Higher-order Constructs for Interactive Graphics
and Design in a Definitive Programming
Framework

Dominic Gehringf
Simon Yungf

Richard Cartwrightf
Meurig Beynonj

Alan Cartwright}

{Department of Computer Science, University of Warwick, Coventry, CV4 7TAL
{Department of Engineering, University of Warwick, Coventry, CV4 TAL

1 Introduction

Systems of definitions to represent dependencies between graphical elements were first
exploited by Brian and Geoff Wyvill many years ago (see e.g. [22]). Similar princi-
ples have been applied to knowledge representation in CAD support systems[19] and
advanced geometric modelling applications such as scientific visualisation {20]. Our well-
established programme of research at Warwick, The Empirical Modelling Project, has
involved an in-depth study of the application of such definitive (definition-based) prin-
ciples in modelling and programming with particular reference to interactive graphics
and CAD [1, 3, 4, 8, 9]. The recent release of a public-domain version of our tkeden
interpreter represents a milestone in our project, and a crucial stage in our development
of these principles. Within the tkeden environment, there are rich possibilities for in-
teracting with definitive scripts through redefinition of variables, and for constructing
systems of interacting agents. The possibilities for generating and managing scripts and
agents within the system are on the other hand more limited, and are represented by a
range of features that are not well integrated into the framework of our current abstract
computational model the Abstract Definitive Machine [5]. Informally, our exploitation
of definitive scripts and agency is inhibited by a relative lack of support for forms of
hierarchical abstraction.

This paper gives a brief review of the current status of our Empirical Modelling
principles and tools, and explains how these can be extended to accommodate higher-
order observations and definitions. Some examples are used to illustrate how higher-order
definitions can be exploited in graphics and animation. The implications of higher-order
abstractions for interaction and agency, their significance in the Empirical Modelling
process, and the prospects for effective implementation in a novel architecture are also
discussed.




2 Background

In our modelling method we use definitive scripts to represent real-world systems. We
begin by identifying things to observe in the system. In a definitive script, a variable
is introduced to represent each of these observables. A variable can either be given
an explicit value or defined in terms of other variables. The definition of a variable
corresponds to establishing a relationship between that observable and those referenced
in its definition. These relationships form uni-directional dependencies. If a variable is
changed then the state is maintained; as in a spreadsheet these changes are propagated
throughout the state along the dependencies that have been established. In this manner
we create a metaphorical representation of an external state. Dependencies between
observables express the way in which an action that changes the value of one variable
indivisibly affects the values of others, and thereby delineates the immediate extent of
our actions. In general, the changes to the system state cannot be attributed to a single
source. For this reason, it is useful to identify many agents that can act within the state.
We specify the characteristics of such agents in the specially developed LSD notation,
in which we declare what agents can observe (oracles), what they can change (handles)
and their protocol for doing so [6].

Definitive scripts together with agency are a powerful mechanism for interaction [1],
animation [7, 12], and for constructing cognitive artefacts in design [9]. A cognitive arte-
fact directly represents some real-world system at an appropriate level of abstraction.
Such a representation can be incomplete and uncircumscribed, which is especially useful
in the simulation of dynamic or reactive systems. Through a process of experimentation
the model can be refined until the required behaviour is achieved. In such a context the
use of graphics is essential to communicate the state of the model.

Tkeden is a general-purpose interpreter for a family of definitive notations dealing
with line-drawing, window layout and various traditional types of data. Construction of
models in the tkeden environment is characterised by a most unusual degree of flexibility
in interaction. This lends an exploratory character that favours design, requirements
modelling and experimentation. In the present stage of development of tkeden, this very
flexibility inhibits higher-level structuring of observables, so that there is little built-in
support for hierarchical abstraction involving scripts or agents. The lack of higher-order
constructs has two consequences. Firstly, the interaction is often too low-level to reflect
the constraints on real world observables. Secondly, as a process of design or exploration
enters the specification phase, and flexibility becomes less important, we lack the means
to express commitments, impose structure and circumscribe behaviour.

