
9
Design

Education

The demands upon students of engineering design are intense. They need
to understand analysis of engineering systems, synthesis of functional
solutions, and to be familiar with many computational tools. They are
challenged now to put product generation and systems design into the
contexts of international, environmental, economic and political spheres
wherein the design has to operate. All that has to be carried out in a
climate of increasing competition and reduced life cycle time. The design
process is rapidly becoming computer-based rather than computer-aided,
by which is meant design must be carried out at a level that cannot be
done other than with computer modelling. The growing complexity of
products and the trend towards concurrent engineering in design all
reinforce that trend. What would be of great help in an increasingly
computer literate student body is for the very process of using computer
systems to encourage a proper understanding of the design process.

In this chapter we explore ways that definitive methods may be used to
help students and others towards computer-based modelling and towards
self-teaching by interaction, animation and prototyping.

9.1 The Educational Context of Design
9.11 Historical Background
Historically, innovation has been thought of as a kind of amateur game. In both
Britain and America, myths about inventiveness such as "necessity is the mother
of invention" and "Watt and his steaming kettle" tended to reinforce that idea,
despite the fact that innovation was fed by solid scientific discovery and
technological change. The separation of innovation from science led inevitably to
the separation of industry from academia.

152

 DESIGN EDUCATION 153

As science grew so it became the province of specialists separating into
departments of physics, chemistry, geology and so on. The result was that the
brilliant achievements of gifted mechanics and engineers such as Maudsley,
Nasmyth and Whitworth were based upon basic training and apprenticeships.

When by the middle of the nineteenth century Britain noticed that other countries
were more successful technically, the answer was sought by introducing
Engineering into the Universities. The effect was not as great as expected! After
the 1st World War the government took over much of the industrial research
because of industry's reluctance to innovate and the growing gap between science
and industry. The pattern of modern education was set. The authors in [Burns and
Stalker, 1986] put it like this:

"Two major changes have occurred in the social circumstances affecting the
production of innovations. First, industrial concerns have increased in size:
greater administrative complexity has brought in a wide range of bureaucratic
positions and careers. Their positions make it imperative that innovation was
seen to come from within not by newcomers.

The other change has occurred in the form of institutional relationships within
which innovation had been possible. The familiar and social circumstances
typical of the eighteenth century provided the ease of communication
necessary for the major synthesis of ideas and requirements that introduced the
early revolutionary inventions. In the nineteenth century new institutional
forms introduced barriers between science and industry. By the twentieth
century the new and elaborate organizations of professional scientists has been
matched by one of technical innovators into groups overlapping teaching and
research institutions, Government departments and industry"

The institutionalisation of design has not proved to be helpful because of that
separation of product and process. It led directly to the idea of Engineering
Science, the ultimate separation! Design was interpreted as a branch of analysis.
Indeed the author's own experience is of a "Design" course in which a clutch is
"designed" from its description. What was asked for was the calculation of the
clutch plate size, an analytical problem with the design taken out.

9.12 Learning the Design Process
In the last twenty years Design teaching has undergone a renaissance in both
government and academia, following various reports such as those by Bullock on
Academic Enterprise and by Feilden on Engineering Education. Enormous effort
has gone into trying to understand the design process and to find better ways of

 DESIGN EDUCATION 154

teaching it to students. However "standard" approaches to teaching design still
appear to collude with the idea that there is a sequence of activities that will lead
inevitably toward a "correct" solution. A typical student text has the suggestion
that the first three stages of the design process are called “Problem Finding”

 “1. IDENTIFY the fundamental need to be satisfied
2. DEFINE the precise problem arising from that need
3. PARAMETERS: state the constraints within which any solution must fit”

[Starkey, 1992]

The desire to structure design has carried over into computer aided design.
Students need to know that many computer tools over-constrain the designer.
Those kinds of tools are designed to solve particular problems and the inputs must
be precisely defined. Indeed there are those who see design as needing such
constraints. Some of those making computer aids for manufacturing would like to
constrain the designer by limiting the features that can be part of a design, for
example to those that can be made with current technology. The danger in limiting
innovation is clear. That kind of bottom-up approach may be helpful in many
detail design problems but one should recognise that one of the reasons for a
design aid being made at all may have been that it could be made with the
computational tools available, not that it was necessarily the most important. (As
often happens in life, we try to solve the problems that look tractable and ignore
the intractable ones and hope they go away!)

