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The demands upon students of engineering design are intense. They need 
to understand analysis of engineering systems, synthesis of functional 
solutions, and to be familiar with many computational tools. They are 
challenged now to put product generation and systems design into the 
contexts of international, environmental, economic and political spheres 
wherein the design has to operate. All that has to be carried out in a 
climate of increasing competition and reduced life cycle time. The design 
process is rapidly becoming computer-based rather than computer-aided, 
by which is meant design must be carried out at a level that cannot be 
done other than with computer modelling. The growing complexity of 
products and the trend towards concurrent engineering in design all 
reinforce that trend. What would be of great help in an increasingly 
computer literate student body is for the very process of using computer 
systems to encourage a proper understanding of the design process. 
 
In this chapter we explore ways that definitive methods may be used to 
help students and others towards computer-based modelling and towards 
self-teaching by interaction, animation and prototyping. 

 
 
9.1 The Educational Context of Design 
9.11 Historical Background 
Historically, innovation has been thought of as a kind of amateur game. In both 
Britain and America, myths about inventiveness such as "necessity is the mother 
of invention" and "Watt and his steaming kettle" tended to reinforce that idea, 
despite the fact that innovation was fed by solid scientific discovery and 
technological change. The separation of innovation from science led inevitably to 
the separation of industry from academia.  

152 
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As science grew so it became the province of specialists separating into 
departments of physics, chemistry, geology and so on. The result was that the 
brilliant achievements of gifted mechanics and engineers such as Maudsley, 
Nasmyth and Whitworth were based upon basic training and apprenticeships.  
 
When by the middle of the nineteenth century Britain noticed that other countries 
were more successful technically, the answer was sought by introducing 
Engineering into the Universities. The effect was not as great as expected!  After 
the 1st World War the government took over much of the industrial research 
because of industry's reluctance to innovate and the growing gap between science 
and industry. The pattern of modern education was set. The authors in [Burns and 
Stalker, 1986] put it like this: 

 
"Two major changes have occurred in the social circumstances affecting the 
production of innovations. First, industrial concerns have increased in size: 
greater administrative complexity has brought in a wide range of bureaucratic 
positions and careers.  Their positions make it imperative that innovation was 
seen to come from within not by newcomers. 

 
The other change has occurred in the form of institutional relationships within 
which innovation had been possible. The familiar and social circumstances 
typical of the eighteenth century provided the ease of communication 
necessary for the major synthesis of ideas and requirements that introduced the 
early revolutionary inventions. In the nineteenth century new institutional 
forms introduced barriers between science and industry. By the twentieth 
century the new and elaborate organizations of professional scientists has been 
matched by one of technical innovators into groups overlapping teaching and 
research institutions, Government departments and industry" 

 
The institutionalisation of design has not proved to be helpful because of that 
separation of product and process. It led directly to the idea of Engineering 
Science, the ultimate separation! Design was interpreted as a branch of analysis. 
Indeed the author's own experience is of a "Design" course in which a clutch is 
"designed" from its description. What was asked for was the calculation of the 
clutch plate size, an analytical problem with the design taken out. 
 

9.12 Learning the Design Process 
In the last twenty years Design teaching has undergone a renaissance in both 
government and academia, following various reports such as those by Bullock on 
Academic Enterprise and by Feilden on Engineering Education. Enormous effort 
has gone into trying to understand the design process and to find better ways of 
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teaching it to students. However "standard" approaches to teaching design still 
appear to collude with the idea that there is a sequence of activities that will lead 
inevitably toward a "correct" solution. A typical student text has the suggestion 
that the first three stages of the design process are called “Problem Finding” 

 “1. IDENTIFY the fundamental need to be satisfied 
2. DEFINE the precise problem arising from that need 
3. PARAMETERS: state the constraints within which any solution must fit” 

[Starkey, 1992] 

The desire to structure design has carried over into computer aided design. 
Students need to know that many computer tools over-constrain the designer. 
Those kinds of tools are designed to solve particular problems and the inputs must 
be precisely defined. Indeed there are those who see design as needing such 
constraints. Some of those making computer aids for manufacturing would like to 
constrain the designer by limiting the features that can be part of a design, for 
example to those that can be made with current technology. The danger in limiting 
innovation is clear. That kind of bottom-up approach may be helpful in many 
detail design problems but one should recognise that one of the reasons for a 
design aid being made at all may have been that it could be made with the 
computational tools available, not that it was necessarily the most important. (As 
often happens in life, we try to solve the problems that look tractable and ignore 
the intractable ones and hope they go away!)  
 
