
5.1. Concurrent definition maintenance

Chapter 5

Problematic issues in

dependency maintenance

This chapter pulls together three deep problems in dependency maintenance that

run through the earlier chapters in this thesis, which previously had the status of

ill-understood research problems. I make some specific proposals which help to deal

conceptually with each problem. The proposals do not constitute detailed designs,

but they do transform ill-defined abstract research problems into precise technical

problems requiring an engineering solution that will be the subject of future tool

development.

The three topics are those of concurrent definition maintenance, moding, and

Higher-Order Definitions (HODs). The topics are somewhat intertwined. Each topic

is treated below separately, but the discussion leads on from one to the next.

5.1 Concurrent definition maintenance

The design of a concurrent definition maintainer involves two principal issues. These

issues are considered separately in the subsections that follow below.

1. Determining how to map evaluation agency to a set of ‘definition-agents’.

2. Specifying how the concurrent evaluation should be synchronised.
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5.1.1. Mapping evaluation agency to definition-agents

The job of a definition maintainer involves scheduling evaluations of definitions.

Exactly when evaluations are scheduled depends partly on the choice of evalu-

ation/storage strategy — evaluations can be performed on use, redefinition, or some

mix of the two. (This was described in §2.2.1 and am, the DAM machine and EDEN

are examples of each particular case.)

The specifics of a particular evaluation — the scheduling order of minor trans-

itions within a major transition — depends on two things:

A. the structure of the script digraph, as described by the corresponding level

assignment1, and

B. which particular nodes are being redefined2.

Within a major transition, there is sometimes potential for certain minor trans-

itions (see §2.3.3) to occur concurrently. Specifically, within the set of nodes that

require re-evaluation, all nodes that have the same level assignment may be eval-

uated concurrently. The potential for concurrent evaluation varies with the script.

For example, N5A4ag (in Figure 3.28, see p.189) has a completely constrained eval-

uation ordering with no potential for concurrency. In contrast, after a change to the

leaf in N5A4a (p.189), all the root nodes can be evaluated concurrently.

5.1.1 Mapping evaluation agency to definition-agents

Firstly, let us just consider issue 1. How many concurrent processes do we require

and what part of the evaluation does each process perform?

Eden is a language that can describe both dependency and agency. One possible

transformation of a definition to an “equivalent” evaluating agent was described

using the Eden language in §4.3.3. When a set of definitions is considered, there are

many possible ways that the transformation can be made. A good way to describe

this is to extend the script digraph to take account of the evaluating agency of

the definition maintainer. I describe this as adding definition-agents to the script

digraph.
1See Appendix §3.A, p.178 for Harary’s definition of ‘level assignment’ and §3.1.2 for Cartwright’s

BRA — an algorithm based on Knuth’s topological sort algorithm that calculates an evaluation
ordering consistent with that described by a level assignment.

2Section §4.3.2 gives a description of which nodes require re-evaluation after a change.
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5.1.1. Mapping evaluation agency to definition-agents

a

b c

ua

a

b c

N3A2b N3A2b with definition-agent

Script graph Extended script graph

Figure 5.1: The script graph for a is b+c, together with an associated extended
script graph devised by adding a definition-agent node

The script digraph for the one-line definitive script a is b+c is shown on the

left of Figure 5.1 (reproduced from N3A2b in Figure 3.28 on p.187). Taking a

‘dependency-as-agency’ perspective (i.e. considering the way in which dependency

is implemented through agency), we can transform the definition into Eden’s altern-

ative3 triggered action form4:

proc ua: b, c { a = b+c; }

Now the agency involved in updating the variable ‘a’ can be represented by

adding a new type of node, to be called a definition-agent node, to the script digraph

diagram. The extended script graph diagram, shown on the right of Figure 5.1,

reflects the dependency-as-agency perspective.

An extended script graph is a bipartite5 digraph. It has two types of node: the

original value nodes and the new definition-agent nodes. It also has two types of arc.

Arcs whose starting location is a value node (such as the arc b – ua) represent a read

operation by the definition-agent. Arcs whose starting location is an definition-agent

(such as the arc ua – a) represent a write operation by the definition-agent.

3But not completely equivalent — see §4.3.4.
4I use a subscript — which is not possible in the real Eden — to make clear which variable the

action is updating.
5A graph G is bipartite if the nodes of the graph can be split into disjoint sets A and B such

that each edge of G joins a node of A and node of B [Wil96, p.18].
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Figure 5.2: Two possible definition-agent arrangements for a simple two-line defin-
itive script

In most non-trivial cases, there is more than one possibility for the total number

and locations of definition-agents. Consider the script digraph shown on the left of

Figure 5.2 (reproduced from N3A2a in Figure 3.28 on p.187), which represents the

dependency structure in the two-line definitive script:

a is c;
b is c;

It is possible to maintain these two dependencies with either one or two

definition-agents. Therefore, there are two possible triggered action forms of this

definitive script: a one-to-one form where each definition is mapped to a definition-

agent:

proc ua: c { a = c; }

proc ub: c { b = c; }

or a non-1-1 form, where more than one definition may be mapped to a single

definition-agent:

proc uab: c { a = c;6 b = c; }

There are two corresponding extended script graph diagrams for these two

scripts, shown on the right of Figure 5.2.
6These two operations need not be performed sequentially, but there is no way to specify this

in the present Eden.
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5.1.1. Mapping evaluation agency to definition-agents

Figure 5.3: A script graph, the corresponding “monolithic” and one-to-one config-
urations of definition-agent nodes

Most definition maintainers can be considered to have only one definition-agent

which is a “monolith”. In this type of analysis, the definition maintainer can be

considered to be an agent of the form:

proc uall: all { schedule updates; do updates }

Figure 5.3 shows the distinction in diagrammatic form. A script graph is shown

on the left. The middle of the figure shows the configuration of the single monolithic

definition-agent in most definition maintainers. The monolithic definition-agent

reads from leaves; writes to roots; and both reads from and writes to inner nodes.

The DAM machine is an example of a DM with a monolithic definition-agent. In

contrast, on the right, a one-to-one configuration of definition-agent nodes to non-

leaf nodes is shown.

Each extended script graph describes a possible way of allocating update eval-

uations to agents. Figure 5.3 illustrates allocations at two extremes, where all

updating is assigned to a single agent or where each update is handled by a separate

agent. Many mappings between these two extremes are possible. The possible map-

pings of nodes of the script graph to definition agents provide us with a conceptual

means with which to think about the number of concurrent processes required and

what part of the evaluation each process should perform.

A previous reference that discusses the mapping of evaluation agency to con-

current processes is [Yun90, §7], where Y.W. Yung suggests (although not in these
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5.1.1. Mapping evaluation agency to definition-agents

terms) that a definition-agent matches the abstract view of a node in a multicom-

puter system, consisting of multiple nodes connected by a network, each comprising

a CPU and some memory.

A definition in definitive languages can be viewed as a composition of data and
program:

definition = data + program

where program is the method of evaluating the data and is expressed in math-
ematical terms. The program, theoretically, has no interference with other
definitions since the only thing affected is the value (data) of the definition.
This perspective on a definition matches the abstract view of the node in the
multicomputer system:

node = memory + CPU

where memory stores data and CPU executes program. The data dependency
of definitions describes the links of the nodes.

The dependency-as-agency discussion above has allowed us to go further than

this “definition as node” perspective to show the wide variety of possible mappings

of evaluation onto agents in concurrent dependency maintenance.

Y.W. Yung takes the discussion further in a different direction, pointing out

that a single definition can be decomposed into sets of simpler definitions, which

may create further potential for concurrent evaluation. In the terms used here, this

corresponds to decomposing a single node in the script graph into a sub-graph of

components. Figure 5.4 shows Y.W. Yung’s example of two different decompositions

of the definition f = ax3 + bx2 + cx + d (cf. Figure 4.16 on p.234, which illustrates

different decompositions of output from the EDDI AOP).

On what basis are these various mapping decisions to be made? It seems that

(similar to the basis for the decision of evaluation/storage strategy) the nature of

evaluation and change in the application are important here. Although the script

graph labelled B in Figure 5.4 has a larger total of level assignments and hence

appears to have a smaller potential for concurrent evaluation, Y.W. Yung points

out that in the special case where a, b, c and x are seldom changed but the value

of d varies frequently, script B is likely to involve fewer evaluations than script A.
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Figure 5.4: Decomposition of the polynomial definition f = ax3 + bx2 + cx + d into
two possible definitive scripts (from [Yun90, pp.97–98])
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5.1.2. Synchronisation of concurrent definition-agents

5.1.2 Synchronisation of concurrent definition-agents

The previous section has shown how evaluation can be segmented into concurrent

parts. This section attempts to address the necessary synchronisation between those

parts.

If we are motivated to use concurrency to speed up an existing sequential defin-

ition maintainer, then we do not need to examine the concept of dependency too

closely — in this view, definitions describe potential parallelism in update. The ne-

cessary synchronisation is determined by the level assignments in the script graph.

Within a major transition, necessary evaluations must be ordered by level assign-

ment in order to produce values that are consistent with their definition. Within the

set of nodes that require re-evaluation, all nodes that have the same level assignment

may be evaluated concurrently.

A version of Cartwright’s JaM2 Java API implements a form of concurrent up-

date along these lines. In JaM2, like the DAM machine, redefinitions are queued

until an ‘update’ routine is invoked. The update routine locks access to the store of

maintained state, checks the set of redefinitions for graph cycles, forms a schedule

and then proceeds with evaluation, evaluating multiple definitions simultaneously

in multiple threads where possible. When evaluation is complete, the store is then

unlocked [Car04].