The design process is much more elusive than implied by these "steps to a
solution". It is interesting that practising designers do not identify with any of the
so-called design process descriptions beloved of academics. A recent
(mischievous!) comment by Allan Gardam, Chief Mechanical Engineer at
Pilkington Optronics, was that the best description of the design process is
represented by a single block diagram.

That comment is supported by work done by [Kelly, et al., 1986] who comment

"As we reviewed the various theories and models, we began to realise that in
almost every major innovation of recent times each functional phase is linked
in some way to the others: every phase in our block diagram has lines
connecting it to and from every other block in the diagram. Instead of a
linear-sequential picture .. we had a plate of spaghetti and meatballs!"

Design the
Product

 DESIGN EDUCATION 155

All is not lost however. We can identify some important ingredients of design,
particularly at the conceptual stage. The most important of these has already been
discussed at length: namely observation and experiment, for which the EdenLisp
is designed. Trial and error are the very stuff of design, and of science itself. The
act of finding out has still that charm, often indeed thought of as mere playing. Sir
Hermon Bondi makes this observation in the Foreword to [Michie, 1986].

" I myself was involved in space affairs when in April 1970, a serious malfunction
in the Apollo 13 mission to the Moon led to great anxiety for the safe return of
the crew. By a rapidly devised brilliant strategy, the crew returned to earth safe
and sound, albeit without landing on the Moon. When I expressed my
astonishment at the speed the solution had been found, I was told that the staff at
Mission Control had been spending their time playing games with the equipment
and that rescue from disaster was one of the games! Our play instinct is always
something to be fostered."

Play is of course not totally unstructured. As one finds something that amuses or
interests it is investigated more thoroughly, an approach that has its counterpart in
design. It is that which researchers into learning have found to be most significant
in gaining and retaining knowledge. Taking one extreme, the effort required to
retain small amounts of "nonsense syllables" was found to be excessive because
there was no relation to prior knowledge. In real-life, as we have found in the
discussion on Minsky, knowledge is "chunked" into percepts that relate common
observations. The question is then how new knowledge gets chunked. [Wærn,
1989], in discussing general learning principles, shows that the most successful
learning situations are top-down; they arise from linking new knowledge with
prior knowledge and then being able by reflection to discriminate and then to
generalise. Discrimination consists for example of a child seeing cows and horses
and not calling them both "bears", the only prior concept she had for large
animals. It is the process of seeing what is different and what is similar in the new
situation. Generalisation is the chunking stage, associating similarities.

Both discrimination and generalisation refer to declarative material. The results of
learning declarative material are always expressed declaratively. We have to fetch
the material directly from memory and reproduce them. Procedural knowledge on
the other hand has to do with associating knowledge. It is a much more difficult
learning operation with three stages. First there is the cognitive stage: the
declarative knowledge, then an associative stage, putting knowledge together in
sequence, and finally the autonomous stage where the knowledge becomes
chunked. The first stage is easiest and learning is fastest. Learning then drops off
rapidly.

 DESIGN EDUCATION 156

The lesson from this discussion is clear. A top-down, declarative approach is most
fruitful both for learning about design and for learning to design. We can therefore
benefit from some of the research into the design process namely the notion of
hierarchical decomposition.

9.2 Learning to Design

9.21 Hierarchical Decomposition
Decomposition is the first stage in the top-down approach, as has already been
discussed in chapter 2. Ullman suggests how it helps to structure one's thinking in
arriving at the requirement.