Tkeden is typically used as a stand-alone system. To some extent, the problems of
imposing structure can be addressed by adding a front-end. These include translators
for the Abstract Definitive Machine and for more sophisticated definitive notations (such
as ARCA [2] for combinatorial modelling and CADNO for geometric modelling [8]). The
technical difficulties of integrating such tools into tkeden are symptomatic of the problem
of assimilating higher-order abstractions in a principled manner. Many of our motivating
examples and ideas arise from the attempt to meet this challenge.




!
i
i
%
y
1
i
i
i
%
i
1
i
1
i
3
i
t
i
1
P N
—_—
. ]
g

Figure 1: Levels of Observation

3 Higher-order Observables

The elaboration of our Empirical Modelling method can be best described with reference
to a concept of higher-order observable that has been implicit in our previous work.
Giving a complete account of this concept will be one of the major concerns of future
work. For the present purpose, it is enough to give an informal indication of how higher-
order observables are defined, and what range of applications can be envisaged.

Our modelling method is aimed at constructing a computer model whose state
metaphorically represents the state of an external real-world system. The variables in
our models, like the cells of a spreadsheet, typically represent specific observables. When
we ascribe definitions to these variables in a definitive script, we express the way in which
we expect a change in the value to a particular observable to propagate changes to other
variables in an indivisible manner. The identification of indivisible relationships requires
knowledge of system behaviour that is acquired experimentally, and in general involves
commitment to a global assertion about how changes to observables are synchronised
in all system states on the basis of partial exploration. For systems of any complexity,
it can be difficult to make global assertions about state: it is more realistic to isolate
particular phenomena within the system, defined by a particular selection of the observ-
ables, and analyse these in isolation. The description of system behaviour on the basis
of experimental knowledge of subphenomena is a characteristic ingredient of engineering
design and of the scientific method.

Figure 1 symbolically depicts the framework within which our current modelling
techniques operate. Each bold vertical line on the left represents a system of values
assigned to variables to represent a particular observation of a family of real-world ob-
servables. Such an observation is conceptually a snapshot of a phenomenon, in which
the values of all observables have been recorded in one and the same context, as if at the
same instant. Note that this concept of instantaneous observation does not necessarily
presume that the current time is observed. For instance, in validating Hookes’ Law,
we neither need to record the time at which an observation is made, nor to record the
extension of the string and the load at the same instant. On the other hand, to discuss
phenomena in which time is of the essence (such as control system dynamics), the time
on a clock will be one of the observables.




The collection of solid lines corresponds to a set of distinct observations associ-
ated with a phenomenon. The possible interpretations of this set are rich and varied.
Significant issues are:

¢ to what extent is the choice of observations under the observer’s control? Is the
choice associated with a strategy for observation?

e is the set of observations circumscribed? For instance, is it known to be a finite
set, or to be defined by a system of primitive transformations?

e is the collection of observations ordered or not? In particular, does each include
the time of observation?

As in traditional scientific experiment, the most appropriate selection of observ-
ables and the characterisation of the contexts for observation is an exploratory process.
Empirical judgement is likewise involved in determining whether a particular observa-
tion is admissible. Subject to making this characterisation of the family of admissible
observations, we can then regard any property that is associated with such a family of
observations as defining a higher-order observable. Significant examples of such proper-
ties not only include indivisible relationships, but conventional logical constraints and
structural relationships between variables. In this section, we will confine our attention
to indivisible relationships as higher-order observables, with a view to motivating the
concept of higher-order definition.

The status of these concepts is symbolically depicted in the right-hand section of
Figure 1. At level 0 in the observation hierarchy are the raw observations of a phe-
nomenon, as defined by explicit values of observables. At level 1 are the indivisible
relationships between observables that are expressed in a conventional definitive script.
Notice that in this correspondence between level 0 and level I there may not be a direct
1-1 mapping between observables at level (. This possibility arises because several ob-
servables may have to be perceived as belonging to a single structure. For instance, the
level 1 definitive script specified by variables n and I where 7 is a positive integer and [
is the list defined by /=[1,2,...,n], can be regarded as describing a phenomenon which is
represented by n+1 integer variables, n,§, b, ..., l,.

