

University of Warwick
Department of Engineering

Application of Definitive Scripts to
Computer Aided Conceptual Design

Alan John Cartwright
MSc CEng MIMechE

A thesis submitted in compliance with the regulations for the award of the
degree of Doctor of Philosophy at The University of Warwick. This work
was carried out in the Department of Engineering under the supervision of

Professor DJ Whitehouse

April 1994

ii

Application of
Definitive Scripts

to
Computer Aided

Conceptual Design

Summary

The creative phases of design are based upon the human ability to conceptualise or

abstract ideas from physical observations of the real world. That ability comes from
experience, based on experiment: discerning patterns of behaviour in particular sets of

observations. In this work it is shown that the process of identification, experiment and
abstraction may be modelled accurately on a computer by definitive, or agent-oriented,

programming, so forming a powerful aid to conceptual design

A new computer modelling language, called EdenLisp, has been developed by the
author around Definitive Notations and interfaced to a commercial Computer Aided

Design package. It provides a tool whereby computer models of systems can be
originated that have state and on which state change can be made, not only by the

designer but also by other autonomous agents of change.

Experiments with the language are described that show that scripts of definitions can
have characteristics that permit the design to proceed as if there were an engineering

prototype of the physical system being designed. The explicit representation of state at
the lowest levels permits experimentation, observation of properties and addition of

further observations.

The interactive construction of EdenLisp is analogous to the conceptual design
process. It is used to illustrate and test design meta-theories for modelling conceptual

design. It is shown to have potential for concurrent or multi-agent design, and is also
an excellent vehicle for design education.

iii

Contents

 Acknowledgements vii

 Glossary of Terms viii

1. A Modelling Method for Experiments in Design 1

1.1 Introduction: Design as an experimental activity 1
1.2 A New Modelling Method 3
1.3 Thesis: Design Prototyping with Definitive Scripts 5
1.4 Overview 6

2. Design as Experiment 8

2.1 Design and the Designer 8
2.2 Symbol and Content 12
2.3 Design and Observation 16
2.4 Models and Prototypes 19
2.5 Concurrent Design 22

3. Computational Modelling for Design 25

3.1 Object and Process Models for Design 25
3.11 Background
3.12 Intelligent Integration of Models

3.2 State and Computer Programming 30
3.21 Automata
3.22 Functional Programming
3.23 Logic Programming
3.24 Procedural Programming