The design process is much more elusive than implied by these "steps to a 
solution". It is interesting that practising designers do not identify with any of the 
so-called design process descriptions beloved of academics. A recent 
(mischievous!) comment by Allan Gardam, Chief Mechanical Engineer at 
Pilkington Optronics, was that the best description of the design process is 
represented by a single block diagram.  

 
 
 
 
That comment is supported by work done by [Kelly,  et al., 1986] who comment 

"As we reviewed the various theories and models, we began to realise that in 
almost every major innovation of recent times each functional phase is linked 
in some way to the others: every phase in our block diagram has lines 
connecting it to and from every other block in the diagram. Instead of a 
linear-sequential picture .. we had a plate of spaghetti and meatballs!" 

Design the 
Product
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All is not lost however. We can identify some important ingredients of design, 
particularly at the conceptual stage. The most important of these has already been 
discussed at length: namely observation and experiment, for which the EdenLisp 
is designed. Trial and error are the very stuff of design, and of science itself. The 
act of finding out has still that charm, often indeed thought of as mere playing. Sir 
Hermon Bondi makes this observation in the Foreword to [Michie, 1986]. 

" I myself was involved in space affairs when in April 1970, a serious malfunction 
in the Apollo 13 mission to the Moon led to great anxiety for the safe return of 
the crew. By a rapidly devised brilliant strategy, the crew returned to earth safe 
and sound, albeit without landing on the Moon. When I expressed my 
astonishment at the speed the solution had been found, I was told that the staff at 
Mission Control had been spending their time playing games with the equipment 
and that rescue from disaster was one of the games!  Our play instinct is always 
something to be fostered."  

Play is of course not totally unstructured. As one finds something that amuses or 
interests it is investigated more thoroughly, an approach that has its counterpart in 
design. It is that which researchers into learning have found to be most significant 
in gaining and retaining knowledge. Taking one extreme, the effort required to 
retain small amounts of "nonsense syllables" was found to be excessive because 
there was no relation to prior knowledge. In real-life, as we have found in the 
discussion on Minsky, knowledge is "chunked" into percepts that relate common 
observations. The question is then how new knowledge gets chunked. [Wærn, 
1989], in discussing general learning principles, shows that the most successful 
learning situations are top-down; they arise from linking new knowledge with 
prior knowledge and then being able by reflection to discriminate and then to 
generalise. Discrimination consists for example of a child seeing cows and horses 
and not calling them both "bears", the only prior concept she had for large 
animals. It is the process of seeing what is different and what is similar in the new 
situation. Generalisation is the chunking stage, associating similarities. 
 
Both discrimination and generalisation refer to declarative material. The results of 
learning declarative material are always expressed declaratively. We have to fetch 
the material directly from memory and reproduce them. Procedural knowledge on 
the other hand has to do with associating knowledge. It is a much more difficult 
learning operation with three stages. First there is the cognitive stage: the 
declarative knowledge, then an associative stage, putting knowledge together in 
sequence, and finally the autonomous stage where the knowledge becomes 
chunked. The first stage is easiest and learning is fastest. Learning then drops off 
rapidly. 
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The lesson from this discussion is clear. A top-down, declarative approach is most 
fruitful both for learning about design and for learning to design. We can therefore 
benefit from some of the research into the design process namely the notion of 
hierarchical decomposition. 

 
 
9.2 Learning to Design 

9.21 Hierarchical Decomposition 
Decomposition is the first stage in the top-down approach, as has already been 
discussed in chapter 2. Ullman suggests how it helps to structure one's thinking in 
arriving at the requirement. 