To generalise to higher-order definitions it remains to note that many instances of
what can be regarded as the same phenomenon may arise within a complex system. In
such a case, there may be indivisible relationships between the higher-order observables
associated with instances of a phenomenon are present in a system. As indicated sym-
bolically in Figure 1, properties that refer to relationships between level 1 observables
can be construed as level 2 observables at a yet higher-level of abstraction. Informally,
the process of building up higher-level abstractions can be viewed as identifying patterns
between values (this is a level 1 observation), then patterns between patterns between
values (this is a level 2 observation). Some examples to illustrate applications of such
abstractions in geometric modelling and animation follow.

4 Illustrative Examples

In this section we introduce three examples of problems, arising from our research into
geometric modelling and animation, that require higher-order definitions. Three kinds




-O—0

String is taut and A is being moved,so B depends on A

O—O-

String is taut and B is being moved,so A depends on B

String is slack so no dependency is present

Figure 2: Blocks Connected by String

of higher-order definition will be considered: case, similar and generic definitions. We
shall not develop the whole theory and syntax here, but show the principles.

Many phenomena are most naturally expressed in terms of constraints, rather than
uni-directional dependencies. To simulate interaction with a complex object, as in mov-
ing a table, we need to take account of the way in which the dependency between elements
of the table is determined by where force is applied. The networks of dependencies that
arise in constraint satisfaction systems are designed to address these problems, but these
cannot be readily expressed using definitive scripts alone even when making use of con-
text dependent (e.g. “if ... then ... else ...”) definitions, since such scripts
appear syntactically to invoke cyclic definition. Similar considerations apply when mod-
elling the movement of a person from the environment of one room to another, where
the entire environment of observables changes as a result of a relatively primitive action.

The application of higher-order definitions to problems of this nature can be il-
lustrated in animating a simple system consisting of two blocks connected by a string
moving under the concurrent control of independent agents [4, 15, 16]. In such a system
it is appropriate to reconfigure the dependency relationship between the positions of the
two blocks dynamically as the string changes between loose and taut states (Figure 2).
In our present framework, such dynamic constraints are difficult to represent effectively
using definitive scripts, even when they are used in conjunction with agents. The prob-
lem lies in the way in which motion of the blocks (represented by a redefinition of the
location of the block within the context of a script representing the dependency between
block locations) directly affects the dependency relation (and so must reconfigure the
script).

Using our framework for observation we can record the dependency relations that
hold in different cases, through level 1 observations (i.e. the dependencies shown in
Figure 2). Observing the system from a higher-level we can identify the conditions that
determine each of these cases (i.e. the conditions in Figure 2). That is, we can identify
what the dependencies depend on; a level 2 observation. In our modelling method this
corresponds to a case definition at level 2 (for each of A and B), which evaluates to give
the current dependency definition at level I, which in turn evaluates to give the current
value of position for each block, at level 0. A feature of this approach is the ability to




BarB

BarB
BarC BarC

BarA BarA
8 9

BarD ] BarD

BarB
BarB
BarC Ba " Ba BarB
BarA

"y A 0 o

BarD BarD BarD

arA

Figure 3: Four Bar Linkage

introduce forms of feedback that do not represent cyclic definition.

In the previous example a small repertoire of cases could be identified in the de-
pendency structure. This is analogous to a variable attaining one of a small set of values,
depending on a condition. Sometimes we can observe more uniformly defined patterns in
the dependency structure, analogous to a variable getting its value from the evaluation
of a non-singular function. In such a system we would make the level 2 observation
that a certain dependency X is always similar to another dependency Y, in that when
Y changes X changes accordingly. This concept of similarity is represented in our Table
notation [14] - a generalised form of spreadsheet - by a persistent form of the traditional
operation of copying a formula from one cell to another (cf. the linked rather than em-
bedded copy in Windows [18]). That is, we use similarity to establish a level 2 definition
fr = similar(fx) that evaluates to the level ! definition of the formula (but with the
cells referenced changed relative to position), which in turn evaluates to give a value. If
the defining formula fx of X were to change, our definition at level 1 would then change
accordingly. In this way we can construct dependencies between dependencies.

