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Abstract 

Empirical Modelling (EM) is an approach to the construction of interactive 

computer-based artefacts that embody construals of phenomena. The modelling 

activities underlying EM are associated with the identification of agents, 

dependencies and observables that reflect a commonsense way of understanding 

phenomena as experienced in everyday life. Model construction is guided by heuristic 

observation, interaction and experiment rather than by rational prescribed steps.  

This thesis is a comprehensive study of the potential of EM as an approach to 

system development. EM rests on a philosophical foundation that is radically different 

from that underlying conventional approaches to system development. This is 

reflected in the reference to two perspectives on systems in the thesis title: before and 

beyond systems. The ‘before systems’ perspective is concerned with the extensive 

preliminary activities that help to inform the system conception. These activities are 

supported by building models as prototypes to address the personal and interpersonal 

demands of system development. The ‘beyond systems’ perspective is concerned with 

fulfilling the functions of a system without the circumscription characteristic of 

traditional systems. This has particular relevance for potential applications of EM to 

ubiquitous computing, where system conception is inseparably linked with system 

use in a situation. 

This thesis seeks to consolidate and extend diverse concepts drawn from 

previous EM research within a unified framework: the Definitive Modelling 

Framework (DMF). The DMF supplies a suitable setting for both the cognitive and 

the collaborative aspects of system development in which the emphasis is on heuristic 

human problem solving and maintaining conceptual integrity in a system design.  

Evaluations of software tools that support modelling within the DMF are 

conducted. The prospects for future tool development are extensively studied and 

illustrated by the construction of three new prototypical visual tools.  

The research reported in this thesis provides a solid foundation for future 

research on applying EM to meet the challenges of system development in a modern 

computing context. 
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Empirical Modelling, agent-oriented modelling, system development, dependency, 

conceptual integrity, human problem solving, ubiquitous computing, user interface, 

visual modelling tool 
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1 

1 Introduction 

 

 

 

 

 

This introductory chapter gives the reader an orientation for this thesis. Section 1.1 

describes the background to Empirical Modelling (EM). Section 1.2 describes the 

motivations and aims that underlie the research reported in this thesis. Section 1.3 

outlines the contents of the thesis. Section 1.4 discusses the principal contributions of 

the research described in this thesis to EM. 

 

1.1   Background 

  

The Empirical Modelling Project is an ongoing research programme, based in the 

Computer Science Department at the University of Warwick. The project was 

initiated by Dr. Meurig Beynon in 1981, and has subsequently received sponsorship 

from British Telecom, IBM, Matra Datavision and the BBC, and conducted 

collaborative research in association with universities in Europe, Japan, Russia and 

the US. The published output of the project includes over 100 publications in the form 

of international conference and journal papers, research reports and doctoral theses. In 

addition, several software tools have been developed, together with several hundred 

models generated through postgraduate and undergraduate project work to study the 

potential practical applications of EM. 

 

A major theme of the project is studying principles and building tools for 

constructing ‘construals’ of phenomena, typically as special computer-based models. 

The emphasis is not on making a product, but on model-building activities that assist 

the personal cognitive process of understanding phenomena and the interpersonal 

sharing of understanding. The choice of the epithet ‘empirical’ reflects the fact that the 

modelling activities are rooted in observation, interaction and experiment, and in this 

respect are distinguished from perspectives that are associated with formal methods 

and traditional mathematical models. 

 

A radical distinction between EM and many other approaches to computer-based 
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modelling is its explicit emphasis upon modelling state as directly experienced rather 

than behaviours as circumscribed. Key modelling activities are associated with the 

identification of agents, dependencies and observables that arguably resemble our 

commonsense way of understanding phenomena as experienced in everyday life. 

Accordingly, the modelling activities are situated and subjective in nature, so that – 

unlike most conventional methods – EM presumes no fixed steps in the 

model-building process. Instead, modelling activities are guided by heuristic 

observation, interaction and experiment supported by the construction of an 

interactive computer-based model which metaphorically represents the modeller’s 

construal that is always open to evolve in response to changes in the current situation 

and viewpoint. 