“In general, during the design process, the function of the system and its
decomposition is considered first. After the function has been decomposed
into the finest subsystems possible, assemblies and components are developed
to provide these functions. Thus a hierarchy of mechanical is shown in the top
row of [the figure reproduced as fig 9.1a]. Also shown in this figure is one
further decomposition of mechanical objects” [Ullman, 1992, chapter 2]

Sometimes the problem is not that easy to structure hierarchically in Ullman's
way. For example, compare Ullman's nice hierarchy fig 9.1a with the cyclic
problem in fig 9.1b that [Cross, 1989] raises, where the problem is of a particular
house design detail identified by [Luckman, 1984].

“Architects identified five decision areas concerned with the directions of
span of the roof and first floor joists, and the provision of load bearing or
non-load-bearing walls and partitions. Making a decision in one area had
implications in other areas that had implications in further areas, in one case
coming full circle.”

a) Decomposition of Design Disciplines
from [Ullman, 1992]

Drainage Roof Cladding

Roof type

Roof

External Walls

Elevations

1st floor material

1st floor

Core partitions
Ground floor

Core partitions
1st floor

direction of span

direction of span

b) Decomposition Structure of House
Design, from [Cross, 1989]

Figure 9.1 Decomposition Problems

System

Mechanical
Assemblies Components

Electrical
circuits

Electrical
Components

Programs
Modules
Procedures
or subroutines

coded
statements

feature

feature feature

 DESIGN EDUCATION 157

However even here, Cross argues, cycles can be avoided by strategic choices and
despite such difficulties most design problems can usefully be decomposed in a
hierarchical manner.

We have shown in the examples in chapter 7 that the definitive method is both
declarative in form and admirably suited to hierarchical decomposition. Initial
statements of a design problem can be written in EdenLisp as definitions in quite
vague terms such as the following.

CarEngine = f(EngineType, TransmissionType, maxPower, maxWeight)

EngineType = choice_of(diesel, petrol_injection, petrol_carb)

MaxPower = powerRange(max, min)

Each of the definitions becomes the starting points for the specification, initially
without any defined variables. Functions would need to be defined but may be
quite simple selection functions such as choice_of. (In EdenLisp there would

have to be type declarations, but that too becomes a useful conceptual exercise,
thinking about what the parameters would be in a design and sorting out the
important from the less important or downstream variables.) As the specification
gains detail certain parameters will acquire values or a range of values that define
the “design space” delineating possible designs.

What is instructive is that the specification of the design in definitive terms
requires the designer to decompose the tasks and suggest related tasks and
possible solution spaces. As those definitions take the form of lists, they are open
ended and invite addition and redefinition - an interaction that is vital at the initial
formulation of the design problem. Second, that decomposition helps to identify
the possible agents interacting in the design process. Third, the designer also
begins to identify abstractions in the design. In order to arrive at sufficiently
general definitions of particular relationships it is necessary to think quite hard
about the patterns that underlie the design spaces. That is apparent in the dental
plate design described in some detail in chapter 7. Patterns are identified that
make possible alternative designs easy to generate; sets of relations become
separate scripts quite naturally and so enable agents to be teased out. We therefore
conclude that EdenLisp provides a structuring method for design that is natural,
interactive and generic.

9.22 Design Folio

 DESIGN EDUCATION 158

Having ascertained the specification and the main hierarchies of sub-problems the
designer proceeds, according to [Starkey, 1992], to the next phase called “Problem
solving”.

“ 4. Create ideas for alternative solutions
5. Evaluate each of the created ideas
6. Isolate the preferred solution
7. Implement that solution.”

Again the phraseology seems deceptive. The casual reader might think that by
putting heading 4 under Problem Solving the author is intending to show that
given sufficient preparation in steps 1 to 3 the designer can converge on a
“solution”. It sometimes happens that no solution is possible to the problem as
put. It would not be a useful exercise, for example, to design a lathe that can
machine a high precision spindle of 0.3 mm diameter to 0.001 mm, whilst on the
same machine be capable of machining a shaft of 600 mm diameter. In such cases
a revision of the basic requirement is called for. It is necessary for the student to
regard a cyclic or iterative approach to be the norm at any of the stages, rather
than design being seen as a sequential stream of processes.