This principle is extremely useful in modelling and design, for example in the spec-
ification of a four-bar linkage that has to be depicted in several different configurations
(cf. [11]). This is achieved by specifying a set of level ! definitions for the linkage. The
configuration is characterised by an angle theta and a location. Other instances can be
defined at level 2 to be similar to the first set of definitions but with different variables
representing the angle and the location. This kind of level 2 definition resembles a persis-
tent form of the range copy operation in a spreadsheet. Any changes to the first linkage,
such as altering the length of one of the bars will be propagated to the others, however
they will have their own local angles and will therefore represent a different configuration
of the linkage (Figure 3).

In the process of design it is often desirable to specify instances of a generic object.
For example, the designer of a speedometer would wish each of its calibrations to be
similar and to come from one generic specification (cf. Figure 4); perhaps such that
the number of calibrations is related to the vehicle’s top speed[6]. In such a system
the specification of the calibrations operates at a higher-level of abstraction (level 2)
than the definitions of the lines that make up a single calibration (level 1): indeed, the




50 40

40 , 60 30 \ 50
30 \ / 70 \ ’

~ \ - 20 \ 60

hd -

20 — — 80

e ~

10 - h 90 10 70
/ \ / \

[¢] 100 0 80
topSpeed = 100 topSpeed = 80
nSegment = 10 nSegment = 8

graph speedo

within speedo {
real needleLength = 100.0
real minA =4 * pidiv 3
real maxA = - pi div 3
real A = minA + (maxA - minA) * ~/curSpeed div ~/topSpeed
line needle = [{0,0}, {needleLength @ A}]
real gapl, gap2, LSpc
gapl, gap2, LSpc = 10.0, 30.0, 50.0

X<i> = ~/topSpeed * «i> div nSegment
f<i> = minA + (maxA - minA) * <i> div nSegment
nSegment = 8
node = [
label: label(itos(trunc(x<i>)), {(needlelLength + gap2 + LSpc) @ f<i>});
line: [{(needleLength + gap2) @ f<i>}, {(needleLength + gapl) @ f<i>}]}
]

segment = {]

Figure 4: Speedometers and Definitions

number of calibrations (and hence the number of definitions of lines) is dependent on this
specification. This is analogous to defining a list of n values, because it groups together
many observables into a single higher-level observable. In the speedometer example we
would have a single template in the form of a level 2 definition, that would evaluate to
many definitions of calibrations at level 1.

Limited support for generic objects is provided by the graph abstraction in tkeden.
This construct makes it possible to reconfigure the speedometer in Figure 4 by redefining
the top speed of the vehicle. An alternative way to specify a family of similar values
is to use a locus construct, which creates a comprehension by recording a history of
values. Related abstractions have been explored in the notation EdenCAD, a variant
of the tkeden interpreter that was developed by Alan Cartwright for CAD applications
[11]. EdenCAD is written in AutoLisp within the AutoCAD environment. The use of
Lisp as the implementation language has certain advantages in respect of higher-order
abstraction, and simplifies the task of generating variable references.

5 Interaction and Agency

Our examples illustrate how the use of higher-order abstractions simplifies the specifica-
tion of agent interaction, especially in contexts where this interaction is to be constrained
to reflect empirical knowledge. Higher-order constructs enable us to express the way in
which actions directly affect dependency (cf. the blocks), to describe generic objects (cf.
the speedometer) and to make comprehensions of state (cf. the locus of a linkage).
Other informal applications of higher-order concepts are implicit in many aspects of




our previous work. In effect, level 2 abstractions are associated with functions that return
scripts. A typical interpretation of a script is as a system of indivisible relationships
expressing dependencies, but scripts can also serve to represent:

¢ roles of an agent,
e instances of a generic agent,
e alternative visualisations of a data set.