“In general, during the design process, the function of the system and its 
decomposition is considered first. After the function has been decomposed 
into the finest subsystems possible, assemblies and components are developed 
to provide these functions. Thus a hierarchy of mechanical is shown in the top 
row of [the figure reproduced as fig 9.1a]. Also shown in this figure is one 
further decomposition of mechanical objects” [Ullman, 1992, chapter 2] 
 

Sometimes the problem is not that easy to structure hierarchically in Ullman's 
way. For example, compare Ullman's nice hierarchy fig 9.1a with the cyclic 
problem in fig 9.1b that [Cross, 1989] raises, where the problem is of a particular 
house design detail identified by [Luckman, 1984]. 

“Architects identified five decision areas concerned with the directions of 
span of the roof and first floor joists, and the provision of load bearing or 
non-load-bearing walls and partitions. Making a decision in one area had 
implications in other areas that had implications in further areas, in one case 
coming full circle.”  

 

a)  Decomposition of Design Disciplines
from [Ullman, 1992]
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b)  Decomposition Structure of House
Design,  from [Cross, 1989]

Figure 9.1 Decomposition Problems
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However even here, Cross argues, cycles can be avoided by strategic choices and 
despite such difficulties most design problems can usefully be decomposed in a 
hierarchical manner.  
 
We have shown in the examples in chapter 7 that the definitive method is both 
declarative in form and admirably suited to hierarchical decomposition. Initial 
statements of a design problem can be written in EdenLisp as definitions in quite 
vague terms such as the following. 
 

CarEngine = f(EngineType, TransmissionType, maxPower, maxWeight) 

EngineType = choice_of(diesel, petrol_injection, petrol_carb) 

MaxPower = powerRange(max, min) 
 

Each of the definitions becomes the starting points for the specification, initially 
without any defined variables. Functions would need to be defined but may be 
quite simple selection functions such as choice_of. (In EdenLisp there would 

have to be type declarations, but that too becomes a useful conceptual exercise, 
thinking about what the parameters would be in a design and sorting out the 
important from the less important or downstream variables.) As the specification 
gains detail certain parameters will acquire values or a range of values that define 
the “design space” delineating possible designs.  
 
What is instructive is that the specification of the design in definitive terms 
requires the designer to decompose the tasks and suggest related tasks and 
possible solution spaces. As those definitions take the form of lists, they are open 
ended and invite addition and redefinition - an interaction that is vital at the initial 
formulation of the design problem. Second, that decomposition helps to identify 
the possible agents interacting in the design process. Third, the designer also 
begins to identify abstractions in the design. In order to arrive at sufficiently 
general definitions of particular relationships it is necessary to think quite hard 
about the patterns that underlie the design spaces. That is apparent in the dental 
plate design described in some detail in chapter 7. Patterns are identified that 
make possible alternative designs easy to generate; sets of relations become 
separate scripts quite naturally and so enable agents to be teased out. We therefore 
conclude that EdenLisp provides a structuring method for design that is natural, 
interactive and generic. 
 

9.22 Design Folio 
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Having ascertained the specification and the main hierarchies of sub-problems the 
designer proceeds, according to [Starkey, 1992], to the next phase called “Problem 
solving”.  

“ 4. Create ideas for alternative solutions 
5. Evaluate each of the created ideas 
6. Isolate the preferred solution 
7. Implement that solution.”  
 

Again the phraseology seems deceptive. The casual reader might think that by 
putting heading 4 under Problem Solving the author is intending to show that 
given sufficient preparation in steps 1 to 3 the designer can converge on a 
“solution”. It sometimes happens that no solution is possible to the problem as 
put. It would not be a useful exercise, for example, to design a lathe that can 
machine a high precision spindle of 0.3 mm diameter to 0.001 mm, whilst on the 
same machine be capable of machining a shaft of 600 mm diameter. In such cases 
a revision of the basic requirement is called for. It is necessary for the student to 
regard a cyclic or iterative approach to be the norm at any of the stages, rather 
than design being seen as a sequential stream of processes. 
 