A further ambiguity in the idea of design being problem solving is that it may be
perceived in terms of analytical tractability. In all but the most trivial of designs,
because of the infinite variety of choices, the known information is small
compared with what is unknown: rather like having 100 simultaneous equations
and values for only 20 of the 100 variables. Any analytical model of the design is
therefore going to be limited. We explored this point in conceptual terms in
chapter 2. It is essential that the student cultivates an approach that bears these
difficulties in mind. It is in that frame that we suggest that the Definitive method,
perhaps in the form of EdenLisp can help.

We showed in chapter 8 that we can create with Definitive methods a
computational object as a Virtual Prototype. Using the decomposition model
described above we can develop the design by analogy with the non-computational
approach. The designer tries out a number of different ideas, developing some of
them to a degree that shows their feasibility. Those ideas will go into the design
folio. In a similar way, the student could develop a number of definitive scripts as
candidates for the Virtual Prototype, these being stored in an equivalent “design
folio”, probably in the form of a library of files in a directory. That computational
design folio is not simply a set of library files on the same topic, as for example
the collection of generics in PADL-2 or the storage of partial solutions in the

 DESIGN EDUCATION 159

SDRC I-DEAS CADCAM software. The key difference is that in those systems
the composition of partial solutions has to be done by the user providing the
connections interactively. In EdenLisp the connections can be made by means of
guarded actions. Although the user's reasoning process may be the same in each
case, it is made explicit on the Virtual Prototype. And because relationships are
based upon real-world observations, the reactions of the VP to any further
alterations are more related to the way a physical object would behave.

From the educational point of view the discipline of needing to tease out the inter-
relationships between the different ideas is exactly what one would like to see
made explicit. The student has to decide upon the relationships to be made and in
order to do that is forced to "think aloud" about the design problems. Furthermore
the decisions needed at the milestones are those the designer needs to make in
progressing the design in non-computational methods. The application example of
the dental plate design shows how that pattern-making process operates in
practice. The use of EdenLisp in education would therefore encourage the student
to adopt a realistic approach to decision making and encourage greater insight into
the design possibilities

9.3 Parametric Studies
9.31 Sensitivity Study
Analysis of designs has long been the domain of the computational engineer, that
phase being the easiest to automate. The value of EdenLisp is that it enables
experiments to be carried out that may or may not be analytically tractable.
Designers are always having to deal with partial solutions where it is necessary to
"suck it and see". That process is easy with EdenLisp as it will ignore partial
solutions that cannot be solved and present to the user those relationships that do
have values. Because of that users can play around with values of parameters in
design relationships in order to get a "feel" for the way that those parameters
behave. Different values of variables in the domain of the designer are quickly
entered and the effect observed. Manipulating EdenLisp scripts can enable
sensitivity analysis to be more flexible than conventional optimisation techniques:
observations may be made on the effect of incremental changes in parameters and
also the effect on the constraints imposed on the optimisation.

 DESIGN EDUCATION 160

By way of example we investigate the optimisation procedures for the selection of
sizes for a compression spring suggested by [Siddall, 1982]. Loading is static
compression and the spring ends are assumed to be closed and ground flat.

Notation
N = Number of active coils (usually end coils are inactive, so N = no. coils - 2)

D = Mean diameter of the coil (mm)

d = Diameter of the wire used for the spring (mm); usually a preferred standard size.

G = Bulk Modulus (MPa)

S = Maximum shear stress of spring material (MPa)

Fmax = Maximum working Load (N)

lmax = Maximum free length (mm)

Dmax = Maximum coil diameter (mm)

dmin = Minimum wire diameter (mm)

Fp = Preload compression force (N)

Cf = End Coefficient of the spring (= 1 for parallel ends with one fixed, one free)

δpm = Maximum allowable deflection under preload (mm)

δw = Deflection from preload position to maximum load position (mm)

1. Criterion Function
The optimisation criterion is that of minimising the volume of the spring wire
used.

 U Dd N= +π 2
2

4
2E J

This criterion is subject to a series of 8 constraints Φi as follows.