Y.W. Yung [Yun90, §5.3] also briefly describes a scheme for a concurrent defin-

ition maintainer employing message passing, nodes sending MARK, ACKNOW-

LEDGE, EVALUATE, QUERY and ANSWER messages to other concurrently op-

erating nodes in order to propagate change.

Neither of these schemes considers the indivisible nature of dependency too

closely, however. Beynon, Cartwright, Sun and Ward [BCSW99] contains the fol-

lowing characterisation of dependency, which is the starting point for consideration

here of the necessary synchronisation (my emphasis):

A dependency is a relationship between observables that pertains in the view of
a particular agent . . . changes. . . are indivisible in the view of the agent. That is:
no action or observation on the part of the agent can take place in a context in
which x has changed, but the dependants [targets] of x have yet to be changed.
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5.1.2. Synchronisation of concurrent definition-agents

The above statement represents a significant shift in emphasis in thinking about

dependency within the EM literature. Usually (in documentation, teaching and pa-

pers), the guarantees that the definition concept gives are emphasised. For example,

[Yun90, p.27], paraphrased:

No matter what the values of the source variables are, the value of a definition
is always equal to its defining expression.

With this usual emphasis, a is b+c is interpreted as meaning that:

“a is always b+c”.

The emphasis in DM implementation terms is then on automatic recalculation

and propagation of change. A “concurrent update” implementation follows this

emphasis: values are always consistent with definition, except when the update

routine is in progress, when it is not meaningful to examine the state.

With the alternative, more recently topical emphasis, a is b+c is interpreted

as meaning that:

“an agent that perceives the dependency a is b+c is restricted in some

way whenever a is not b+c”.

The emphasis in DM implementation terms must then be on indivisibility in

states and transitions, and synchronisation between agents. Dependency is created

through definition-agent action perceived as indivisible by agents for whom the

dependency pertains. Below, I describe my current understanding of this form of

synchronisation of concurrent definition-agents.

First, let us define the roles that agents interacting in a definitive system can

play. I separate the roles as much as possible into observation of state (O), change

of state (C), and update of state (U). A ‘U-agent’ (shorthand for “an agent playing

the U role”) is a definition-agent and is distinct (for the purposes here) from a ‘C-

agent’. The U- and C-agent can be considered to be acting “inside” and “outside”

the definition maintainer respectively. Various other separations of the roles are of

course possible but these are the ones considered here.
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5.1.2. Synchronisation of concurrent definition-agents

Now we can define some protocols through which to achieve synchronisation. I

define an observation to be bounded by ‘preO’ and ‘postO’ operations, and a change

to be bounded by ‘preC’ and ‘postC’. Following the principles of indivisibility

described above, it follows that change must exclude observation until the relevant

definitive state has been updated. Therefore we can arrange for the C-agent to invoke

the necessary U-agent in an ‘invokeU’ operation. The U-agent will signal completion

of the update with a ‘postU’ operation. An observation “region” bounded by preO-

postO operations must then not overlap with a change-update region bounded by

matching preC-postU operations. This type of synchronisation is illustrated for the

case of a one-definition script graph in Figure 5.57.

The synchronisation described is an instance of the mutual exclusion problem

[Dij68]. One way in which this can be solved is through the use of Dijkstra’s sem-

aphore primitive. In this single definition script graph case, preO and preC can be

implemented as P (s) (potentially causing the agent to be blocked if necessary), and

postO and postU as V (s) (causing any waiting agents to be unblocked). Listing 5.1

shows a test implementation of this case, written in the language SR (Synchroniz-

ing Resources), “an imperative language for concurrent programming that provides

explicit mechanisms for concurrency, communication and synchronisation” [AO93].

The code extends Figure 5.5 slightly by modelling two observing agents, O and O2.

The agent O adheres to the interaction protocol, using the semaphore, and will

never observe a, b and c in a state where a is not b+c. The agent O2 does not use

the semaphore and hence it is possible for that agent to observe state inconsistent

with the definition a is b+c.

Keeping to a one-definition script graph, but extending the example with more

O- and C-agents would lead to a problem approximately8 equivalent to the classic

readers/writers problem [CHP71].

7The conventions for the diagram are based loosely on [AO93, p.117].
8“Approximately” because it is unclear whether multiple concurrent writers should be allowed.
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Figure 5.5: Synchronisation for indivisible observation of state in the single definition
case
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5.1.2. Synchronisation of concurrent definition-agents

resource CUO()

var a := 3, b := 1, c := 1 # initial values of dependency

sem s := 1 # maximum 1 agent acting simultaneously
op U() {send} # U is to be asynchronously invoked

# O observes a, b and c every so often and perceives a is b+c
process O
fa i := 1 to 20 ->
nap(int(random(100))) # pause to introduce some non-determinism
P(s) # preO: block if C-U is acting
write("O", a, b, c) # observe a, b and c together
V(s) # postO: allow C-U to act if blocked

af
end O

# O2 observes a, b and c every so often but does not perceive dependency
process O2
fa i := 1 to 20 ->
nap(int(random(100))) # pause to introduce some non-determinism
write("O2", a, b, c) # observe a, b and c together

af
end O2

# C changes b every so often
process C
fa i := 1 to 20 ->
nap(int(random(100))) # pause to introduce some non-determinism
P(s) # preC: block if O is acting
b := int(random(20)) # change b
send U() # asynchronously invoke dependency update

af
end C

# U is the agent that updates the dependency
proc U()
a := b + c # recalculate the dependency
V(s) # postU: allow O or C to act if blocked

end U

end CUO

Listing 5.1: SR code implementing the synchronisation shown in Figure 5.5
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5.1.2. Synchronisation of concurrent definition-agents

Extending the script graph beyond a single definition, to address a more realistic

situation, changes the problem significantly. The additional complications relate to

simultaneity of observation and change.

1. A definition describes a relationship between multiple nodes in the script

graph. Simultaneity of observation of nodes and also, simultaneity of change

to nodes thus become issues to be addressed. One way this can be added to

the framework described so far is to extend the preO and preC operations,

requiring information about the identity of the set of nodes that the agent is

to observe or change.

2. The quote about dependency by Beynon et al cited above from [BCSW99]

implies that dependency is a form of guarantee: when observed, values in a

script graph are guaranteed to be consistent with their definition. The full

implications of this statement go further: observation of the value of a node

by induction entails observation of all values of the recursive sources of that

node.

3. Immediately after a change is made to a value at a node in a script graph, the

values of the recursive targets of that node potentially become inconsistent

with their definition. Note that changes to the definition of a node have the

same effect: although changes to a definition change the structure of the script

graph, the values of the nodes beneath the change are unaffected (although

these nodes may gain or lose a target reference).

The above discussion leads directly to a suitable strategy9 for synchronising

observation, change and update of a script graph.

• Observation excludes change to recursive sources below the observed set of

nodes, whilst observation is in progress.

• Change excludes observation of recursive targets above the changed set of

nodes, until each value has been updated to be consistent with its definition.

9This is only one possible way of implementing the indivisibility requirement and may be unne-
cessarily restrictive.
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5.1.2. Synchronisation of concurrent definition-agents

Observation and change-update can therefore be thought of as placing restrict-

ive ‘curtains’ over segments of the script graph. Observation of nodes (signalled

by preO) causes a change-restricting curtain to be placed below the nodes to be

observed. Once the observation within the curtain is complete, the curtain is atom-

ically removed by postO. Change to nodes (signalled by preC) causes an observation-

restricting curtain to be placed above the nodes to be changed. Once the change

within the curtain is complete, the state can then be updated (concurrently where

possible) by the U-agents, which signal completion of update of a node with postU.

This then removes the restriction on observation. Therefore, as each node within

the ‘curtain’ is updated, the curtain is lifted, progressively revealing the new state.

Appendix §5.A (p.328) shows an SR program that implements the multiple defin-

ition case. The program declares one semaphore for each definition in the script

graph. The nodes beneath a particular set of nodes can be locked before observa-

tion of the set and unlocked afterwards. The nodes above a set of nodes can be

locked before the set is changed. The values are then recursively updated, concur-

rently if a node has more than one target. The locks are removed as the state is

updated. Although each node semaphore within a set must be locked sequentially,

deadlocks do not occur as each concurrent (possibly competing) process makes the

P () and V () operations in the same sequential order.

The “power” script example (Figure 3.2, p.115 et seq.) is implemented in the

SR program with several concurrent processes that make various redefinitions and

observe various node values. Some processes adhere to the interaction protocol

and so always observe consistent state, some processes do not and so can observe

inconsistent state.

Although the program functions as described, it is a prototype implementation

only. Particular problems include that only one O-agent can be active on a set of

nodes at any one time (a readers/writers solution would be better) and also the

data describing the topology of the script graph (as opposed to the values) is not

protected from concurrent update.

The above strategy is not the only possible way of meeting the indivisibility

requirement. For example, it might be possible to allow change beneath an observed

node, as long as the update that follows is prevented from propagating into the
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5.2.1. Problems with definitive lists

nodes being observed. Another example of a possibly more general model would

be as follows. The propagation of update following a change can be considered to

form a ‘ray’ up the graph, originating from the change. Before a node in the path

of the change is updated, it is in state S. After the ray has passed, it is in state S′.