A further ambiguity in the idea of design being problem solving is that it may be 
perceived in terms of analytical tractability. In all but the most trivial of designs, 
because of the infinite variety of choices, the known information is small 
compared with what is unknown: rather like having 100 simultaneous equations 
and values for only 20 of the 100 variables. Any analytical model of the design is 
therefore going to be limited. We explored this point in conceptual terms in 
chapter 2. It is essential that the student cultivates an approach that bears these 
difficulties in mind. It is in that frame that we suggest that the Definitive method, 
perhaps in the form of EdenLisp can help. 
 
We showed in chapter 8 that we can create with Definitive methods a 
computational object as a Virtual Prototype. Using the decomposition model 
described above we can develop the design by analogy with the non-computational 
approach. The designer tries out a number of different ideas, developing some of 
them to a degree that shows their feasibility. Those ideas will go into the design 
folio. In a similar way, the student could develop a number of definitive scripts as 
candidates for the Virtual Prototype, these being stored in an equivalent “design 
folio”, probably in the form of a library of files in a directory. That computational 
design folio is not simply a set of library files on the same topic, as for example 
the collection of generics in PADL-2 or the storage of partial solutions in the 
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SDRC I-DEAS CADCAM software. The key difference is that in those systems 
the composition of partial solutions has to be done by the user providing the 
connections interactively. In EdenLisp the connections can be made by means of 
guarded actions. Although the user's reasoning process may be the same in each 
case, it  is made explicit on the Virtual Prototype. And because relationships are 
based upon real-world observations, the reactions of the VP to any further 
alterations are more related to the way a physical object would behave. 
 
From the educational point of view the discipline of needing to tease out the inter-
relationships between the different ideas is exactly what one would like to see 
made explicit. The student has to decide upon the relationships to be made and in 
order to do that is forced to "think aloud" about the design problems. Furthermore 
the decisions needed at the milestones are those the designer needs to make in 
progressing the design in non-computational methods. The application example of 
the dental plate design shows how that pattern-making process operates in 
practice. The use of EdenLisp in education would therefore encourage the student 
to adopt a realistic approach to decision making and encourage greater insight into 
the design possibilities 

 
 
 
9.3 Parametric Studies 
9.31 Sensitivity Study 
Analysis of designs has long been the domain of the computational engineer, that 
phase being the easiest to automate. The value of EdenLisp is that it enables 
experiments to be carried out that may or may not be analytically tractable. 
Designers are always having to deal with partial solutions where it is necessary to 
"suck it and see". That process is easy with EdenLisp as it will ignore partial 
solutions that cannot be solved and present to the user those relationships that do 
have values. Because of that users can play around with values of parameters in 
design relationships in order to get a "feel" for the way that those parameters 
behave. Different values of variables in the domain of the designer are quickly 
entered and the effect observed. Manipulating EdenLisp scripts can enable 
sensitivity analysis to be more flexible than conventional optimisation techniques: 
observations may be made on the effect of incremental changes in parameters and 
also the effect on the constraints imposed on the optimisation.  
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By way of example we investigate the optimisation procedures for the selection of 
sizes for a compression spring suggested by [Siddall, 1982]. Loading is static 
compression and the spring ends are assumed to be closed and ground flat. 
 
Notation 
N  = Number of active coils (usually end coils are inactive, so N = no. coils - 2) 

D  = Mean diameter of the coil (mm) 

d  = Diameter of the wire used for the spring (mm); usually a preferred standard size. 

G  = Bulk Modulus (MPa) 

S  = Maximum shear stress of spring material (MPa) 

Fmax  = Maximum working Load (N) 

lmax  = Maximum free length (mm) 

Dmax  = Maximum coil diameter (mm) 

dmin  = Minimum wire diameter (mm) 

Fp  = Preload compression force (N) 

Cf  = End Coefficient of the spring (= 1 for parallel ends with one fixed, one free) 

δpm = Maximum allowable deflection under preload (mm) 

δw = Deflection from preload position to maximum load position (mm) 

 
1. Criterion Function 
The optimisation criterion is that of minimising the volume of the spring wire 
used.  

 U Dd N= +π 2
2

4
2E J 

This criterion is subject to a series of 8 constraints Φi as follows. 
 