2. Constraints
1. Strength. The shear stress in the spring must be less than the yield shear
strength of the spring material, Sshear. The stress has two components: a shear
force on the cross-section of the wire, and torsion of the wire. The total shear
stress in the wire is expressed in terms of the loading and a spring index Cf, a
function of D/d. The stress constraint Φ1 is

 Φ1 38 0= − ≥S C F
D
dshear f max π

2. Deflection constraint

The stiffness of a coil spring K (N/mm) is

 K
Gd
ND

=
4

38

 DESIGN EDUCATION 161

The deflection (mm) of the spring under maximum static load is δ= Fmax /K. The
spring length under load Fmax is 105% of the solid length the spring. The free
length is given by

 l N df = + +δ 1 05 2. E J

The deflection constraint is

 Φ2 0= − ≥l l fmax

3. Wire Diameter constraint
The wire diameter must not be less than the minimum specified.

 Φ3 0= − ≥d dmin

4. Coil Diameter
The outside diameter of the coil must not exceed the maximum

 Φ4 0= − − ≥D D dmax

5. Coil Winding restriction
The mean coil diameter must be at least three times the wire diameter to prevent it
being too tightly wound.

 Φ5 3 0= − ≥C

6. Preload deflection
The preload deflection must be less than Fp/K and so the constraint is

 Φ6 0= − ≥δ δpm p

7. Total deflection constraint
The combined deflection must be consistent with the free length of the unloaded
spring

 Φ7 1 05 2 0= − −
−

− + ≥l
F F

K
N dp

p
max

max .δ
G L E J

8. Specified deflection
The deflection from the preload position to the maximum load position must be

 Φ8 0=
−

− ≥
F F

K
p

w
maxG L

δ

We do a parameter study by entering the equations as EdenLisp definitions, and
the constraints as Phi1, Phi2, etc. as definitions with violation messages.

Drawings of the spring under the conditions applied are easy to do by associating

 DESIGN EDUCATION 162

the variables with appropriate geometrical models. Possible EdenLisp script and
some results follow.

;;; EDENLISP Exercise in Optimising compression spring dimensions
;;;
; Definitions of relationships

Vol = pi^2*D*d^2*(N+2)/4
K = G*d^4/(8*N*D^3)
Lf = dw + 1.05*(N+2)
delpm = Fp/K

; definitions of constraints
Phi1 = S - 8*Cf*Fmax*D/(pi*l^3)
Phi2 = Lmax - Lf
Phi3 = d - dmin
Phi4 = Dmax - D - d
Phi5 = C - 3
Phi6 = delpm - delp
Phi7 = lmax - delp - (Fmax-Fp)/K - 1.05*d*(N+2)
Phi8 = (Fmax-Fp)/K - dpm

constraint1 = if Phi1 >= 0 then print "Phi1 -ve, Stress too high"
constraint2 = if Phi2 >= 0 then print "Phi2 -ve, Spring solid with no load"
constraint3 = if Phi3 >= 0 then print "Phi3 -ve, spring wire dia too small"
constraint4 = if Phi4 >= 0 then print "Phi4 -ve, Coil dia exceeds design max"
constraint5 = if Phi5 >= 0 then print "Phi5 -ve, Coil dia too small"
constraint6 = if Phi6 >= 0 then print "Phi6 -ve, Preload too great: spring
solid"
constraint7 = if Phi7 >= 0 then print "Phi7 -ve, Combined deflection too great"
constraint8 = if Phi8 >= 0 then print "Phi8 -ve, Load too great: spring solid"

;;; Results of two sets of values of variables d, D, N and material

Strength: S 1100 Stiffness: K 96.02
Elastic Modulus: E 205000 Deflection: δ 46.24
Bulk Modulus: G 80000 Free Length: Lf 259.39
Force: Fmax 4440 Delp 13.87
Length:Lmax 355 CF 1.58
Wire diameter: Dmin 5
Outer diameter: Dmax 75 Optimisation: Volume 73629.59
Preload: Fp 1332 Constraints to be ≥ 0
Preload def: dpm 150 Phi1 6.28
Deflection: dw 32 Phi2 95.61
End Coefficient: CE 1 Phi3 2
var: d 7 Phi4 47
var: D 21 Phi5 0
var: N 27 Phi6 136.13
constant: pi 3.1416 Phi7 0
Ratio D/d: C 3 Phi8 0.37

