier to interpret an execution
of a computer program as a system behaviour. Our approach addresses the
issue in another way, constructing a computer model for a system viewed as
an environment, rather than as a behaviour.

3.2. Computer Models of the System as Environment

Our common experience of real-world systems has an entirely different
character from the computer simulation of a system behaviour. We are not
restricted to a particular frame of reference; the range of observations
connected with patterns of behaviour is not confined. All our actions are
liable to lead to unexpected outcomes; the nature of the agents acting around
us and their likely interaction is only partly known.

The mere concept of a system behaviour makes deep presumptions about the
mode of observation and interpretation, and the assumptions needed to
guarantee a particular system behaviour are unfathomable. When we set out
to construct a computer model of a system behaviour we commit ourselves to
all these implicit assumptions. The observations and agents we consider are
circumscribed by our frame of reference, and we are in no position to adapt
our model incrementally if observations of the actual system take us by

surprise.

In the construction of definitive environments, we are modelling modest
and provisional assumptions about a real-world system that are consistent

12

with many different behaviours. This is consonant with experience; we
cannot easily predict the behaviour of complex systems in the large, but have
almost limitless faith in the reliability of commonplace observations. Many of
the indivisible relationships represented in a definitive environment are
patently beyond disbelief in just this way, and others are believable in a
recognisable context. The sail boat always appears to be where its position can
be independently reckoned to be; the angle of incidence of the wind on the
sail is always defined by the difference in orientation between the wind and
the sail; the force of the wind on the sail is an empirically determined
function of the strength of the wind and the angle of incidence with the sail.

We can account for the behaviour of the sail boat far better in terms of a
hierarchy of assumptions about reliable relationships between observations
than by invoking a global theory. By exploring the grounds for our
assumptions through experiment, we are also better able to appreciate under
what circumstances we are unable to account for it.

3.3. Situated Modelling

The construction of definitive environments is a process that presumes the
presence of an independent real-world system, albeit one that sometimes
exists only in the modeller's imagination. The term situated modelling is
introduced to convey the idea that the modelling process takes place in
relation to a system as an environment. To appreciate this concept, consider
what possible significance could be attached to a definitive script in which the
variable names and definitions were chosen at random with no concern for
possible interpretation: by what criterion could we possibly decide what mode
of redefinition was appropriate?

It is for this reason that definitive environments are meaningful only in
relation to an external system, and that the variables in definitive
environments must correspond to observations. This context for modelling is
quite different from the frame of reference required for mathematical
modelling. Experience of a system as an environment does not supply a fixed
frame of reference. To appreciate this, consider a definitive script that has a
real-world interpretation, and consider by what criterion we possibly decide
what mode of redefinition was inappropriate.

In situated modelling, the relationship between a system behaviour and the
computer model can be shown schematically thus:

system as environment © computer model

within frame of reference:

simulation of © execution of
system behaviour computer model

13

Only within a frame of reference is it appropriate to associate a behaviour
with a definitive environment. The role of our modelling process is to
provide the framework for experiments that can identify the frames of
reference required for a theory about behaviour.

4. Concluding remarks
4.1. Background to the Paper

The chosen case-study and the general theme of this paper are based upon an
assignment carried out by Ness in connection with a short postgraduate
course on concurrent systems modelling given by Beynon. The first prototype
was developed by Ness after a short period of familiarisation and practical
experience with the relevant ideas and software tools. All subsequent
development of the simulation is due to Yung, and the text of this paper is
due to Beynon. A second paper developed in a similar fashion is also
included in these proceedings [FBY93].

5.2. Issues for the Research

The features of our modelling method can be summarised as follows:
* states and views of real-world systems can be interpreted in our
computer model;
® observation of the system can inform the model at every step of the
development;
* we can develop our model incrementally and interactively;
® it is possible to simulate system behaviour in such a way that the
suspension of animation permits us to simulate interaction within
the current system state.
These qualities are significant in addressing Brooks' concern for ways of
dealing with the problems of complexity, conformity, changeability and
invisibility associated with complex system design.

A degree of idealisation and imagination is needed to infer these qualities
from our present practical perspective. There is a clear need to refine our
support tools and techniques.

With respect to constructions in the modelling method, further work is
needed to clarify the identification and classification of observations and
agents. Though we do not believe that LSD can be a formal notation in the
conventional sense (cf. [S87]), it has a central role in the development method
and some guidelines for principled use are essential. Deficiencies in the LSD
notation encourage the dangerous practice of hacking definitive
environments without developing an associated LSD specification. More
formal and efficient ways of storing and retrieving the constructions
involved in the development of a model are required.

At a more mundane level, our software tools use a variety of different
syntactic conventions, are not all developed to the same degree of reliability

14

are

and sophistication, execute slowly, and generate only simple graphics. Many
concepts that we can now specify satisfactorily in principle (such as analog
variables, events and loci) as yet have no proper high-level support.

Acknowledgements

We are grateful to Valery Adzhiev, Alan Cartwright, Mike Joy and Steve Russ
for useful discussions relating to this paper. We are pleased to acknowledge
the financial support of the SERC under grant GR/J13458.

References

[BSG84] Booth, K.S., Schaeffer, J., Gentleman, W.M., Anthropomorphic Programming,
Computer Science Dept Report CS-82-47, Univ. of Waterloo, Ontario, Feb. 1984

[B86] Booch, G., Object-Oriented Development, IEEE Trans Software Engineering, SE-
12(2), 1986, 211-221

[Br87] Brooks, F.P., No Silver Bullet: Essence and Accidents of Software Engineering,
Computer April 1987, 10-19

[BY90] Beynon, WM., Yung. Y.P.,Definitive Interfaces as a Visualisation Mechanism,
Proc. Graphics Interface ‘90, Canadian Inf. Proc. Soc. 1990, 285-292

[BBY92] Beynon, W.M.,, Bridge, 1., Yung. Y.P., Agent-oriented Modelling for a Vehicle
Cruise Control System, Proc ASME Conf ESDA '92, Istanbul, Turkey 1992, 159-165

[C86] Cameron, J. A., An Overview of]SD, IEEE Trans. on SE, 12(2), Feb. 1986, 222-240

[D88] Deutsch, M.S., Focusing Real-Time Systems Analysis on User Operations, IEEE
Software, Sept 1988, 39-50

[FBY93] Farkas, M., Beynon, WM., Yung, Y.P., Agent-oriented Modelling for a Billiards
Simulation , ibid

[G63] The Glénans Sailing Manual, Adlard Coles Ltd, 1963

[H92] Harel, D., Biting the silver bullet: towards a brighter future for system
development, IEEE Computer, Jan 1992

[KR66] Kilmister, CW., and Reeve,].E., Rational Mechanics, Longmans 1966

[M88] Macaulay, David, The Way Things Work, Dorling Kindersley, London 1988

[R83] Roberts, Nancy et al, Introduction to Computer Simulation: A Systems Dynamics
Modelling Approach, Addison-Wesley 1983

[S87] Smith, B.C., Two Lessons in Logic, Comput. Intell. 3. 214-218 (1987)

[SM92] Schlaer, S., Mellor, S.]., Object Lifecycles: Modeling the World in States, Yourdon
Press, Prentice Hall 1992

{188] Tomiyama, T., Object Oriented Programming Paradigm for Intelligent CAD
Systems, Proc Intelligent CAD Systems II, 1988, 3-16

15