2. Constraints 
1. Strength. The shear stress in the spring must be less than the yield shear 
strength of the spring material, Sshear. The stress has two components: a shear 
force on the cross-section of the wire, and torsion of the wire. The total shear 
stress in the wire is expressed in terms of the loading and a spring index Cf, a 
function of D/d.  The stress constraint Φ1  is  

 Φ1 38 0= − ≥S C F
D
dshear f max π

 

2. Deflection constraint 

The stiffness of a coil spring K (N/mm) is 

 K
Gd
ND

=
4

38
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The deflection (mm) of the spring under maximum static load is δ= Fmax /K. The 
spring length under load Fmax  is 105% of the solid length the spring. The free 
length is given by 

 l N df = + +δ 1 05 2. E J 

The deflection constraint is  

 Φ2 0= − ≥l l fmax  

3. Wire Diameter constraint 
The wire diameter must not be less than the minimum specified. 

 Φ3 0= − ≥d dmin  

4. Coil Diameter 
The outside diameter of the coil must not exceed the maximum 

 Φ4 0= − − ≥D D dmax  

5. Coil Winding restriction 
The mean coil diameter must be at least three times the wire diameter to prevent it 
being too tightly wound. 

 Φ5 3 0= − ≥C  

6. Preload deflection 
The preload deflection must be less than Fp/K and so the constraint is 

 Φ6 0= − ≥δ δpm p  

7. Total deflection constraint 
The combined deflection must be consistent with the free length of the unloaded 
spring 

 Φ7 1 05 2 0= − −
−

− + ≥l
F F

K
N dp

p
max

max .δ
G L E J  

8. Specified deflection 
The deflection from the preload position to the maximum load position must be 

 Φ8 0=
−

− ≥
F F

K
p

w
maxG L

δ  

We do a parameter study by entering the equations as EdenLisp definitions, and 
the constraints as Phi1, Phi2, etc. as definitions with violation messages. 

Drawings of the spring under the conditions applied are easy to do by associating 
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the variables with appropriate geometrical models. Possible EdenLisp script and 
some results follow. 
 
 
;;; EDENLISP Exercise in Optimising compression spring dimensions 
;;; 
;  Definitions of relationships 

Vol   = pi^2*D*d^2*(N+2)/4 
K     = G*d^4/(8*N*D^3) 
Lf    = dw + 1.05*(N+2) 
delpm = Fp/K 
 
; definitions of constraints 
Phi1  = S - 8*Cf*Fmax*D/(pi*l^3) 
Phi2  = Lmax - Lf 
Phi3  = d - dmin 
Phi4  = Dmax - D - d 
Phi5  = C - 3 
Phi6  = delpm - delp 
Phi7  = lmax - delp - (Fmax-Fp)/K - 1.05*d*(N+2) 
Phi8  = (Fmax-Fp)/K  - dpm 
 
constraint1 = if Phi1 >= 0 then print "Phi1 -ve, Stress too high" 
constraint2 = if Phi2 >= 0 then print "Phi2 -ve, Spring solid with no load" 
constraint3 = if Phi3 >= 0 then print "Phi3 -ve, spring wire dia too small" 
constraint4 = if Phi4 >= 0 then print "Phi4 -ve, Coil dia exceeds design max" 
constraint5 = if Phi5 >= 0 then print "Phi5 -ve, Coil dia too small" 
constraint6 = if Phi6 >= 0 then print "Phi6 -ve, Preload too great: spring 
solid" 
constraint7 = if Phi7 >= 0 then print "Phi7 -ve, Combined deflection too great" 
constraint8 = if Phi8 >= 0 then print "Phi8 -ve, Load too great: spring solid" 

 
 