 

EM research has found potential applications in many areas that include 

human-computer interaction, software development, computer-aided design, 

geometric modelling, behavioural modelling, concurrent engineering, educational 

technology, cognitive technology, artificial intelligence and business systems. In the 

context of these various applications, ideas about system development in general have 

been discussed, but only at the level of detail that is most relevant to the particular 

application area. This thesis seeks to consolidate and extend different ideas relating to 

system development that have been generated in previous research, and gathers them 

into a unified framework. It is the first thesis to focus on the EM approach to system 

development in the most general context. 

 

1.2   Aims and motivations 

 

The primary aim of this thesis is to explore EM as a distinctive approach to 

system development. The thesis is motivated by a large body of literature in 

philosophy, experimental science, cognitive science and computer science that 

stresses the importance of the experiential, experimental and informal nature of 

interaction between humans and the world that has become topical in relation to 

computer-based modelling in recent years. We briefly introduce some of the most 

influential ideas that motivate this thesis as follows: 

 

 In his essays on radical empiricism [Jam96], first published about a century 

ago, William James sets out a philosophical position that accounts for 

knowledge in experiential terms. EM emphasises techniques for the 

acquisition and representation of knowledge that are experiential in nature, 
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and that are associated with the process of model-building in system 

development.  

 In [Goo00], Gooding describes the importance of using concrete artefacts to 

embody and assist the cognitive process of understanding phenomena in 

experimental science. EM supports the construction of computer-based 

artefacts for system development that have qualities similar to those of 

Gooding’s artefacts. 

 In [Tru00], Truex et al. describe the notion of ‘amethodical’ information 

system development, where the development process is not formalised. EM 

aims to support situated modelling for system development, but prescribes 

no general method for system development. 

 In [Cro96], Crowe et al. advocate a constructivist approach to system 

development that emphasises “the mental and social nature of the 

construction of forms of information”. EM aims to support cognitive 

processes in system development at both personal and interpersonal levels. 

 In [Bro95], Brooks contends that conceptual integrity is the most important 

consideration in a system design. EM aims to provide principles and tools 

that help to maintain conceptual integrity in system development. 

 In [Weg97], Wegner argues that interaction is more powerful than 

algorithms. EM encourages the interactive construction of models that can 

support human problem solving aspects of system development. 

 In [Wes97], West advocates that hermeneutic computer science (which 

focuses on aspects of the informal natural world) as a complement to 

traditional formalist computer science (which focuses on aspects of formal 

deterministic worlds) in order to build complex systems. EM provides 

principles and tools that can be regarded as advances in hermeneutic 

computer science. 

 

A key feature of EM (to be discussed in detail in chapter 2) is the construction of 

computer-based models that serve to embody the modeller’s construal of phenomena 

in respect of agency, the observables that mediate this agency and the dependencies 

that link these observables. In developing a system, there are two complementary 

ingredients – the construction and configuration of system components, or of 

prototype models for these components, and the emergence in the minds of the 

developers of a system construal that reflects their commonsense explanations and 

expectations concerning how these components interact. These two ingredients of 

‘system construction’ and ‘system conception’ which together make up ‘system 

realisation’ are both represented in EM. Model-building activity in EM is broader than 
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system realisation in that it embraces the construction of experimental models whose 

purpose is to inform the modeller about the salient properties of the environment in 

which the system is to be established. Moreover, an EM model to represent a system 

component embodies the relevant observables and dependencies using a style of 

representation (namely a ‘definitive script’) that typically supports interactions 

beyond the scope of the actual component. 