3.3 State in higher level Programming 35
3.31 Data Modelling and Rule Based Systems
3.32 Object oriented Programming

3.4 A new Programming Paradigm for State 40
3.41 Background to Definitive Notations
3.42 State in Definitive Notations

iv

4. Computation as Experiment 45

4.1 Definition-based Geometrical Modelling 45
 4.11 APT
 4.12 PADL-2
 4.13 Parametrics
 4.14 DesignView

4.2 Definitive Notations for Geometrical Modelling 54
 4.21 Comparison with Other Systems
 4.22 Representation of Shape

4.23 Operations on Definitive Shape Types

4.3 Extending Interaction 60
 4.31 Hierarchies in Design
 4.32 Indirect Interaction

 4.33 Animation

4.4 A Computational Experiment 66
 4.41 Background
 4.32 Method of Approach
 4.33 Implementation
 4.44 Results

5. Computer Aids to Design Prototyping 72

5.1 Design Environments 72
 5.11 Specification
 5.12 Approaches to Process Support

 5.13 Agent Oriented Approaches

5.2 Evolving a Prototyping System 79
 5.21 Definitive Notations and EDEN

 5.22 Development of EdenLisp specification

5.3 Characteristics of EdenLisp 84
 5.31 The Language
 5.32 Defining Abstract Objects

 5.33 Operations on Sorts

5.4 State and State Change, 97

6. EdenLisp 100

6.1 Introduction to AutoLisp 100

6.2 The EdenLisp Compiler 103
 6.21 The Lexical Analyser

 6.22 The Parser

6.3 Definitive interpreter and symbol table 108
 6.31 Identification of Statements
 6.32 Type Checking

v

 6.33 Symbol Records
 6.34 Evaluation

6.4 Environment 113
 6.41 Window Environment
 6.42 Programming environment
 6.43 CAD Environment

 6.44 Actions

6.5 Discussion 122

7. Experiments in EdenLisp 123

7.1 Parametric Studies 123
 7.11 Tumbler-Mixer Machine
 7.12 Four-Bar Linkage
 7.13 Drawing Frame

 7.14 Precision Balance

7.2 Patterns in Design 131
 7.21 Analytical Graph Plotting
 7.22 A Denture Design Aid
 7.23 Using Actions

8. Design Management 142

8.1 The Design Team 142
8.11 Development of Design Management
8.12 Agents in the Design Process

8.2 An Agent Oriented Approach to Design Management 148

9. Design Education 152

9.1 The Educational Context of Design 152
 9.11 Historical Background
 9.12 Learning the Design Process

9.2 Learning to Design 156
 9.12 Hierarchical Decomposition

 9.22 Design Folio

9.3 Parametric Studies 159
 9.31 Sensitivity Study

 9.32 Parametric design

9.4 Self-Teaching 164
 9.41 Animation
 9.42 Authoring

vi

10 Discussion 167

10.1 The Thesis 167
 10.11 Understanding Conceptual Design
 10.12 Computational Experiment: The place of EdenLisp

10.2 Achievements 172
 10.21 Interaction
 10.22 EdenLisp CAD Environment
 10.23 EdenLisp Implementation

10.3 Comparisons 175
 10.31 Conventional Approaches
 10.32 Other Definitive Methods

10.4 The Future 178
 10.41 User interface
 10.42 Actions
 10.43 Multi-Agent systems and Concurrency

10.5 Conclusions 181

References 183

Appendix A Formal Language Definitions for EdenLisp 190

Appendix B EdenLisp Programs 193

Appendix C Conference Papers 207

vii

Acknowledgements

Interaction, intelligence and integration are siren words for Intelligent CAD systems.
They also represent an accurate description of the way that the research group led by
Meurig Beynon has helped to develop creative thinking and thoughtful insights that
have contributed to this work. I owe an incalculable debt to Meurig and gladly
acknowledge all his patience and support over six long years.

Supervision of prima donna academic staff is somewhat difficult, especially with an
arcane subject, so I have appreciated Professor David Whitehouse's gentle
encouragement and helpful guidance.

Any work of this magnitude takes a slice out of one's life, so I am most grateful for the
support and encouragement of my wife Christine, and children Simon and Rebecca
who have had their family life dominated by "definitive notations". I am thankful to
God, the Great Designer, for the beauty of the world that is His design, and for His
care and concern for His children.

Glossary

viii

* indicates a term that is also in this glossary

Abstract Definitive Machine (ADM) A method of structuring a definitive program*

into different scripts* each of which can be under the control of an agent;
(agents may be acting concurrently). The ADM divides definitive statements
into three
• those that the agent can unconditionally redefine*,
• those that the agent can redefine conditionally,
• those on which the agent imposes conditions on the ability of other agents

to redefine.

CAD and CAD/CAM Computer Aided Design / Computer Aided Manufacture.

Design is often a misnomer in commercial CAD systems that are actually
Draughting systems. CAM usually implies a system for producing Numerical
Control (NC) data to drive machine tools.

CADNO A Definitive Notation for graphics, like DoNaLD* but extended to 3-D.

Chunk A unit of integrated knowledge in long term memory. See also Percept*

Complex, Frame Terms used in this thesis for collections of labels arranged in ways

that resemble topological nets and graphs. Nodes and the edges connecting
those nodes are associated respectively with labels and the ways that the labels
are grouped by means of parentheses.

Computational State In this work the state of a computation is what may be observed

if a computation is suspended at any moment. The significant observations
relate to the intention of the program that is running. A static state or
statelessness refers to the condition where no observations can be made that
were not preconceived by the programmer.

Connectivity The ability of labels to be connected by means of "edges" like nodes in

a topological graph. Edges are not geometrically defined; they simply indicate
connection. See also complex*.

Content The content of a symbol is whatever may be suggested by that symbol by

any person looking at it. Content is always greater than that for which a
symbol is used.

Declarative Programming A style of programming where statements attempt to

express the desired outcome of the program in terms of "what is" knowledge
rather than the "how to" knowledge of procedural programming*. Example are
functional languages (Miranda, Lisp) and relational languages (Prolog).

ix

Declarative Knowledge Knowledge about facts.

Definitive Programming (Definitive Notation) A method of programming where

program statements take the form of definitions that are to be interpreted in
their entirety without regard to their order. When a program, otherwise called a
script* of definitions, is input to an Evaluator all the definitions are scanned
and evaluated in the manner of a spreadsheet. Addition of further definitions,
or redefinition of existing definition immediately trigger the evaluator; the
whole script is scanned and re-evaluated as necessary.

 Definitions take the form variable = statement
 where variables are conventional computer variables and
 statements may be values, formulae or functions, or calls to procedures.