Strength: S 676.69 Stiffness: K 97.35
Elastic Modulus: E 207000 Deflection: δ 45.61
Bulk Modulus: G 80000 Free Length: Lf 354.62
Force: Fmax 4440 Del: p 13.66
Length:Lmax 355 CF 1.55
Wire diameter: Dmin 5
Outer diameter: Dmax 75 Optimisation: Volume 182991.0
Preload: Fp 1330 Constraints to be ≥ 0

 DESIGN EDUCATION 163

Preload def: dpm 150 Phi1 2.31
Deflection: dw 35 Phi2 0.38
End Coefficient: CE 1 Phi3 4
var: d 9 Phi4 38
var: D 28 Phi5 0.11
var: N 30.7 Phi6 136.34
constant: pi 3.1416 Phi7 0
Ratio D/d: C 3.11 Phi8 -3.06

"Phi8 -ve, Load too great: spring solid"

Optimisation may be carried out as a batch process using numerical methods such
as Siddall suggests in his text (op cit.). The advantage of interactive study of
sensitivity is that the student can observe what happens to the optimisation
function as different parameters are manually varied. Changing the values of
variables in EdenLisp just involves redefinition, so the designer can quickly study
the behaviour of important parameters and can just as easily change constraints.
The tables show the results of varying the material strength, wire diameter and
coil outer diameter. By checking what is happening to the constraints at the same
time it is possible to see whether the constraints themselves are reasonable. When
the value Phi8 = - 3.06 is obtained in the second table, indicating a constraint

violation, we can not only to vary the main parameter to get us out of violation but
also see whether the specified deflection from pre-load position to maximum load
position δw needs to be changed. It is difficult for a preconceived optimisation
analysis to anticipate those kinds of adjustments to constraints; and for the student
to know what to do with a result of an optimisation analysis when constraints are
not examined in that way.

9.32 Parametric design
A second way that EdenLisp helps in parametric studies is in discovering rela-
tionships that represent combinations of parameters in a design. In our search for
methods of analysing the shaft described in chapter 4 we showed that the
relationships between segments of the shaft could be expressed in a hierarchical
way by series of matrices that were peculiar to the geometry and material
properties of each segment. Whilst identifying the components of the hierarchy, it
became clear that certain combinations of parameters were important, as for
example L/EI (symbols are respectively segment length, Young's Modulus and
Second moment of area of section). What we can then do is analyse those
combinations across different designs and different materials, maximising or
minimising the parameter combination according to the design criteria. These

 DESIGN EDUCATION 164

parameter combinations are probably best expressed dimensionlessly, and many
studies have been undertaken to help students understand and use for example
particular material property combinations. Sensitivity studies of these parametric
combinations is equally easy to do with EdenLisp

9.4 Self-Teaching
9.41 Animation
One method of animation in CAD is to take snapshots of the screen as slides in
sequence and then show them quickly to create the illusion of animation.
Alternatively a simple shape may be displayed on the fly, deleted and re-displayed
in the new position. That second method is intrinsic to EdenLisp inasmuch as the
automatic recomputation that takes place on redefinition not only overwrites
previous parameter values with the new values, it also deletes any graphic entities
that are changed as a result, and reconstructs the object in its new geometry.

An example of a self-learning script (written in DoNaLD) was discussed in
principle in chapter 4, namely Bow's Notation for bending of beams. In the
diagram of fig 4.7 reproduced and modified below as fig 9.2 the three components
of the notation are shown: beam loading, the vector diagram, and the polar
diagram. These are connected by a graphical construction as follows.

A B C

D

a

b

c

d

16t 10t

=12t=14t

o

a b

c
d

Polar Diagram

Vector Diagram

Beam Loading

animation

10 10 10R1 R2

Fig. 9.2 Bow's Notation Animation

Bow's notation:
On the Beam Loading diagram, label spaces between the forces. So, A is in
the space between the 16t load and the reaction R1; D is between the two
reactions and so on.