Observation of a set of nodes is permitted, so long as the entire set is either covered

or uncovered by a ray (i.e. the entire set is in state S, or the entire set is in state

S′). One complication here is that the covered/uncovered requirement applies only

to nodes in the path of a change.

5.2 Moding

5.2.1 Problems with definitive lists

Section §3.5 discussed several problems related to the geometry of the DAM machine

definitive store. There are significant problems involved in using data types whose

representation is larger than one word, and the extension of the DAM machine to

include a list data type poses very large problems. The lookup operator proposed

by Cartwright ([Car99, p.159] — see §3.5.1) does not implement propagation of

change from within the list and implementing this necessary dependency requires a

fundamental rethink of the design.

Eden does include a list data type, and it is widely used. (For example, in the

current tkeden implementation, the DoNaLD translator transforms each DoNaLD

object to an Eden list, which is then used by utility routines written in Eden for ren-

dering and other calculations.) However, there are various problems in the current

EDEN implementation of lists. When used by procedural Eden code, treating a list

as a conventional RWV, the implementation behaves as might be expected. When

a list is referenced by a definition or defined as a FV, however, there are problems

in every case.

Four problems are shown below to illustrate the issues as they appear in use

of the Eden language. In each example, a comment starting with a ! character

indicates a problem.
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Problem 1: Observation of a list FV causes evaluation

1 %eden
2 l is [1, g(x)]; /* g is undefined */
3 writeln(l[2]); /* error: func "g" needed */
4 writeln(l[1]); /* ! error: func "g" needed */

In this example, it is not possible to observe the value of the second element

of the list (at line 3) as the function g has not yet been defined. Observation

of the first element (at line 4) should however be possible, but the current

EDEN implementation gives an error. Generally: observation of an individual

list element causes the entire list to be evaluated.

Problem 2: Difficulty of redefining portions of a list FV

1 %eden
2 a = 1; b = 2;
3 l is [a, b];
4 l[1] is 3; /* ! parse error */
5

6 ?l; /* gives "l is [a,b]" */
7 l[1] = 4; /* this input is accepted, but now the entirety
8 of l is a RWV, not a FV */
9 ?l; /* ! gives "l = [4,2]": the dependency between

10 a, b and l has been lost */
11

12 proc p: l { writeln("l has been changed"); }
13 b = 5; /* ! triggered action p is not invoked */

Firstly, line 4 of this example shows that redefinition of part of a list FV is not

implemented. Secondly, lines 6–13 show that making a procedural assignment

to one element of a list FV makes the entire list a RWV, which is often not

what is desired. Generally: it is not possible to redefine portions of a list FV10.

10It is possible through use of the Eden language to process the existing definition as a string,
make the necessary changes and re-parse the result using the execute() command, but this is
inelegant and a fully robust solution is complex.
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Problem 3: Indiscriminate change propagation with list FVs

1 %eden
2 l = [1, 2];
3

4 head is l[1];
5 proc p: head { writeln("head has been re-evaluated"); }
6

7 l[1] = 3; /* correct invocation of triggered action p */
8 l[2] = 4; /* ! incorrect invocation of triggered
9 action p */

Here, the FV head is observing the first element of the list. When the first

element of the list is changed at line 7, the execution of triggered action p

reveals that head has been correctly re-evaluated. However, when the second

element of the list is changed (line 8), the triggered action is again executed.

Generally: change to an element of a list causes re-evaluation of dependencies

observing any part of the list.

Problem 4: “Phantom” graph cycles in list FVs

1 %eden
2 l is [6, l[1]]; /* ! error: cyclic dependency detected */
3

4 l is [6, a];
5 a is l[1]; /* ! error: cyclic dependency detected */

In this final example, two attempts are made to define the second element of

the list to be the same as the first element, which is defined to a literal value.

There are no cycles in the script graph here if l[1] is interpreted as referring

to the first element of the list as an individual. However, the current EDEN

implementation makes no provision for such an interpretation and so detects

a graph cycle. Generally: “phantom” graph cycles can be inappropriately

detected when references to the individual elements of list FVs are made.
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At the root of the four problems is the fact that the current EDEN implements

a reference to a list element using a function. An element reference is effectively

translated internally11 to a functional representation:

v is l[i]→ v is f(l, i)

Statically, this translation is “correct”: reference into a list is a mathematical

function in the sense that the function f maps the l and i arguments in a uniform

way to the result value v:

f : (l, i) 7→ v

The mapping is consistently applied whenever invoked — in other words, defin-

itions are referentially transparent. However, the functional interpretation of the

element reference does not capture one essential ingredient of this kind of reference.

If the functional interpretation is taken, then changes to the arguments of the

function imply a possible change to the value of the function. If the offset argument

i is changed, then certainly the value v will reference a different element of l and

so may change. But if an element of the list argument l that is not referenced by

the current offset argument i is changed, then the value v will certainly not change.

The functional interpretation applied in this way is simply not specific enough.

The functional interpretation of reference to an element is at the root of the

four problems in the current EDEN implementation described earlier. The general

lesson here may be that when considering dependency over composite types, the

functional abstraction applied at the composite level is inappropriate, as it does not

capture an essential aspect of the nature of reference.

Considering propagation of change rather than functional abstraction has re-

vealed the above problems. Further consideration of the issues of lists in this way

leads to the following idea. When a change is made, the old value can, in some situ-

ations be re-used in order to assist with calculation of the new value. This would

11Although note that this is not a translation involving strings and notation — this occurs at the
level of EDEN’s virtual machine.
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Figure 5.6: EDEN implements lists “horizontally” in the symbol table

improve update efficiency and gives no semantic problems. For example, the sum

of a list can be re-used if one element changes:

composite sum new = composite sum old +

(changed element new value − changed element old value)

As it is the references to composite data structures in EDEN that lead to prob-

lems of specificity of reference, one way to work around the problem is to eliminate

such data structures. I have constructed a solution in EDEN which involves re-

ducing all composite data structures to multiple atomic variables. In terms of the

EDEN symbol table, the problems outlined in this section occur because lists are

implemented “horizontally” — all the elements of the list are located conceptually

at the location of the list identifier, as illustrated in Figure 5.6.

A macro translator, named the Eden “Symbol Lists” translator was written

for EDEN in Eden, using the regular expression facilities and generalised notation

framework (described in §4.2.4). The translator performs macro transformations on

Eden input before it is parsed, changing language constructions involving lists into

a form where the individual elements of the list are each stored in their own symbol.

It is activated by changing the notation context to %edensl. The component parts

of a list ‘l’ with three elements will be stored in the symbols l1, l2 and l3. The

length of the list is stored in another symbol, ll. The exact transformations used

are illustrated in Figure 5.7.
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l = [a, b, 42]; → edensl_assignconstruct("l", [a, b, 42...]);
l is [a, b, 42]; → edensl_defineconstruct("l", ["a", "b", "42"...]);
l[4] = a; → edensl_assignelement("l", 4, a);
l[4] is a; → edensl_defineelement("l", 4, "a");
l# → ll
l[i] (on RHS) → li
append l, v; → edensl_append("l", v);
delete l, i; → edensl_delete("l", i);
insert l, i, v; → edensl_insert("l", i, v);
shift l; → edensl_shift("l");
l = ... → edensl_assign("l", ...);
l is ... → left unchanged

Figure 5.7: Transformations implemented by the %edensl translator

As the macro transformation causes the list components to be stored separately,

after transformation, there is no way of observing the list as a whole. This problem is

solved by the introduction of a definition with a name as in the original construction,

defined to be a list FV, naming each individual element as a component. This

definition needs reconstruction when the list changes in length, and this is done by a

triggered action. Figure 5.8 shows an example transformation and a representation

of the resulting symbol table, where it can be seen that the list is now stored

“vertically”, each element in an individual symbol.

The %edensl macro translator solves all four problems mentioned earlier. It

can even be configured to “replace” the standard %eden notation, in which role

it is transparent to the user. (The original Eden is still available by using the

notation context %eden0, as illustrated in the script in Figure 5.8.) The decrease

in performance that the macro translator causes may actually be quite small, since

once the transformation and parsing is complete, EDEN stores the virtual machine

opcodes — re-parsing is not necessary during machine execution. However, a major

limitation of the macro translator is that the blocking of the regular expression

transformations is on a per-line basis, and the EDEN execute() routine used to

pass transformed output to the Eden interpreter does not accept partial input. The

translator therefore currently fails to process multi-line procedures correctly.
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%edensl
l is [a,b,3];
head is l[1];

  ->
    %eden0
    l1 is a;
    l2 is b;
    l3 is 3;
    ll = 3;
    l is [l1, l2, l3];
    proc l_constructwhole : ll {
      /* constructs new definition of l
          when ll changes... */
    }

head is l1;

Script

Eden
symbol table

ll

head

Figure 5.8: The %edensl translator transforms references to lists, causing EDEN to
locate them “vertically”
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5.2.2 Meziani’s DENOTA and the “mode of definition” of a variable

Contemporary with the initial development of EDEN, DENOTA (for DEfinitive

NOTAtions) was developed by Samia Meziani, who described it in her MSc thesis

[Mez87]. The aim was to implement a tool to handle data abstraction within the

definitive programming paradigm. Of interest in this section is the concept of mode

of a variable. The concept had some precedent in Beynon’s ARCA notation, first

described in [Bey83] (which is the first formal publication about definitive concepts,

even predating that term). However, [Mez87, §4] is the only publication with a

significant treatment of the “moding” topic12.