 

In view of the above observations, the EM approach to system development is 

not easy to compare directly with traditional system development methods. For this 

reason, in this thesis, the EM approach to system development will be discussed in 

association with two perspectives on systems that are identified in the thesis title, 

namely before systems and beyond systems. When adopting a ‘before systems’ 

perspective, we are considering the extensive preliminary activities that help to 

inform the system conception, and in particular with the way in which a system design 

with conceptual integrity may emerge from this activity. When adopting a ‘beyond 

systems’ perspective, we are concerned with exploiting the power of EM to develop 

computer-based models that can fulfill the functions of a system without the 

circumscription characteristic of traditional systems. This enables us to develop 

embryonic system-like configurations of components that can be customised and 

optimised to serve as a conventional system at the point of use. In this style of 

application of EM, which has been extensively illustrated in previous research (see 

e.g. [Run02]), the sharp distinction between a developer and a user is no longer 

appropriate. This theme is particularly relevant to modern ubiquitous computing 

environments, where modes of use are so dynamic that they cannot be captured in 

advance.  

 

The primary aim can be subdivided into three more specific aims. We list these 

aims together with their motivations as follows. 

 

 Aim 1: to unify EM ideas for system development within a coherent 

framework. This thesis seeks to unify ideas represented in specific 

applications of EM and abstract more general principles from them. The 

motivation behind this aim is that, over the past 20 years or so, the EM project 

enjoyed a steady growth of ideas and concepts about system development that 

are scattered in the EM literature. However, so far there has been no explicit 

attempt to give a coherent account of EM for system development in the most 

general context. This thesis aims to consolidate on and amplify EM principles 

for system development that can be applied to any application domain. 
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 Aim 2: to expose the potentially comprehensive nature of EM as an 

approach to system development. An approach to system development that is 

comprehensive in nature must be able to deal with its wide variety of 

applications and address its human aspects. With this in mind, this thesis 

studies the EM approach to system development in detail from several different 

angles. The picture of EM for system development that emerges depicts system 

development as a complex cognitive and social human activity that admits no 

formal prescription. 

 

 Aim 3: to evaluate the existing EM tools and explore new ways to build 

better tools. This thesis aims to evaluate the existing EM tools in terms of how 

well they support the concepts of EM. Based on the issues identified from this 

evaluation, we aim to explore new ways to build better EM tools. The 

motivation behind this aim is that the development of EM tools has not kept up 

with the rapid development in research into EM concepts and principles. As a 

consequence, the existing tools cannot fully realise some important EM 

concepts. 

 

 

1.3   Thesis outline 

 

This thesis consists of nine chapters, structured as follows. Firstly, we give an 

overview of EM concepts (chapter 2). Secondly, we discuss this EM approach to 

system development in relation to traditional system development research. This 

includes a macro ‘bird’s-eye’ view that gives an overall description of the EM 

perspective on system development (chapter 3), and a micro view that discusses the 

human problem solving that system development using EM entails (chapter 4). 

Thirdly, we discuss the themes of ‘before’ and ‘beyond’ systems. This includes the 

discussion of conceptual integrity as the essence of the system concept (chapter 5), 

and the discussion of ubiquitous computing with reference to the new perception of a 

‘system’ that can be supported by EM (chapter 6). Finally, we turn to the investigation 

of EM tools to support the activities that underlie EM. This includes evaluations and 

prospects for EM tools (chapter 7), and description of a new visual EM tool (chapter 

8). These two chapters describe tools for building systems and contribute to filling the 

gap between EM principles and implementations. The thesis concludes with a 

summary of ideas developed during the preparation of the thesis and proposes 
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relevant further research directions (chapter 9). Figure 1.1 depicts an overview of the 

contents in each chapter. 

 

Figure 1.1: A summary of the thesis content 

 

The contents of each chapter can be summarised in more detail as follows: 

 

 Chapter 2: Empirical Modelling. In this chapter, we shall give the reader an 

overview of EM principles and tools. The content of this chapter is organised in 

such a way that it gradually moves from abstract concepts to concrete 

implementations. It starts with a discussion of the underlying philosophy of EM. 