 DESIGN EDUCATION 165

Construct the polar diagram from vectors that sum the known loads. So,
vector ab represents the 16t load between A and B, vector bc the 10t load
between B and C. In the diagram the loads are vertical but they need not be.
Select any point not on the line as the pole o and join oa, ob and oc.

Translate vectors oa, ob and oc to fill the spaces labelled A, B and C
projected down from the beam loading diagram in the area designated as
vector diagram. Join c to d representing the resultant of the vectors.
Translate vector cd back to the polar diagram to pass though pole o. Line od
cuts the vector abc at point d. ad and dc represent reaction vectors R1 and
R2, measured from the diagram as 14t and 12t.

In seeking to teach Bow's Notation it is useful to animate the construction of each
stage of the diagram. In the DoNaLD code for example, once the line dc is con-

structed in the vector diagram in the manner described, the code causes an anima-
tion of the translation of dc to the polar diagram. Displaying intermediate
positions of the translation is done by redefining the vector dc for selected points

along its path. The system re-evaluates the vector each time, drawing it in the new
position after deleting the previous one. Unlike the picture in fig 9.2 the vector is
only seen instantly in one position but it appears to "move" across from the vector
diagram to the polar diagram. Similarly the vector ad and dc detach from the
polar diagram and translate to the reactions R1 and R2 and their magnitudes get

written as labels.

As explained in chapter 4 DoNaLD is rather a clumsy tool for that animation and
EdenLisp is more versatile because of the way it uses AutoLisp functions. To
show that difference, a construction was made of a small bench vice in three
dimensions. Animation of the movement of the handle may be achieved by a
series of redefintions of its angular position, causing the vice grips to appear to
move. The application to mechanisms and loci are obvious, and as observed in
chapter 4 the student has full control over all the variables, including the
presentation of the display itself.

9.42 Authoring
EdenLisp can make use of AutoCAD's own system to help the student learn to use
AutoCAD itself (a rather nice case of self reference!). The method is extensible to
any situation where annotated graphics and text are required. We thus have a
possible authoring system.

 DESIGN EDUCATION 166

The method is to use AutoLisp functions accessed by EdenLisp that use the
AutoCAD system of Programmable Dialogue Boxes, described in their
Customisation Manual [AutoDesk, 1992]. The Dialogue Control Language (DCL)
provided by AutoDesk allows one to program pop-up boxes, typically to display
text or graphics and to provide buttons, sliders, highlighters, lists, toggles.
Whatever is designed to go into pop-up boxes may be under the control of
EdenLisp. Text that helps the user to see what is going on can be popped onto the
graphics screen at the position where it does most good, for example to point to
some aspect of the display that needs explanation.

Fig 9.3 illustrates the point. The dialogue box is created by putting the text of the
box in one definition and then calling the DCL function to define the position and
shape of the dialogue box. In the diagram the box has a single OK button that has
to be clicked with the mouse to proceed. Other buttons, sliders, etc. can be
similarly programmed and the results of touching those buttons can be monitored
resulting in changes in the current state of the scripts. As the user changes the
screen by selecting different commands it is possible that new help files can be
popped up. Currently the method is driven as an embryo teaching aid, showing
that it can be done in principle. Further development it necessary to make it a
usable package

AutoCAD
 * * * *
ASE:
BLOCKS:
DIM:
DISPLAY
DRAW
EDIT
INQUIRY
LAYER...
MODELER
MVIEW
PLOT...
RENDER
SETTINGS
SURFACES
UCS
UTILITY

SAVE:

Loaded menu D:\ACAD\SUPPORT\ACAD.mnx
AutoCAD Release 12 menu utilities loaded
Command:

Layer 0 200.60, 184.90

Cursor coordinates
Coordinates are normally Cartesian but
can be changed to Polar. Units are mm
or inch. Coordinates change as you
move the cursor. You can also set them
so they are relative to the last point
chosen within a command.

Fig 9.3 Example of using Dialogue Boxes from EdenLisp

OK