“Moding” can be motivated as follows. In interaction using a definitive notation

that supports lists, a variable can be defined to be a function that evaluates to a

list, or it can be defined using a list constructor.

After a variable has been defined functionally, later in the interaction, the vari-

able can be redefined. However, later in the interaction, the components of the

variable cannot be redefined. As is illustrated by the Eden example associated with

Problem 2 in §5.2.1, partial redefinition is not possible in general, since (as we show

below) such a redefinition would correspond to a “reprogramming” of part of the

function in some way.

After a variable has been defined using a list constructor, later in the interac-

tion, similarly, the variable can be redefined. This time, the components of the

variable can be redefined: partial redefinition is possible. Such a redefinition does

not constitute a “reprogramming” of the constructor — the constructor has been

used to create the initial “shape” of the list and now the shape, not the constructor,

remains.

The following examples are intended to illustrate this point. In order to give

meaning to the examples, I have used the Eden language13. However, the examples

use the Eden syntax as a language independently of our current implementation —

as described in the previous section, the current EDEN implementation does not

deal well with definitive lists. Also note in particular that this discussion relates

12[Geh95, Bir91, Car99] variously describe moding but do not add any information beyond that
given in [Mez87].

13The examples are my own — [Mez87] does not illustrate this basic point with an example and
the notation used there appears to be based partially on LISP.
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only to definitions: the examples use Eden FVs exclusively — RWVs, created by

assignment, do not appear.

First, we illustrate a functional definition and the impracticality of then inter-

actively redefining it component-wise.

func f { return [1,2,3]; }
l is f();
l[1] is 4; /* ! not possible */

The redefinition of the first component of the variable l could imply a redefinition

of the function f, perhaps to the following.

func f { return [4,2,3]; }

In the more general case (for example if control flow is used within function f)

then this modification is not possible to determine automatically.

Alternatively, the redefinition could imply the use of an additional function

layered on top of the existing function f, modifying the first component, as fol-

lows.

func g { q = f(); q[1] = 4; return q; }
l is g();

However, successive uses of such redefinitions to one variable interpreted in this

way would lead to many g-style functions building up in the state, effectively rep-

resenting the entire history of the interaction with that variable.

Use of a list constructor implies no such problems:

m is [a, 2, c];
m[1] is 4; /* OK */

Given that the variable m has been initially defined using a constructor, the

redefinition of the first component of m implies the following redefinition:

m is [4, 2, c];

which takes the history of the interaction into account but the result of which is still

meaningful statically.

The above discussion exposes serious problems in interpreting the way in which

definitions match variables to formulae. Meziani’s proposed solution to this problem
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is to introduce an auxiliary definitive notation in which the mode of definition of

variables can be declared. In effect, definitive principles are being used to supply

the meta information needed to disambiguate reference and constrain redefinition.

A significant aspect of using an auxiliary definitive script to define mode is that the

relationship between variables and their definitions can be as flexible and dynamic

as value definition in a definitive script.

The application of auxiliary definitive notations of this nature is not confined to

handling the mode of definition of variables. For instance, Meziani also proposed

that similar principles could be adapted to provide information hiding in definitive

scripts [Mez87, p.75]:

Definitive notations could be augmented to support information hiding. For
this, two facilities could be used, namely a reference moding, and a definition
moding of variables. The latter would describe the way in which variables are
referenced and defined. The former could describe the way definitive variables
could be viewed. For instance, a variable of reference mode abst list could
have hidden components. These concepts would also be useful to express se-
mantic rules such as: the tail could apply on abst list variables. These
potential facilities would provide stronger typing of expression analogous to
Abstract data types, and Object-oriented programming paradigms.

Here, moding has a more generic meaning than has been applied so far, since it

can be used separately for “reference moding” and “definition moding”.

Our current techniques for implementing definitive notations are not sophistic-

ated enough to support such features.

5.3 The tri-box framework for higher-order definitive

state

This section sketches a “tri-box framework” for higher-order definitive state that I

have developed in response to some of the issues raised in this thesis. The first sub-

section briefly summarises the motivations for the framework, the second subsection

sketches the framework concept and gives some examples and the final subsection

outlines issues for implementation raised by the framework.
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Figure 5.9: O-, C- and U-agents interacting with the state S

5.3.1 Motivation

Section §5.1.2 proposed three roles for agents interacting in a definitive system, in

order to consider the types of synchronisation that a concurrent definition maintainer

might use. Each of the O-, C-, and U-agent roles (for observation, change and

update respectively) observes or acts on a subset of the state within the system.

Here, we name the state S (following the discussion of transitions from an initial

state S through intermediate S∗ states to a resultant S′ state in §2.3.3). In an LSD

account, each agent perceives values — there may arguably be no objective state S.

In this section, we assume that the authentic values of observables can be directly

acted upon or observed by O-, C- and U-agents: the framework is similar to the

ADM in this respect. Figure 5.9 illustrates several agents playing different roles

interacting with the state S.

In the EM group, we conventionally describe the state S by the use of a definitive

script written in a definitive notation. However, much of the work described in this

thesis hints that a symbolic definitive script is in many ways an inadequate frame-

work in which to discuss the propagation of change in its full richness. For example,
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previous sections have made the following points about symbols in a definitive state.

• A definition-agent writes to only one symbol (§4.3.4, §4.3.5). This constraint

on definition-agent action gives traceable meaning to the state.

• But a U-agent in the extended script digraph can write to more than one

symbol (§5.1.1). This can be necessary for implementation efficiency reasons

with current machine architectures, where there is not enough parallelism

available to make a one-to-one mapping of U-agents to the script graph. It may

also be necessary for semantic reasons in the absence of notations describing

powerful higher-order dependency, which could for example be used to describe

the dependency involved in updating the screen (§3.5.4).

• The mapping of a symbol to locations of words in store is a complex distraction

at the level considered here. One symbol can correspond to more than one

word in store, depending upon type (§3.5.1). The symbol table is another

level of indirection (§3.4.3), itself a higher-order dependency. We wish to use

dependency in the symbol table to create dependency-driven parsers (§4.2.5).

• The functional abstraction of reference implied by symbols in a definitive script

causes many problems in the use of definitive lists (§5.2.1).

• The dependency described by a definition need not be objectively perceived

— different agents may have different perceptions (§5.1.2).

The presence of symbols implies that there is one objective understanding and

state of each symbol. However, in our natural language we use symbols for reference

only and in many instances we start from an assumption of subjective understanding.

Are there atoms in definitive state at all? We may wish to introduce variously-

sized atoms in order to cope with different data types (§3.5.1); atoms that have

hidden composite structure (one particular mode of definition — §5.2.2); structures

formed from atoms (another mode of definition), perhaps with some values hidden

from certain observers (as Meziani suggests in her “reference moding” concept). If

there are atoms, are they ordered in any way? We may wish for various forms of

ordering: words in store can be considered to be ordered by a single dimension;
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the screen naturally has a two dimensional ordering (§3.5.4); spreadsheets have an

ordering that is at least two-dimensional (and possibly three-dimensional, if for ex-

ample Excel’s ‘sheets’ are taken into account). Pursuing the connections developed

in [Bey97, Bey99, Bey03], the nature of definitive state may be likened to that of

William James’s “unfinished pluralistic universe”14. Notice that Figure 5.9 illus-

trated S as an unordered set of atoms of which there was a single basic type.

In order to tackle some of the above issues, this section moves away from the

notion of the symbolic definitive script. Instead, below, we take S to be a sequence

of atomic ‘boxes’ in store.

The framework described below differs from the DAM machine as described in

Chapter 3. Although the DAM machine may appear to have been designed with

a primary focus upon dependency between atomic words of store, it is actually

an ‘implementation’ of the DMM. The DMM is a formalisation of the Low Level

Definitive Notation (LLDN) concept, a symbolic notation describing dependency

between a set of atomic integer values, and hence the symbolic influence on the

DAM machine design is strong. LLDN can describe dependency only between single

words in store — neither data types larger than a word (§3.5.1) nor lists (§3.5.2) are

possible. As the basis of LLDN is a set of integer values, identities are not structured

in the DAM machine, as they would be in an authentic “generalised spreadsheet”

(a term previously used to describe definitive scripts — see §3.5).

The focus on the sequence of atomic ‘boxes’ in store below also means that we

must treat the concept of the script graph with caution. A script digraph (see

Appendix §3.A, p.178) describes the propagation of change required in the symbolic

script structure. An extended script graph describes how the propagation of change

is mapped to updating agents. But if we wish to consider higher-order dependency,

the script graph is itself subject to dependent change15. The change may be limited

to just the arcs in the graph (for example, in the case of the if HOD, described in

§4.3.7) or it may also involve the addition or removal of nodes (for example, in the

14Wild describes this universe as having “. . . aspects of unity, relations which hold different mem-
bers of this collection together. But there are also aspects of diversity and independence. As we
live through this empirical world, it is ‘like one of those dried human heads with which the Dyaks
of Borneo deck their lodges. The skull forms a solid nucleus; but the innumerable feathers, leaves,
strings, beads, and loose appendices of every description float and dangle from it, and, save that
they terminate in it, seem to have nothing to do with one another’ [Jam12]” [Wil69, p.391].

15This thesis is seemingly the first writing to describe Higher-Order Dependency in this way.
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case of ADM entities instantiated or deleted by the redefinition of a LIVE variable,

mentioned in §2.1.1).