;;; Results of two sets of values of variables d, D, N and material 

 
Strength: S 1100  Stiffness: K 96.02 
Elastic Modulus: E 205000  Deflection: δ 46.24 
Bulk Modulus: G 80000  Free Length: Lf 259.39 
Force: Fmax 4440  Delp 13.87 
Length:Lmax 355  CF 1.58 
Wire diameter: Dmin 5    
Outer diameter: Dmax 75  Optimisation: Volume 73629.59 
Preload: Fp 1332  Constraints to be ≥ 0  
Preload def: dpm 150  Phi1 6.28 
Deflection: dw 32  Phi2 95.61 
End Coefficient: CE 1  Phi3 2 
var: d 7  Phi4 47 
var: D 21  Phi5 0 
var: N 27  Phi6 136.13 
constant: pi 3.1416  Phi7 0 
Ratio  D/d: C 3  Phi8 0.37 

 
Strength: S 676.69  Stiffness: K 97.35 
Elastic Modulus: E 207000  Deflection: δ 45.61 
Bulk Modulus: G 80000  Free Length: Lf 354.62 
Force: Fmax 4440  Del: p 13.66 
Length:Lmax 355  CF 1.55 
Wire diameter: Dmin 5    
Outer diameter: Dmax 75  Optimisation: Volume 182991.0 
Preload: Fp 1330  Constraints to be ≥ 0  
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Preload def: dpm 150  Phi1 2.31 
Deflection: dw 35  Phi2 0.38 
End Coefficient: CE 1  Phi3 4 
var: d 9  Phi4 38 
var: D 28  Phi5 0.11 
var: N 30.7  Phi6 136.34 
constant: pi 3.1416  Phi7 0 
Ratio  D/d: C 3.11  Phi8 -3.06 
 
"Phi8 -ve, Load too great: spring solid" 

 
 
Optimisation may be carried out as a batch process using numerical methods such 
as Siddall suggests in his text (op cit.). The advantage of interactive study of 
sensitivity is that the student can observe what happens to the optimisation 
function as different parameters are manually varied. Changing the values of 
variables in EdenLisp just involves redefinition, so the designer can quickly study 
the behaviour of important parameters and can just as easily change constraints. 
The tables show the results of varying the material strength, wire diameter and 
coil outer diameter. By checking what is happening to the constraints at the same 
time it is possible to see whether the constraints themselves are reasonable. When 
the value Phi8 = - 3.06 is obtained in the second table, indicating a constraint 

violation, we can not only to vary the main parameter to get us out of violation but 
also see whether the specified deflection from pre-load position to maximum load 
position δw needs to be changed. It is difficult for a preconceived optimisation 
analysis to anticipate those kinds of adjustments to constraints; and for the student 
to know what to do with a result of an optimisation analysis when constraints are 
not examined in that way. 
 
 

9.32 Parametric design 
A second way that EdenLisp helps in parametric studies is in discovering rela-
tionships that represent combinations of parameters in a design. In our search for 
methods of analysing the shaft described in chapter 4 we showed that the 
relationships between segments of the shaft could be expressed in a hierarchical 
way by series of matrices that were peculiar to the geometry and material 
properties of each segment. Whilst identifying the components of the hierarchy, it 
became clear that certain combinations of parameters were important, as for 
example L/EI (symbols are respectively segment length, Young's Modulus and 
Second moment of area of section). What we can then do is analyse those 
combinations across different designs and different materials, maximising or 
minimising the parameter combination according to the design criteria. These 
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parameter combinations are probably best expressed dimensionlessly, and many 
studies have been undertaken to help students understand and use for example 
particular material property combinations. Sensitivity studies of these parametric 
combinations is equally easy to do with EdenLisp 
 
 
 

9.4 Self-Teaching  
9.41 Animation 
One method of animation in CAD is to take snapshots of the screen as slides in 
sequence and then show them quickly to create the illusion of animation. 
Alternatively a simple shape may be displayed on the fly, deleted and re-displayed 
in the new position. That second method is intrinsic to EdenLisp inasmuch as the 
automatic recomputation that takes place on redefinition not only overwrites 
previous parameter values with the new values, it also deletes any graphic entities 
that are changed as a result, and reconstructs the object in its new geometry.  
 