The use of scripts to represent different roles of an agent has been illustrated in
connection with a case-study based on Harel’s statechart for a digital watch [9], in which
the substates of the display state correspond to different display functions of the watch.
Instances of a generic agent can be represented by a parametrised entity in the Abstract
Definitive Machine [5]. The use of a variety of definitive scripts to provide alternative
parallel visualisations is a theme that has been illustrated in a variety of case studies,
such as that concerned with lathe shaft design [1].

Providing more formal support for definitive scripts at a higher level of abstraction
has implications for the specification and maintenance of dependencies. Issues to be
addressed include:

¢ how to specify higher-order dependencies conveniently and clearly;
e how to ensure that higher-order dependencies are respected once established.

At present, our use of higher-order definitions involves relatively inelegant syntactic
constructions based on macro expansions (e.g. in specifying analogue variables and
the generic speedometer) or complex conditional definitions (e.g. blocks). The Table
notation [14], currently under development, adds a table data type to tkeden and is
intended to allow the user to specify higher-order relationships between tables through a
graphical user interface. This adds functionality to a conventional spreadsheet, making
1t possible to link the definition of a cell to the definition of another, as illustrated above.
By such means, it is possible to describe a parametrised table that can either be a
multiplication table or a segment of Pascal’s triangle. When used in conjunction with
definitive notations for graphics, such structures potentially admit geometric application
to problems such as the specification of fractal objects. o

The use of higher-order abstractions to specify structure is subject to a general
principle that what has been defined at a high level of abstraction cannot be piecemeal
redefined at lower levels of abstraction. For instance, when an instance of the generic
speedometer has been defined, it is not appropriate to subseqgently modify its compo-
nents if we wish to maintain the high-level dependency of the visualisation script upon
the numerical parameter topSpeed. This form of higher-order definition, in which a
numerical parameter determines the structure of a script, can however be exploited as a
generator for a script that can subsequently be used freely for interaction at lower-levels
of abstraction. In effect, the dependency between the script and the topSpeed param-
eter is removed by partial evaluation, leaving a speedometer definition that uses only
conventional level I definitive variables.

In general, it is essential to be able to use different levels of abstraction even in
specifying a single geometric object. The definitive notation ARCA, developed with the
specification of combinatorial graphs such as Cayley diagrams in mind has a sophisticated




generic solution to the problems of disciplining interaction to eliminate conflict between
definition at high and low levels of abstraction. The fundamental ARCA data type, the
diagram, has a complex hierarchical structure comprising sets of vertices and colours,
where each vertex is a coordinate vector, and each colour is a (partial) permutation
of vertex indices representing a family of directed edges of a particular colour. The
mode in which a variable of type diagram is to be defined is declared using an auxiliary
definitive notation. This mode then serves as a template for subsequent definition and
redefinition of the variable. In particular, the mode of a variable determines whether 1t
is to be defined as a collection of subcomponents, and whether its components are to
be treated as independent variables for dependency checking. For instance, the mode
definition mode v = abstract vertex admits the abstract definition of v by any formula
that returns a vector, such as v=w+ [1,0,1] but excludes the definition +[1]=3. It also
triggers a re-evaluation of the variable z= (2] whenever the value of v is changed in
any way. In contrast, the mode definition mode v = vertex 2 allows the components
of v to be independently specified, as in v[1] =2* v[2]; v[2] =3, and (in the context of
these definitions) will not trigger the re-evaluation of the variable z= v[2] when the new
assignment v[1] =2 is made.

6 The Empirical Modelling Design Process

In our Empirical Modelling process, we aspire to comprehend the states of a phenomenon
in terms of higher-order observables. Typical examples of such observables that in general
exist at every level of abstraction include:

e indivisible relationships represented by definitive scripts,
e constraints represented by logical relationships,
o associations of observables represented by data structures.