By moving away from the notion of the symbolic definitive script and taking

S to be sequence of atomic ‘boxes’ in store, we can concentrate in this section

on the synchronisation of mechanism and perception involved in interaction with

meaningful state. The mechanism here is the action of U-agents in response to

change initiated by C-agents. The perception is achieved by synchronisation of O-

agents with respect to C-U-agent action. O-, C- and U-agents all act on or observe

a subset of S. The desired synchronisation and interaction with subsets of S is

illustrated in Figure 5.10.

The tri-box framework does not attempt to solve all these issues. However it

does seem to clarify:

• the concept of U-agents that write to more than one atom (for example, the

screen);

• the problem of indiscriminate change propagation associated with definitive

lists (Problem 3 described in §5.2.1);

• restricted forms of higher-order dependency (involving dynamic script graph

arcs), and

• the synchronisation required for subjective dependency.

The tri-box framework focusses on propagation of change within the current

state, rather than evaluation of a script. The framework has emerged by asking the

questions: What is the minimum information we need to implement a concurrent

definition maintainer? and What is the simplest way to organise the information?

In asking such questions, we have moved away from the symbolic emphasis of scripts,

but hope to return with some insights for our symbolic notations.
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Figure 5.10: O-, C- and U-agents observe & act on subsets of S and are synchronised
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Figure 5.11: Script graph and tri-box diagram for a is b+c

5.3.2 Concept and examples

The tri-box framework is a “visual formalism” [Har88] describing the propagation

of change within a sequence of atomic ‘boxes’ in store. It can be viewed as a

generalisation of the extended script graph (described in §5.1.1).

The extended script digraph for the definition a is b+c and the corresponding

tri-box diagram are shown in Figure 5.11. The value nodes of the extended script

digraph have been replaced by ‘value boxes’, each holding a value in the store S.

A value box may or may not correspond to a word in store and may be of fixed or

variable length — these are matters of implementation.

The U-agent node in the extended script digraph has been replaced by three

vertically joined boxes, termed a ‘tri-box’. From top to bottom, the three boxes in a

tri-box are named the ‘W-box’, the ‘U-box’ and the ‘R-box’. The values contained

in the boxes describe the ‘W-set’, the identity of the update operator and the ‘R-

set’ respectively. The W-set is the particular subset of boxes in the store S that the

U-agent may write values to, and similarly the R-set is the subset of boxes that it

may read values from. The subset of S referenced by each U-agent can therefore be

specific to each U-agent. The framework captures the notion of subjective reference

as opposed to the identification of objective symbols.

The value of the W-set is held conceptually in the (top-most) W-box, and is

diagrammatically represented by drawing ‘W-coloured’ arcs from the W-box to the

boxes included in the W-set. Similarly, the value of the R-set is held conceptually

in the (lowest) R-box. The value of the R-set is represented diagrammatically by
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drawing ‘R-coloured’ arcs from the boxes included in the R-set to the R-set box. The

three adjacent boxes and arcs are drawn this way so as to mirror the conventional

geometric layout of the corresponding script graph, where sources of the U-agent

are conventionally placed below, targets above, and arcs describe propagation of

change.

The dependency in the system is thus described by the information held collect-

ively in all the tri-boxes. Following Slade [Sla90], this information is known as D

(see §2.1.2). The information is used to coordinate and synchronise the O-, C- and

U-agents, as outlined in §5.1.2 and illustrated in Figure 5.10.

If the boxes making up the tri-boxes are located in S along with the ‘value

boxes’ (this organisation can be succinctly termed ‘D-in-S’), the values contained

in the tri-boxes may be written to by U-agents. In this case, the script graph itself is

maintainable by dependency. The framework therefore provides a conceptual means

with which to describe higher-order dependency.

There is one rule restricting the topology of a tri-box diagram, which follows

from the discussion in §4.3.4 of constraints upon definition-agent action:

Each box in S must be referenced by at most one W-set.

Alternatively stated, considering the W-sets as sets of arcs (as drawn in Fig-

ure 5.11), each box in S must have at most one incoming ‘W-arc’. This rule ensures

that no word in S is subject to change from two or more independent agents. It is

then possible to trace effect back to cause.

Some examples to illustrate how the tri-box conceptual framework can be applied

are given on the following pages. The next subsection then discusses implementation

of the framework.
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Example 1: The “power” script — illustrating many possible U-agent

configurations

Two non-trivial examples of the tri-box diagrammatic form are shown in Figure 5.12,

which depicts two configurations for maintaining dependency in the “power” script

(a running example in this thesis, which first appears in §3.2.4). The figure shows

the “power” script, the script graph and two possible tri-box implementations of the

script graph. The tri-box implementation shown on the left has U-agents in one-to-

one correspondence with nodes (the “one-to-one configuration” — see §5.1.1). Notice

that there are two distinct ADD update operators, for reasons discussed further in

the next subsection. The tri-box implementation shown on the right uses a single

U-agent. This is a ‘monolithic’ configuration (see §5.1.1).

The tri-box framework can represent the many possible mappings of script graph

nodes to updating agents which are possible between these two configuration ex-

tremes (cf. the discussion of extended script graphs in §5.1.1). Each possible map-

ping has differing potential for concurrent update.
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Figure 5.12: Tri-box diagrams of the “power” script
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Example 2: Character glyphs — multiple W-set items and hardware

This example demonstrates some of the potential for using W-sets containing more

than one reference, and the ability of the framework to represent dependency that

is present externally to a definition maintainer. The example is related to the one

given in §3.5.4, where a character pattern dependent on a character code word was

made to appear on the screen.

At the bottom left corner of Figure 5.13 a single U-agent with the update op-

erator CHR_G is shown. This U-agent reads from a single value box containing a

character code (labelled CODE). The CHR_G (“character code to glyph”) operator

then internally calculates the appropriate character glyph and writes to eight value

boxes (labelled PW1 to PW8).

The configuration of the DAM machine described in §3.5.4 exploited the video

hardware of the machine to directly render definitive state. In this configuration, the

video hardware can be considered to be a U-agent, as on-screen state is indivisibly

(at the level of human perception) related to video RAM state. This U-agent can

be represented as a tri-box as shown in the figure, where the “update operator” is

labelled ‘(HW)’. As shown in the figure, the single box PW2 (in implementation, a

32-bit machine word) corresponds to 32 on-screen pixels16. Only one box to pixel

region mapping is shown for clarity. Multiple mappings could be achieved by adding

more tri-boxes or by extending the R- and W-sets of the existing ‘(HW)’ tri-box.

16In the black and white graphics mode used by the DAM machine in single-tasking mode, one
32-bit machine word corresponds to 32 on-screen pixels, each bit representing one binary pixel state.
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(HW)

CODE is character code input

CHR_G is chargraphic code to glyph operator

PWx is Pixel Word x

(HW) is the tri-box representation of the video hardware

Figure 5.13: Tri-box diagram showing an on-screen character glyph representation
linked by dependency to a box containing a character code
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Example 3: Observation of overlapping subsets — discriminate references

This example relates to the problem of indiscriminate change propagation in EDEN,

discussed previously as Problem 3 in §5.2.1. In the present EDEN, change to any

element of a list causes re-evaluation of dependencies observing any part of the list,

whether the changed element is observed or not. The problem is due to the reliance

in Eden on a single symbol to represent the entire list, and the functional abstraction

of reference employed, such that the list element l[1] is represented internally as

the functional f(l, 1).

In the tri-box framework, references (to subsets of S) are specific to each U-

agent — they are not objectively encapsulated in a symbol. Figure 5.14 shows two

U-agents observing overlapping subsets of S. Due to the specificity of reference of

the R-set, there is no need for the implementation to invoke the updating agent U2

when a value box not contained in its R-set (such as the box marked T) is changed.
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Figure 5.14: Two U-agents observing sub-sets of a list
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Example 4: The if operator — Higher-Order Dependency

Section §4.3.7 briefly described the Eden ternary if operator and problems with its

use in a FV due to the functional abstraction of reference. Effectively, the Eden

definition:

v is b ? x : y;

is represented internally as the functional:

v is f(b, x, y);

but a representation correctly reflecting the propagation of change required would,

depending upon the value of b, list either x or y as a source of v, but not both.

The presence of both x and y as sources in the current implementation can cause

“phantom” graph cycles to be detected (see Problem 4 in §5.2.1).

The ternary if creates a simple higher-order definition when used in a formula17.

In this example, the value of b affects the arcs required in the script graph. Con-

sidered this way, the script graph arcs can be reconfigured when necessary using the

following Eden triggered action, presented in §4.3.7:

proc cv: b { if (b) { v is x; } else { v is y; } }

The same solution can be modelled in the tri-box framework if we locate D-in-S.

The W-set of the WRITEREF tri-box in Figure 5.15 references the R-box of the COPY

tri-box. The COPY update operator implements the simple identity function: the

COPY tri-box simply copies the value referenced by its present R-set to the value

box v. The R-set of the COPY tri-box is made to reference either x or y by the

WRITEREF tri-box (the alternative possibility to the current state is denoted by the

grey line drawn from the y value box). The WRITEREF update operator has as output

the value of the R-box representation denoting either a reference to the value box

containing x or that containing y, the choice of output depending upon the boolean

value of the input b.

17Although not when used in an assignment, since this does not create a definition.
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The tri-box solution to this problem shown in Figure 5.15 can in principle be

examined statically to trace cause and effect. There is an answer to the question

“Why is the value of v currently that of x?” An answer to this question in the Eden

triggered action solution depends upon the implementation making a record of the

identity of the last action to change the definition of v.