Then, it introduces the modelling framework that is based on the underlying 

philosophy. Finally, we explain how the framework is realised in practice. This 

chapter should not be regarded solely as a literature review. Since the concepts of 

EM have themselves been evolving over the past 20 years or so, this chapter can 

be regarded as a consolidation of EM concepts introduced previously. In 

particular, we gather EM concepts into a unified and coherent framework (the 

Definitive Modelling Framework) that can be characterised by particular 

concepts of representation, and types of modelling activity associated with a 
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distinctive interactive style of model building. 

 

 Chapter 3: System Development. Promising applications for EM concepts 

have been identified in many research areas. The wide range of potential 

applications of EM gives some empirical evidence for the generality of EM 

concepts in respect of system development. However, there has been no attempt 

so far to account for this generality explicitly. In this chapter, we shall explore 

the generality of EM concepts and argue that the philosophical foundation of 

EM is domain-independent. The structure of this chapter is as follows. Firstly, it 

reviews some of the research strands in the literature on system development. 

These strands will be contrasted with the EM perspective on system 

development discussed in later sections. In addition, we shall specify the 

principal aims for the application of EM to system development. Secondly, our 

discussion will focus on thinking about intrinsic properties of systems and their 

relationship to an EM perspective on system development. Thirdly, we focus on 

thinking about system development activities and discuss how EM takes these 

activities into account. Finally, we conduct a case study of modelling a 

dishwasher system in both EM and another common modelling approach, 

object-oriented modelling using UML. Our aim is to explore the differences 

between these two styles of system modelling. This chapter concludes with a 

review of possible ways in which the aims of applying EM to system 

development set out earlier in the chapter can be achieved. 

 

 Chapter 4: Human Problem Solving. This chapter focuses on the application 

of EM to support the human problem solving that is arguably the most 

important activity in system development. Firstly, we discuss the importance of 

developing principles and techniques for using the computer to support human 

problem solving. Secondly, we explore the relationship between problem 

solving and programming, with reference to some relevant research from the 

fields of general problem solving and psychology of programming. We shall 

argue that conventional programming paradigms cannot give comprehensive 

support for problem solving. Thirdly, we propose EM as a better approach for 

supporting problem solving. Finally, we present a case study based on a real 

life timetabling problem.  

 

 Chapter 5: Before Systems: Conceptual Integrity. In his famous book, The 

Mythical Man-Month [Bro95], Brooks contends that “conceptual integrity is 

the most important consideration in system design”. This chapter endorses and 



1 Introduction 

8 

elaborates this idea, and contends that obtaining conceptual integrity is 

essential before a coherent system concept can be formed. We believe that 

conceptual integrity emerges from activities that are prior to system 

identification or formalisation. Alongside this discussion, we shall explain how 

the EM approach to system development helps to address the issues of 

maintaining conceptual integrity. We start with a discussion of the meaning of 

conceptual integrity. The discussion leads to the identification of issues that are 

important to the maintenance of conceptual integrity. We shall discuss how EM 

can help to address them. At the end of the chapter, we shall also compare EM 

with other technologies that can be regarded as approaches to maintain 

conceptual integrity. 

 

 Chapter 6: Beyond Systems: Ubiquitous Computing. In this chapter, we 

discuss how EM principles can potentially be applied to everyday practical 

computing as it may be in the future, where the system conception is only 

established upon its use in a situation. Following Weiser [Wei91] we adopt the 

term ‘Ubiquitous Computing’ or in short ‘ubicomp’ to refer to an era where 

people will use a variety of computer-based devices to support everyday 

activities. We firstly identify a variety of research related to ubicomp. We 

discuss and summarise their shared visions. We argue that these visions are 

hindered by the lack of a conceptual framework to encapsulate the complexity 

and new requirements of ubicomp. In particular, little research has so far been 

conducted to develop a conceptual framework that explicitly supports both the 

design and the use of ubicomp devices. We argue that having a coherent 

conceptual framework is very significant for maintaining the conceptual 

integrity of ubicomp systems, and that this will be fundamental to the success 

of ubicomp. We introduce a new conceptual framework namely SICOD (Soft 

Interfaces for the Control of Devices) based on EM principles and tools and 

illustrate this with examples. We shall discuss challenges involved in realising 

the framework. Finally, we shall describe some related research and make 

comparisons between them and our proposed framework. 