Constraints can be made explicit either as imposed conditions that cannot be
violated in any state transition, or as monitored conditions whose violation is reported.
They can also be accumulated as ingredients of a formal specification. As examples such
as the generic speedometer illustrate, apprehending structure is an essential component
in identifying and expressing indivisible relationships at higher levels of abstraction.

In practice, the partial knowledge that contributes to comprehension of state has to
be represented by using the computer as an artefact whose state directly represents the
experimental contexts in which higher-order observables are identified, via an appropriate
metaphor. In this aspect, the modelling process relies essentially upon perceptualisation,
and on visualisation in particular [17]. It also demands that the model is developed in
an environment that gives the modeller as much support as possible in the process of
correlating observables and identifying and specifying the relationships between them.

The tkeden interpreter, developed by Simon Yung, is currently our most effective
tool for addressing these issues. The features that tkeden supplies for the development
of definitive scripts and associated agent actions do not lend themselves easily to the
explicit representation of higher-order observables, but greatly simplify the task of iden-
tifying such observables. The text of definitive scripts 1s maintained within the tkeden
environment in such a way that different categories of definition can be separately dis-
played, references to variables can be automatically located, dependencies can be more




Figure 5: Different Designers’ Perspectives on a Railway Track Layout

readily examined, undefined variables can be isolated and updated definitions can be
recorded.

We believe that our Empirical Modelling approach is in principle particularly well-
suited to dealing with concurrent engineering issues. Rationalising the interaction be-
tween independent agents in a concurrent engineering context involves two complemen-
tary concerns: maintaining coherent models of the partially dependent viewpoints of
different design participants, and supplying a framework of interfaces and protocols
for communication in the design process. Such rationalisation is needed to legitimise
the concept (introduced in [1]) that the concurrent engineering process revolves around
the cooperative development of a virtual prototype. Higher-order definitions can have
a significant role in expressing the commitments associated with convergence between
viewpoints, but it is evident that - in general - the kind of relationships between models
that arise in this connection can only be satisfactorily expressed with reference to agents.
By way of illustration, the relationship between the geometry and the connectivity of
a model railway track depicted in Figure 5 is too subtle to allow a simple method of
synchronising incremental changes to both models.

The tkeden interpreter offers some support for the design process through intelligent
script management, keeping histories of the interaction, maintaining different versions
and making a distinction between forms of definition that have different status. For
example, because all interaction is construed as definition within the definitive paradigm,
both editing a script and clicking the mouse can generate a definition. In order to
reconstruct the current state of a design we do not generally need to record where
mouse clicks have occurred, but would want to record more significant interaction. Such
considerations motivate a hierarchical agent structure that admits different levels of
definition and interaction. To put this in a concurrent engineering context, we shall
need to describe agency that embraces interaction at all levels in a hierarchy ranging
from low-level interaction through a conventional user-interface, through script editing,
to version management, to communication between design participants, to management
and monitoring of design team interaction. For this purpose, we shall require more
sophisticated variants of our agent specification language LSD that can account for
manager agents and the corporate action of agents.




7 Implementation Prospects

The implementation of a definitive programming framework that can support our re-
quirement is exceedingly challenging. At a high level of abstraction, the distinction
between values of observables, dependency structures and agent privileges is very con-
spicuous, yet consideration of simple scenarios for simulation indicate that these can all
be interrelated in conceptually indivisible changes of state. For instance, when the liquid
in which two objects are suspended becomes frozen, this can simultaneously change the
values of observables, introduce a structural dependency and affect privileges for agent
interaction. Modelling synchronised change in such diverse aspects of a phenomenon is
difficult within our present framework. There are also severe computational overheads
that limit the usefulness of our methods for advanced applications, such as geometric
modelling [20].