The if HOD example involves reconfiguration of only arcs in the script graph

(R-sets in a one-to-one tri-box configuration). It may also be possible to use the

tri-box framework to describe more complex higher-order dependency, involving the

creation or removal of script graph nodes under dependency control. To implement

this would require a U-agent able to create entire tri-boxes somewhere in D. A

dependency-driven parser would require such a U-agent.

COPY
W

R

x y

v

WRITEREF
W

R

b

Figure 5.15: An if conditional HOD in the tri-box framework
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Example 5: Subjective dependency

The characterisation of dependency from Beynon et al [BCSW99] quoted in §5.1.2

emphasises the subjective character of the dependency concept: “A dependency is

a relationship between observables that pertains in the view of a particular agent”

(my emphasis). Section §5.1.2 contains an example implemented in SR where two

agents, O and O2, observe the three variables a, b and c. The agent O perceives

the dependency relationship ‘a is b+c’ in the state, but the agent O2 perceives

only unrelated variables. It is possible to describe such ‘subjective dependencies’ by

adding observing agents to a tri-box diagram.

Figure 5.16 shows two O-agents observing five value boxes. The agent O1 per-

ceives only the dependency described by the C:ADD tri-box, and the agent O2 only

that described by the E:ADD tri-box. As a result, whenever the agent O1 makes an

observation, the state will be consistent with the relationship ‘c is a+b’. However,

the state may not be consistent with the relationship ‘e is c+d’ — the agent O1 is

able to observe the state during the time period between the start of a change to the

value of c and the end of the execution of the update operator E:ADD. Conversely,

the agent O2 will always perceive state to be consistent with ‘e is c+d’, but not

necessarily ‘c is a+b’.
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Figure 5.16: Two O-agents perceiving different dependencies
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5.3.3 Implementation issues

The tri-box framework is a useful conceptual framework for understanding and de-

scribing the issues outlined in the previous section relating to the implementation

of dependency. The framework provides a conceptual guide for implementation but

it is not a detailed precise specification. Many questions remain to be answered be-

fore a full concurrent definition maintainer implementation can be considered. This

section briefly outlines some of the issues for implementation that the framework

raises by considering each example presented in the previous section in turn.

Example 1: The “power” script

A tri-box diagram can be implemented in many different ways. Each implementation

requires decisions to be made about data structures and operational organisation.

The DAM machine data structure for the “power” script is shown in Figure 3.2

(p.115). In this implementation, two linked lists are attached to each value in the

definitive store, one containing source and the other containing target pointers to

other value locations. Note that in Figure 3.2, the Targets Store encodes the same

information as the Sources Store. The two stores are used to improve the efficiency

of change propagation, unlike the R- and W-sets of the tri-box framework, which

do not hold redundant information.

A design using lists of source and target pointers works well if the number of

arcs per script graph node is small. If this assumption is false (for example, if the

source values for a definition are the entire screen state), then the lists may become

unmanageably long.

In operation, use of the DAM machine involves the queuing of redefinitions which

are then processed when an update routine is invoked. Considered at this level, the

DAM machine is always in one of the two states — QUEUING or UPDATING.

In terms of concurrency, the DAM machine therefore implements a ‘monolithic’ U-

agent configuration, as shown in Figure 5.12. A concurrent definition maintainer

design might implement a one-to-one U-agent configuration as shown in Figure 5.12.

One simple way to evaluate the design of a concurrent definition maintainer is to

consider how it acts on two disjoint subgraphs of a script graph — for example, two

copies of the “power” script. In a truly concurrent design, the synchronisation for
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each subgraph should be independent: O-, C- and U-agents observing and acting

on one subgraph should not be affected by other agents observing and acting on the

other. Such a design is required to have no centralised data or entity which could re-

duce the independence of agents observing and acting upon subgraphs. This chapter

has suggested that the primary parts of a concurrent definition maintainer are the

data structure and protocols for concurrent interaction with that data structure —

there can be no centralised single-threaded ‘definition maintainer’ code.

The “power” example illustrates the implications of the rule restricting the topo-

logy of a tri-box diagram: each box in S must be referenced by at most one W-set.

Figure 5.12 (p.312) follows this rule faithfully. It should be noted that the restric-

tion also applies to user input: in Figure 5.12, the user may not directly change

the values contained in the value boxes e, f, g, h or i. We may assume that every

box without an incoming W-arc implicitly has an incoming W-arc representing the

agency of the user. The user may thus change the values contained in the ‘leaf’ value

boxes a, b, c and d, and also the values contained in the tri-boxes. The restriction

has much relevance to the topic of moding discussed in §5.2.2.

The final aspect of the “power” script to be raised here concerns the “power”

function itself. Notice that, in the “power” script, power() is the only function

which is not symmetric in its arguments (since a + b = b + a etc, but xy 6= yx). In

the one-to-one configuration in Figure 5.12, it is appropriate for every other tri-box

to reference an R-set, but the I:POWER update operator requires more information

which could be described as an R-sequence. The tri-box framework is not based

upon R- and W-sequences however — the framework is intended to describe the

propagation of change and therefore sequencing of operator invocation. Sequencing

of operator arguments is a detail that is not relevant at this level, and so the tri-box

framework leaves this for the implementation. It is noteworthy here that the EDEN

implementation creates a custom VM code ‘operator’ for each definition at parse

time, encoding the references to operator arguments in the VM code. The EDEN

scheduler then invokes the VM code at the scheduled time, without concern for the

sequencing of operator arguments.
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Example 2: Character glyphs

When discussing Example 1 above, we considered the scenario of a single definition

having the entire screen state as its source value. Although this is possible in

principle in the DAM machine, it would create an unmanageably long source pointer

list and many short target pointer lists. Example 2 involves the dual situation,

showing eight values (PW1. . . PW8) that each have a single source value (CODE). In the

DAM machine, this aspect of Example 2 would require eight separate definitions,

since in that design, operators may only return a single value. In contrast, in the

tri-box framework, U-agent operators may write to many values. This example can

be constructed as a single U-agent, or as eight U-agents (each writing to a single

value), depending upon which is more appropriate.

In the tri-box framework, values are firstly separated from definitions, through

the concepts of the ‘value box’ and the ‘tri-box’. Values and definitions are joined

again through the use of the R- and W-set concepts, which, if D-in-S is counten-

anced, also allows the consideration of higher-order dependency, when the script

graph information held in tri-boxes can also be used as value boxes.

The tri-box framework is more general than the DAM machine design, and also,

in fact, more general than the concept of the LLDN upon which the DAM machine

design is based. The tri-box framework may therefore have broad implications for

designing and implementing definitive notations.

Example 3: Observation of overlapping subsets

The tri-box framework abandons objective symbolic reference in preference for R-

and W-sets of references to individual locations. This conceptual step allows highly

specific references to subsets of state to be constructed that different agents can use

in a more ‘subjective’ manner, as shown in Example 3. However, if reference to

subsets is implemented in its full generality, the implications are extremely costly.

If in implementation we wish an R-set to be able to refer to any possible subset

of the state S (i.e. any possible element of the powerset P(S)), then the simplest

fixed-length representation is a bit-vector, with one bit per value location repres-

enting presence or absence of that location in the reference. Unfortunately, such a

representation requires as many bits as there are locations: using a 32-bit word for
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the representation only allows 32 locations. This problem is only partially redressed

by the fact that, in the description of the framework above, we have not prescribed

the length of the representation of a tri-box (although it is convenient to think of it

conceptually as three boxes, it need not be represented in implementation as three

value boxes).

However, in practice, it is unlikely that we will need to refer to every possible

subset of S (i.e. every possible element of P(S)). Many smaller (but less general)

representations then become possible.

The DAM machine design implements a reference to a single location using a

source pointer: a bit-vector interpreted as an address value. The source pointer

is treated in the implementation as ‘opaque’ — it can only be used for dereferen-

cing the particular location to which it points. Comparisons of source pointers or

arithmetic on source pointers have no meaning — using terminology from the Java

language, a DAM machine source pointer is a ‘reference’ rather than a ‘pointer’.

Allderidge’s symbol table extension to the DAM machine in !Donald (see §3.3) per-

sists in this design, as is conventional. Such a symbol table associates character

string identifiers with values, but in the implementation, no significance is attached

to structural relationships between identifiers, such as might stem (for example)

from lexicographic ordering or spreadsheet cell naming conventions. It is there-

fore not usually meaningful to compare or perform arithmetic on character string

identifiers.

The ‘opaque-ness’ of both of these forms of reference makes it necessary, when

making a reference to multiple locations, to establish these by constructing lists of

basic references (pointers or string identifiers).

A more general form of reference is provided in spreadsheet programs. For

example, the “A1 reference style” in the spreadsheet program Excel (version ‘X’

for the Apple Macintosh) takes the following form (a regular expression synthesised

from the documentation [exc01]):

{ SN { : SN } ! } { CL } { RN } { : { CL } { RN } }

where SN is a sheet name, CL is a column letter, RN is a row number, ‘!’ is the

exclamation character, ‘:’ is the colon character, and curly brackets denote optional

parts of the reference.
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The colon delimits parts of the reference, some parts being optional. If CLRN

is specified, then the reference denotes a single spreadsheet cell (e.g. B3). If all parts

are specified, then each part of the reference specification can be thought of as a

plane in three-dimensional space, the dimensions being columns, rows and ‘sheets’

of the current ‘workbook’ document. This reference representation (which has a

fixed and small maximum length) therefore allows a reference to be made to any

three-dimensional cube of cells (e.g. Sheet1:Sheet3!A5:C7).