An example of a self-learning script (written in DoNaLD) was discussed in 
principle in chapter 4, namely Bow's Notation for bending of beams. In the 
diagram of fig 4.7 reproduced and modified below as fig 9.2 the three components 
of the notation are shown: beam loading, the vector diagram, and the polar 
diagram. These are connected by a graphical construction as follows. 
 

A B C
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16t 10t

=12t=14t

o

a b
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Polar Diagram

Vector Diagram

Beam Loading

animation

10 10 10R1 R2

 

Fig. 9.2 Bow's Notation Animation 

 
Bow's notation:  
On the Beam Loading diagram, label spaces between the forces. So, A is in 
the space between the 16t load and the reaction R1;  D is between the two 
reactions and so on.  



  DESIGN EDUCATION   165 

 

Construct the polar diagram from vectors that sum the known loads. So, 
vector ab represents the 16t load between A and B, vector bc the 10t load 
between B and C. In the diagram the loads are vertical but they need not be. 
Select any point not on the line as the pole o and join oa, ob and oc. 

Translate vectors oa, ob and oc to fill the spaces labelled A, B and C 
projected down from the beam loading diagram in the area designated as 
vector diagram. Join c to d representing the resultant of the vectors. 
Translate vector cd back to the polar diagram to pass though pole o. Line od 
cuts the vector abc at point d.  ad and dc represent reaction vectors R1 and 
R2, measured from the diagram as 14t and 12t. 

 

In seeking to teach Bow's Notation it is useful to animate the construction of each 
stage of the diagram. In the DoNaLD code for example, once the line dc is con-

structed in the vector diagram in the manner described, the code causes an anima-
tion of the translation of dc to the polar diagram. Displaying intermediate 
positions of the translation is done by redefining the vector dc for selected points 

along its path. The system re-evaluates the vector each time, drawing it in the new 
position after deleting the previous one. Unlike the picture in fig 9.2 the vector is 
only seen instantly in one position but it appears to "move" across from the vector 
diagram to the polar diagram. Similarly the vector ad and dc detach from the 
polar diagram and translate to the reactions R1 and R2 and their magnitudes get 

written as labels. 
 
As explained in chapter 4 DoNaLD is rather a clumsy tool for that animation and 
EdenLisp is more versatile because of the way it uses AutoLisp functions. To 
show that difference, a construction was made of a small bench vice in three 
dimensions. Animation of the movement of the handle may be achieved by a 
series of redefintions of its angular position, causing the vice grips to appear to 
move. The application to mechanisms and loci are obvious, and as observed in 
chapter 4 the student has full control over all the variables, including the 
presentation of the display itself. 

 
9.42 Authoring 
EdenLisp can make use of AutoCAD's own system to help the student learn to use 
AutoCAD itself (a rather nice case of self reference!). The method is extensible to 
any situation where annotated graphics and text are required. We thus have a 
possible authoring system. 
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The method is to use AutoLisp functions accessed by EdenLisp that use the 
AutoCAD system of Programmable Dialogue Boxes, described in their 
Customisation Manual [AutoDesk, 1992]. The Dialogue Control Language (DCL) 
provided by AutoDesk allows one to program pop-up boxes, typically to display 
text or graphics and to provide buttons, sliders, highlighters, lists, toggles. 
Whatever is designed to go into pop-up boxes may be under the control of 
EdenLisp. Text that helps the user to see what is going on can be popped onto the 
graphics screen at the position where it does most good, for example to point to 
some aspect of the display that needs explanation. 

 
Fig 9.3 illustrates the point. The dialogue box is created by putting the text of the 
box in one definition and then calling the DCL function to define the position and 
shape of the dialogue box. In the diagram the box has a single OK button that has 
to be clicked with the mouse to proceed. Other buttons, sliders, etc. can be 
similarly programmed and the results of touching those buttons can be monitored 
resulting in changes in the current state of the scripts. As the user changes the 
screen by selecting different commands it is possible that new help files can be 
popped up. Currently the method is driven as an embryo teaching aid, showing 
that it can be done in principle. Further development it necessary to make it a 
usable package 
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Cursor coordinates
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Fig 9.3 Example of using Dialogue Boxes from EdenLisp
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