One possible implementation strategy currently under investigation is the applica-
tion of definitive principles at the lowest possible level of abstraction in a conventional
machine architecture. This is the concept behind the DAM (definitive assembler) ma-
chine, currently being implemented on the ACORN RiscPC platform. In the DAM
machine, dependency relationships can be established between the words in a definitive
store. A DAM word can represent a value, an address or an instruction, and these are
the primitive elements from which observables, structures and privileges are respectively
constructed. On this basis, there are prospects for establishing indivisible associations
between heterogeneous ingredients of a model. The DAM architecture also opens up
the possibility of more direct utilisation of raw processing power in the maintenance of
definitive scripts and implementation of agents. This applies both to the interpretation
of definitive scripts, which can be directly refined into dependencies between structured
collections of words in the DAM machine, and to the visualisation of definitive vari-
ables, where we hope to specify the relationships between visual elements of the screen
definitively in a manner analogous to that used at a higher-level of abstraction in Simon
Yung’s SCOUT notation.

Our current research into geometric modelling aims to exploit the R-function rep-
resentations of Adzhiev et al. [21] in conjunction with definitive scripts over the DAM
machine to establish a direct correspondence between the visual display and the presence
of material at positions in Euclidean space. The definitive script, specified using higher-
order definitions, represents a pair of filters that together specify a visualisation of a 3D
solid object. The first of these filters uses the implicit function representation of a solid
object to determine the visible points on its boundary. The other attaches a definition
to each pixel in an area of the screen display to represent brightness levels at a point
projected from an eye position through the viewing plane in which the pixel resides. In
this definition, the brightness levels are specified as a cross product of a light vector and
a tangent to the surface of the 3D solid. With a careful use of high order definitions,
only those pixels which are affected by a change in the defining parameters of the object
will be redrawn. As all defining parameters and visualistion parameters exist within the
definitive store, each can be redefined to fine tune the visualisation instrument into one
which reflects as closely as possible a particular user’s insight into the model.

Such use of definitive scripts in implementation potentially provides a powerful
environment for computer-based visualisation. Experimentation with the parameters in
such a script can be used to develop better models of the application, to improve the
metaphor for visualisation and to optimise the use of the hardware and graphics platform




as a visualisation instrument. The way in which the mathematical model of a geometric
object is used in this visualisation process is unusual. By way of illustration, in our
conventional implementation of geometric entities, a line (as in DoNaLD and CADNO)
is represented by a pair of distinct points and some combinatorial information to record
their interconnection. In our implementation of a line over the DAM architecture, the
mathematical model serves a different role - implicitly establishing a direct link between
the visual image of a “real-world” line and a pixellated line on the screen display. A
paradoxical quality of our pure definitive implementation is that it mediates between
lines as perceived in the real world and lines as groups of illuminated pixels on the
screen. In this way no explicit reference is made to lines as mathematical abstractions.
In particular, both real-world lines and lines on the screen have thickness and colour.

The concept of a higher-order definition also impacts at both ends of the modeller-
machine spectrum in an intriguing way. The use of R-functions as a geometric repre-
sentation is itself a form of higher-order definition that differs radically from the use of
DoNaLD or CADNO. In this context, the correspondence between the components of an
R-function expression and the features of the geometric object it represents is oblique,
and lends itself to exploratory modelling that puts the emphasis upon the computer
as a geometric instrument [21]. At the implementation level, a complementary process
operates, whereby the values at the lowest levels of abstraction are not typically those
that have a direct visualisation, but instead supply the internal machine representations
that inform the display.

8 Conclusion

The combined use of definitive scripts and agents within an Empirical Modelling frame-
work is a technique with considerable promise and power. In comparison with conven-
tional modelling environments, tkeden ofters the modeller opportunities for interaction
of exceptional subtlety and flexibility. Interaction of this nature is particularly valuable
in tasks such as conceptual design or requirements capture that demand exploration and
experiment. To exploit these principles fully in advanced environments for geometric
modelling and concurrent engineering, it will be necessary to provide means for the user
to constrain agent interaction with the model through imposing structures upon sys-
tems of observables and protocols. The ongoing research outlined in this paper suggests
methods by which this can be achieved. Our present objective is to rationalise these
methods within a unifying theory of reference that will in due course inform yet more
sophisticated versions of our current modelling tools.