Note however that it is not possible in the above syntax to reference a non-

contiguous range of cells directly: although the formula =SUM(A1:B2,D1:E2) denotes

the sum of the cells enclosed in the area A1:E2 but not C1:C2 (and therefore not a

contiguous range), this formula is actually an invocation of the SUM() function with

two reference arguments separated by a comma.

The tri-box framework assumes the most general form of reference possible, given

a state S considered as a sequence of atomic ‘boxes’. The provision of less general,

but still powerful, forms of reference appears to involve two ingredients: organising

state ‘boxes’ into some kind of space, and having a means to form references into

that space. Ascribing a suitable structure to the space greatly increases the power of

references used in combination. The ‘suitability’ of the structure will depend upon

the domain18.

Example 4: The if operator

The notion of D-in-S for higher-order dependency, made clear in the tri-box frame-

work, is a conceptual breakthrough. Previously we have not been able to describe

higher-order dependency in such concrete terms (see for example the discussion by

Gehring et al in [GYC+96]). An ill-defined abstract research problem is thus trans-

formed into a precise technical problem. The technical problems remaining to be

solved include the following three issues:

• The tri-box script graph data must be accessed indivisibly by concurrent

agents, as are the value boxes. Note that the SR code in Appendix §5.A

(p.328) does not implement D-in-S: the semaphores in the code mediate ac-

cess to value boxes only.
18Cf. the way in which spreadsheets are suited to financial and administrative applications where

tabular data is common.
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• Higher-order dependency may complicate the detection of script graph cycles.

• Levels of evaluation (or change propagation) may need to be implemented.

For maximum efficiency in Figure 5.15 (p.318) for example, if b and x are

simultaneously changed, the WRITEREF operation must take place before the

COPY operation.

Example 5: Subjective dependency

P-H. Sun first experimented with what is here termed ‘subjective dependency’ in

his dtkeden extension to tkeden [Sun99] (see also §4.1.6), where dtkeden clients

interact over a network via a dtkeden server, communicating by sending redefinition

strings through TCP/IP sockets. Clients may have private local state and can

maintain their own private dependencies between public data.

The tri-box framework lends clarity to what it means for two agents to have

observables in common but to perceive different dependencies amongst them. In

Figure 5.16 (p.320), each of the agents O1 and O2 has a different D. In this example,

the two Ds are disjoint, but examples with some commonality between agent Ds

are easily envisaged.

Implementing subjective dependency poses problems of distinguishing tri-boxes

from value boxes and associating tri-boxes with agents. The association is partic-

ularly (perhaps only) important when synchronising agent action and observation,

so one implementation design would be for an agent to identify its particular D

when a protocol is used. The tri-box conceptual framework seems general enough

to describe implementations ranging from distributed (with the state S distributed

amongst multiple computers and the protocols implemented using message passing)

to shared-memory (with the state S existing in the shared memory and protocols

implemented using atomic processor instructions) to single-processor (with the state

S existing in the single memory and a scheduler determining which agent to animate

next on the basis of information resulting from protocol calls).

The diversity of the implementation issues raised by the above five examples

of applying the tri-box framework suggests that no single ideal general purpose

definition maintainer implementation exists. There may be an ideal if we restrict our

usage and expectations of the tool to the types of Empirical Modelling performed
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with tkeden before 1999. However, new developments in applying EM, such as

adding 3D graphical realisation and real-time input, lead directly to problems of

organising the state space and concurrent real-time issues to which the best solution

will depend both upon the requirement and the hardware available.
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5.A Concurrent definition maintenance in SR

# A concurrent agent-based definition maintainer case study
2 # Ashley Ward (ashley@dcs.warwick.ac.uk)

# June-July 2003
4

resource agentdep()
6

type debugprint = string[6]
8

# upper bound on dependency table index. Table is indexed 1:ND
10 const ND := 5

12 # upper bound on value store. Store is indexed 1:NS
const NS := 9

14

type dref = int # 1:ND
16 type sref = int # 1:NS

18 type drefset = [ND] bool
type srefset = [NS] bool

20 type refset = [*] bool

22 const EMPTYDREFSET := ([ND] false)
const EMPTYSREFSET := ([NS] false)

24 const FULLDREFSET := ([ND] true)

26 # the store of values
var s[NS]: int

28

# the dependency table. The order of arguments is sometimes
30 # important (eg subtraction), but the table does not encode

# each dependency precisely, just the info needed to describe the
32 # dependency tree. The exact implementation of each dependency is

# described within the relevant u.
34

var o[ND]: srefset := ([ND] EMPTYSREFSET)
36 var i[ND]: srefset := ([ND] EMPTYSREFSET)

38 type opid = enum(ADD, TIMES, MAX3, POWER)
var u[ND]: opid

40 op update(dref; debugprint) {send, call}

42 sem l[ND] := ([ND] 1)

44 var undef[ND]: bool := FULLDREFSET

46 # end of dependency table

48 type lockopt = enum(LOCK, UNLOCK)
type recurseopt = enum(RECURSE, NORECURSE)

50
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52 /*
* refset functions

54 */

56 /*
procedure nill()

58 end
*/

60

# bit-wise OR two drefsets together
62 procedure ordrefset(a: drefset; b: drefset) returns aorb: drefset

var i: int
64

aorb := EMPTYDREFSET
66

/*
68 co (i := 1 to ND st a[i] or b[i]) nill() -> aorb[i] := true oc

*/
70

fa i := 1 to ND ->
72 if a[i] or b[i] -> aorb[i] := true; fi

af
74

end
76

# bit-wise OR two srefsets together
78 procedure orsrefset(a: srefset; b: srefset) returns aorb: srefset

var i: int
80

aorb := EMPTYSREFSET
82

fa i := 1 to NS ->
84 if a[i] or b[i] -> aorb[i] := true; fi

af
86

end
88

# bit-wise AND two srefsets together
90 procedure andsrefset(a: srefset; b: srefset) returns aandb: srefset

var i: int
92

aandb := EMPTYSREFSET
94

fa i := 1 to NS ->
96 if a[i] and b[i] -> aandb[i] := true; fi

af
98

end
100
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# is the given refset empty (ie all false)
102 # or does it contain a true value?

procedure isemptyrefset(r: refset) returns empty: bool
104 var i: int

106 empty := true

108 fa i := 1 to ub(r) ->
if r[i] ->

110 empty := false
exit

112 fi
af

114

end
116

# convert a refset to a string for debug printing purposes
118 procedure refsettostring(r: refset) returns s: string[80]

var i: int
120

s := ""
122

fa i := 1 to ub(r) ->
124 if r[i] ->

s := s || string(i)
126 fi

af
128

end
130

132
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/*
134 * procedures to manipulate the dependency table

*/
136

# recursively all sources (D space) of all r (S space), including r
138 procedure dsources(r: srefset) returns ret: drefset

var d: dref
140

ret := EMPTYDREFSET
142

fa d := 1 to ND ->
144 if not isemptyrefset(andsrefset(o[d], r)) ->

ret[d] := true
146 ret := ordrefset(ret, dsources(i[d]))

fi
148 af

150 end

152 # recursively? all targets (D space) of all r (S space), excluding r
procedure dtargets(r: srefset;

154 recurse: recurseopt) returns ret: drefset
var d: dref

156 var ts: srefset

158 ret := EMPTYDREFSET

160 fa d := 1 to ND ->
if not isemptyrefset(andsrefset(i[d], r)) ->

162 ret[d] := true
if recurse = RECURSE ->

164 ret := ordrefset(ret, dtargets(o[d], recurse))
fi

166 fi
af

168

end
170
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# lock/unlock this set of Ds
172 procedure lockset(lock: lockopt; locks: drefset; dp: debugprint)

var d: dref
174

if lock = LOCK ->
176 # as long as concurrent competing processes make their locks in the

# same sequential order, deadlocks are prevented
178

fa d := 1 to ND ->
180 if locks[d] ->

write(dp, "P(", d, ")")
182 P(l[d])

fi
184 af

186 [] lock = UNLOCK ->
/* co (d := 1 to ND st locks[d]) V(l[d]) oc */

188

fa d := 1 to ND ->
190 if locks[d] ->

write(dp, "V(", d, ")")
192 V(l[d])

fi
194 af

196 fi

198 end

200 # are any of these s marked as undefined in the dependency table?
procedure containsundef(sources: srefset) returns containsundef: bool

202 var sr: sref
var dr: dref

204

containsundef := false
206

fa dr := 1 to ND ->
208 if not isemptyrefset(andsrefset(o[dr], sources)) ->

if undef[dr] ->
210 containsundef := true

exit
212 fi

fi
214 af

216 end

218
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220 /*
* observe / change protocol procedures

222 */

224 # prohibit change (& observation?) of all of r and sources
# so that state appears consistent

226 procedure preOlock(r: srefset; dp: debugprint) returns locked: drefset
# lock any use of any r and all sources down the tree

228 locked := dsources(r)

230 lockset(LOCK, locked, dp)

232 end

234 # allow change of previously locked dependencies
op postOunlock(drefset; debugprint) {send}

236 proc postOunlock(locked, dp)
lockset(UNLOCK, locked, dp)