DoNaLD is the Definitive Notation for Line Drawing, a notation that permits line

based graphics. It translates a script* into EDEN* notation that must then be
evaluated by EDEN. CADNO* and SCOUT* are other notations that translate
into EDEN.

DXF, IGES, STEP, XBF Intermediate (neutral) codes used to transfer graphical data

between different systems, especially between CAD* systems.

EDEN The Evaluator for DEfinitive Notations. A script* submitted to EDEN is

evaluated in the form of a generalised spreadsheet.

EdenLisp The definitive evaluator written in AutoLisp, a superset of Lisp, and

interfaced with AutoCAD.

Form A symbol used in mathematics or computer programming has an intended

meaning in the context where it is used. This is the form of the symbol. Other
meanings may be ascribed to the same symbol that were unintended and not in
the scope of the application. The latter is the content*.

Frame See complex* or percept*.

GKS, PHIGS Programming software libraries for producing and displaying graphics.

Heuristic A rule for problem solving that is based on the semantic characteristics of

the problem rather than its abstract characteristics. It is essentially a search
based rather than an algorithmic rule.

ICAD Intelligent Computer Aided Design.
III-CAD The name used by the Dutch CAD research group for Intelligent,

Interactive, Integrated CAD systems.

Instantiations are particular instances or examples of an abstract form that are

worked out to a more concrete or observable form.

x

Latent states A definitive script* exists in a particular state (the state of the
dialogue*) after it has been evaluated. A change in any definition will change
that state. The set of possible redefinitions is infinite but if related to the
physical interpretation that set represents all possible or latent states of the
model represented by the script.

Meta-theory The prefix meta implies a generalisation. A meta-theory is a theory

about theories: principles that apply to all theories.

Monotonic reasoning means progressing incrementally from one step to the next by

reference to the starting conditions only.

Non-monotonic reasoning is making only one logical step at a time, reflecting on the

outcome on the basis of real world observation before proceeding. The result
may be a revision of the starting conditions at each step.

OOP = Object Oriented Programming. A style of programming in which
programming objects are created that have local state because they have
encapsulated or hidden variables. Neither those variables nor their values are
directly accessible by other objects or procedures. At its simplest such an
object may consist of a single procedure. Inputs and outputs connected with
the object are of a specific kind allowing standardised linking of objects. An
example language is Smalltalk.

Percepts are consistent and lasting ways of grouping observations made by humans

on the basis of behaviours that link those observations in ways that seem to be
predictable. In the Artificial Intelligence world, percepts are sometimes called
frames. Frames* are also used in a different way in this thesis.

Procedural Programming A method of computer programming by means of a recipe

or set of instructions for obtaining an output from given inputs. Examples are
Fortran, Pascal, C.

Procedural Knowledge Knowledge about procedures.

Prototype A prototype in an engineering context is a physical object that is

manufactured as the first of the complete product of the design process. It is
used to check the performance of the product against the specification.

 In computer science a prototype is a computer model that is used to check
particular aspects of the software.

 In this work it is used more in the engineering sense.

Redefinition If a definition within a definitive script is revised and resubmitted to

the Definitive Evaluator then the whole script is re-evaluated. Redefinition
may mean changing its value or totally re-writing it. Provided the redefinition
is consistent with the declared types of the variables used any alteration is
legal.

xi

Rule-based Systems are often called Expert Systems. Input is referred to an inference
engine a computer program that causes the input to be tested against the
knowledge and rules in the data or knowledge base. The output is a set of
hypotheses (preferably of size one) representing a "desirable" outcome.

SCOUT A definitive notation* for interfacing with the Graphical system under X-

windows.

Script, (Definitive Script) A set of definitive* statements, roughly corresponding to

a conventional computer program.

State "An object is said to have state if its behaviour is influenced by its history. We

can characterise an object's state by state variables, which among them
maintain enough information about history to determine the object's current
behaviour." [Abelson et al, 1985].

State of the dialogue When using a definitive evaluator the script* is scanned and

evaluated after each definition is entered. The display and/or the internal
representation reflects the state reached after the last definition was entered.
This is called the state of the dialogue.

SDRC I-DEAS A commercial CAD/CAM system for mechanical design - a suite of

programs based around a geometrical solid modeller.

TIFF A bitmap coding for transferring graphics data between graphics programs.

Virtual prototype A term used to describe the analogy between a physical prototype*

and the computational model of the intended engineering design, that model
consisting of a set of definitive scripts*, related according to the rules of the
ADM*.