9 Acknowledgements

We are indebted to the EPSRC for support under grant GR/J13458, and for its research
studentship awards to Richard Cartwright and Dominic Gehring. We are also grateful
to Matra Datavision for sponsorship via the CASE award scheme.




References

(1] V. D. Adzhiev, W. M. Beynon, A. J. Cartwright, Y. P. Yung, A computa-
tional model for multiagent interaction in concurrent engineering, Proc CEEDA’94,

Bournemouth Univ., 1994, 227-232

[2] W. M. Beynon ARCA: a notation for displaying and manipulating combinatorial
diagrams, University of Warwick Computer Science Research Report #78, July
1986

[3) W. M. Beynon, D. Angier, T. Bissell, S. Hunt, DoNeLD: a line drawing system
based on definitive principles, University of Warwick Computer Science Research

Report #86, October 1986

[4] W. M. Beynon Definitive Principles for Interactive Graphics, NATO ASI Series F,
Vol 40, Springer-Verlag 1988, 1083-1097

[5] W. M. Beynon, M. D. Slade, Y. W. Yung, Parallel computation in definitive models,
in Proc Conpar’88, British Computer Society Workshop Series CUP 1989, 359-367

[6] W. M. Beynon, M. T. Norris, R. A. Orr, M. D. Slade, Definitive specification of
concurrent systems, Proc UKIT’90, [EE Conference Publication 316, 1990, 52-57

[7] W. M. Beynon, L. Bridge, Y. P. Yung, Agent-oriented modelling for a vehicle cruise
controller, Proc ESDA Conf., ASME PD-Vol. 47-4, 1992, 643-8

[8] W. M. Beynon, A. J. Cartwright, Agent-oriented modelling for engineering design,
Proc CAD’93, New Information Technologies in Science, Engineering and Business,

Yalta, May 1993, 49-53

[9] W. M. Beynon, R. I. Cartwright, Empirical modelling for principles for cognitive
artefacts, from Proc of IEE Colloquium on Design Systems with Users in Mind -
the Role of Cognitive Artefacts, Dec. 1995

[10] A. Borning, The programming language aspects of ThingLab, a constraint oriented
simulation laboratory, ACM Transactions on Programming Languages 3(4), 1981,
353-391

[11) A. J. Cartwright Applications of Definitive Scripts to Computer Aided Conceptual
Design, PhD Thesis, University of Warwick, 1994

[12] M. Chmilar, B. Wyvill, A software architecture for integrated modelling and anima-
tion, New Advances in Computer Graphics: Proc of CGI'89, 257-276

[13] S. van Denneheuvel, Constraint-solving on database systems: design and implemen-
tation of the rule based language RL/1, CWI Amsterdam, 1991

(14] D. K. Gehring, Tables as Definitive Variables, University of Warwick Computer
Science 3rd Year Project Report, May 1995

[15) M. L. Ginsberg, D. E. Smith, Reasoning about action I: a possible worlds approach,
Artificial Intelligence 35, 1988, 165-195




[16] M. L. Ginsberg, D. E. Smith, Reasoning about action II: the qualification problem,
Artificial Intelligence 35, 1988, 311-342

[17] D. Harel, On visual formalisms, CACM, 31(5) 1988, 514-530
[18] M. Heller, Advanced Windows Programming, New York, J. Wiley, 1992

[19] R. Popplestone, T. Smithers et el, Engineering design support systems, IKBS/MS
7, 1986

[20] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, Function representation in geo-
metric modelling: concepts, implementation and application, The Visual Computer
11:429-446, Springer-Verlag 1995

[21] M. J. Wooldridge, N. R. Jennings, Intelligent agents: theory and practice, Knowl-
edge Engineering Review, vol.10, no. 2, 1995

[22] B. Wyvill, An interactive graphics language, PhD Thesis, Bradford University, 1975