238

end
240

# prohibit observation (& change?) of all of r and targets
242 procedure preClock(r: srefset; dp: debugprint) returns toupdate: drefset

var targets: drefset
244

# lock any targets of all r and all targets up the tree (excluding r)
246 targets := dtargets(r, RECURSE)

248 lockset(LOCK, targets, dp)

250 # now mark all targets (excluding r) up the tree as undefined
undef := ordrefset(undef, targets)

252

# the first level of targets of r should now be updated
254 # (and recursively, the targets of those targets)

toupdate := dtargets(r, NORECURSE)
256

end
258

# update first level of dependencies, allow observation/change, then
260 # propagate dependency update up to the next level

op postCupdateunlock(drefset; debugprint) {send, call}
262 proc postCupdateunlock(toupdate, dp)

var d: dref
264

# in parallel, invoke the necessary update procs, which should each
266 # read their input, write output, unlock, then invoke the next level

# of dependency update
268 co (d := 1 to ND st toupdate[d]) call update(d, dp) oc

270 end
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272

274 /*
* update dependency procedures

276 */

278 # dirty hack for getting the refno’th single reference out of a set
procedure oneref(set: srefset; refno: int) returns s: sref

280 var i: sref

282 s := 0

284 fa i := 1 to NS ->
if set[i] and (--refno = 0) ->

286 s := i
exit

288 fi
af

290

end
292

# update the s outputs of a dependency. This is called from update and
294 # also possibly manually when a dependency is changed

procedure valueupdate(d: dref)
296 if u[d] = ADD ->

s[oneref(o[d], 1)] := s[oneref(i[d], 1)] + s[oneref(i[d], 2)]
298 [] u[d] = TIMES ->

s[oneref(o[d], 1)] := s[oneref(i[d], 1)] * s[oneref(i[d], 2)]
300 [] u[d] = MAX3 ->

s[oneref(o[d], 1)] := max(s[oneref(i[d], 1)],
302 s[oneref(i[d], 2)],

s[oneref(i[d], 3)])
304 [] u[d] = POWER ->

s[oneref(o[d], 1)] := s[oneref(i[d], 1)] ** s[oneref(i[d], 2)]
306 fi

308 end
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310 # update state for a particular dependency by reading input and writing
# output, then unlock the dependency and invoke the next level of

312 # dependency update
proc update(d, dp)

314 var args: int
var sr: sref

316

write(dp, "UPDATE", d)
318

if containsundef(i[d]) ->
320 # at least one source value is undefined: ignore now,

# don’t propagatechange upwards and wait for the final update call
322 write(dp, "UPDATE undefined source")

return
324 fi

326 if not undef[d] ->
# this d has already been updated

328 write(dp, "UPDATE value already defined")
return

330 fi

332 valueupdate(d)

334 # the output value is no longer undefined
undef[d] := false

336

write(dp, "V(", d, ")")
338 V(l[d])

340 call postCupdateunlock(dtargets(o[d], NORECURSE), dp)

342 end

344
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346 /*
* debug test code

348 */

350 procedure writesd()
var sr: sref

352 var dri: dref, dr: dref

354 fa sr := 1 to NS ->

356 # find this s in D space
dr := 0

358 fa dri := 1 to ND ->
if o[dri][sr] ->

360 dr := dri
exit

362 fi
af

364

writes(" S:", sr, " = ", s[sr])
366

if dr != 0 ->
368 writes("\tD:", dr,

" o:", refsettostring(o[dr]),
370 " i:", refsettostring(i[dr]),

" u:", u[dr],
372 " l:?", # can’t print l[dr]

" undef:", undef[dr],
374 "\n")

[] else ->
376 write()

fi
378

af
380

end
382
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384 # "Power script" - example from Cartwright p. 123

386 o[1] := ([6] false, true, [2] false); # g
i[1] := ([4] false, true, true, [3] false); # e, f

388 u[1] := TIMES;

390 o[2] := ([8] false, true); # i
i[2] := (true, [6] false, true, false); # a, h

392 u[2] := POWER;

394 o[3] := ([7] false, true, false); # h
i[3] := ([3] false, true, false, true, true, [2] false); # g, f, d

396 u[3] := MAX3;

398 o[4] := ([4] false, true, [4] false); # e
i[4] := (true, true, [7] false); # a, b

400 u[4] := ADD;

402 o[5] := ([5] false, true, [3] false); # f
i[5] := (false, true, true, [6] false); # b, c

404 u[5] := ADD;

406 # initialise values but not dependencies
s := (1, 2, 3, 4, [5] -1)

408 undef := FULLDREFSET

410 writesd()

412 # simulate change to all non-d to initialise. starting with just a
# (1) or c (3) won’t work as then e (4) or f (5) will be undefined.

414 var sr: srefset
sr := ([4] true, [5] false) # a,b,c,d

416

var toupdate: drefset
418 toupdate := preClock(sr, "INIT")

420 write("TOUPDATE", refsettostring(toupdate))

422 postCupdateunlock(toupdate, "INIT")

424 writesd()

426 # observe g
sr := EMPTYSREFSET

428 sr[7] := true # g
var locked: drefset

430 locked := preOlock(sr, "OG")
write("LOCKED", refsettostring(locked))

432 write("S7=", s[7])
send postOunlock(locked, "OG")

434
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436 /*
* Concurrent test processes

438 */

440 # observe a single s value. Perhaps not useful as no possibility for
# simultaneity of observation.

442 procedure Os(sr: sref; dp: debugprint) returns v: int
var sset: srefset

444 var locked: drefset

446 sset := EMPTYSREFSET
sset[sr] := true

448

locked := preOlock(sset, dp)
450 v := s[sr]

send postOunlock(locked, dp)
452

end
454

# change a single s value (not a d)
456 procedure Cs(sr: sref; v: int; dp: debugprint)

var sset: srefset
458 var toupdate: drefset

460 sset := EMPTYSREFSET
sset[sr] := true

462

toupdate := preClock(sset, dp)
464 s[sr] := v

send postCupdateunlock(toupdate, dp)
466

end
468
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/*
470 # simple observation of just one value at a time, observing dependency

# constraint (although if there is no simultaneity, this is
472 # questionable)

process O1
474 var i: int

476 fa i := 1 to 20 ->
nap(int(random(100)))

478 write("O1 S7", Os(7))

480 af
end

482

# simple observation of just one value at a time
484 process O2

var i: int
486

fa i := 1 to 20 ->
488 nap(int(random(100)))

write("O2 S7", s[7])
490

af
492 end

*/
494
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# Od observes abcefg simultaneously and perceives the dependencies
496 process Od

var i: int
498 var sset: srefset

var locked: drefset
500 var dp: debugprint := " Od"

502 fa i := 1 to 20 ->
nap(int(random(100)))

504

sset := ([3] true, false, [3] true, [2] false) # abcefg
506

locked := preOlock(sset, dp)
508 writes(dp, ": S1=", s[1], " S2=", s[2], " S3=", s[3],

" S5(1+?*2)=", s[5], "(", s[5]=s[1]+s[2], ")",
510 " S6(2+3)=", s[6], "(", s[6]=s[2]+s[3], ")",

" S7(5*6)=", s[7], "(",s[7]=s[5]*s[6], ")\n")
512 send postOunlock(locked, dp)

514 af

516 end

518 # On observes abcefg simultaneously, but does not perceive dependency
process On

520 var i: int
var dp: debugprint := " On"

522

fa i := 1 to 20 ->
524 nap(int(random(100)))

526 writes(dp, ": S1=", s[1], " S2=", s[2], " S3=", s[3],
" S5(1+?*2)=", s[5], "(", s[5]=s[1]+s[2], ")",

528 " S6(2+3)=", s[6], "(", s[6]=s[2]+s[3], ")",
" S7(5*6)=", s[7], "(",s[7]=s[5]*s[6], ")\n")

530

af
532

end
534
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5.A. Concurrent definition maintenance in SR

# C1 changes the value of S1 (a), observing dependency action
536 # constraints

process C1
538 var i: int

var randomv: int
540 var dp: debugprint := "C1"

542 fa i := 1 to 20 ->
nap(int(random(100)))

544

randomv := int(random(10))
546 write("C1: S1=", randomv, "...")

Cs(1, randomv, dp)
548 af

550 end

552 # C2 changes the value of S2 (b), observing dependency action
# constraints

554 process C2
var i: int

556 var randomv: int
var dp: debugprint := " C2"

558

fa i := 1 to 20 ->
560 nap(int(random(100)))

562 randomv := int(random(10))
write("C2: S2=", randomv, "...")

564 Cs(2, randomv, dp)
af

566

end
568
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5.A. Concurrent definition maintenance in SR

# C3 changes D4 (value at S5) between TIMES and ADD, observing
570 # dependency action constraints

process C3
572 var i: int

var sset: srefset
574 var toupdate: drefset

var dp: debugprint := " C3"
576

# whether D4 is TIMES or ADD (note operators chosen such that errors
578 # cannot occur with source values of 0)

var t: bool := true
580

fa i := 1 to 20 ->
582 nap(int(random(100)))

584 sset := EMPTYSREFSET
sset[5] := true # e

586

toupdate := preClock(sset, dp)
588

writes("C3: S5 becomes ")
590 if t ->

write("TIMES")
592 u[4] := TIMES # note dref, not sref

[] else ->
594 write("ADD")

u[4] := ADD
596 fi

598 # have to recalculate the s value manually for a d change
write(dp, "VALUEUPDATE 4")

600 valueupdate(4)

602 send postCupdateunlock(toupdate, dp)

604 t := not t

606 af
end

608

end
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