 

 Chapter 7: Evaluations and Prospects for EM tools. In this chapter, we shall 

explore different techniques and tools that can be used to support the activities 

of EM. Our objectives are to evaluate existing and possible future 

implementations and to discuss the prospects for future development of EM 

tools. The chapter starts with a discussion of the essential characteristics of an 

ideal EM tool. This is to set the context for the evaluations described in later 
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sections. The chapter then considers three existing technologies, Java, Excel 

and Forms/3, as possible EM tool implementations. Following this, we evaluate 

the principal EM tool: TkEden. Finally, we introduce two new EM tools 

(WING and EME) and highlight some of their prospective advantages based on 

researches described in previous sections. 

 

 Chapter 8: The Dependency Modelling Tool. In this chapter, we shall 

describe a new EM tool, the Dependency Modelling Tool (DMT). The 

motivation for developing the DMT is similar to that of developing WING and 

EME – they aim to enhance the users’ experience in the process of EM. 

However, the emphasis in DMT is on the ways to visualise various structures 

that commonly exist in EM models. We start out by identifying these structures 

and describe some tools developed by others in relation to visualising structures 

that are similar to the ones that exist in EM models. The development of DMT 

is partly inspired by some features of these tools. We then introduce DMT’s 

user interface with a simple example. Followed by this, we describe how DMT 

helps to address two major concerns associated with an EM model: model 

comprehension and reuse. The final section highlights various issues relating to 

further research and development of the DMT. 

 

 Chapter 9: Conclusion. This final chapter gives a summary of the research 

discussed in this thesis and discusses potential research that might be conducted 

in the future in relation to the work in this thesis. 

 

1.4   Research contributions 

 

This thesis explores EM as a distinctive approach to system development. The 

author’s principal contribution has been to supply a comprehensive account of the 

essential ingredients of the EM approach to system development in the most general 

context. This thesis consolidates previous EM researches within a coherent and 

unified framework – the Definitive Modelling Framework (DMF). The DMF 

provides support for all the essential characteristics of EM. These include: the 

representation of our commonsense ‘construals’ of phenomena; situated model 

building activities that lead to the development and sharing of these construals; and an 

emphasis on open-ended experimental interaction. 

 



1 Introduction 

10 

The work in this thesis develops general principles for using EM to address the 

issues of system development with reference to two research strands, associated with 

‘thinking about systems’ and ‘thinking about system development activities’. Where 

thinking about systems is concerned, the thesis identifies three intrinsic properties of 

systems (complexity, predictability and unity) and discussed each in association with 

EM principles. Where system development activities are concerned, the thesis 

identifies three important aspects of such activities that can be classified as cognitive, 

collaborative and methodological, and discusses how EM can address issues 

associated with all three aspects.  

 

The thesis also contributes to linking EM to ideas of heuristic human problem 

solving that are arguably the most important aspect of system development. By giving 

illustrative examples, the thesis has given evidence that EM principles and tools offer 

essential support for the modeller to solve problems in an experimental trial-and-error 

fashion.  

 

This thesis also makes an important contribution to analysing and exploring the 

notion of conceptual integrity and explains how EM can address the issue of obtaining 

conceptual integrity which is arguably the most important consideration in system 

conception.  

 

In addition, this thesis contains the first discussion of EM in relation to 

ubiquitous computing, where the functional requirements of systems are so dynamic 

that they cannot be prescribed in advance. The thesis introduces the concept of a ‘soft 

interface’ as a means to support the configuration of ubiquitous devices as agents that 

constitutes end-user programming in this setting. A soft interface is essentially a 

simple EM model that facilitates the management and customisation of agents whose 

reliable behaviour has been identified.  

 

Apart from these theoretical contributions, this thesis makes significant 

contributions to research on EM tools. In particular, it includes an evaluation of the 

principal EM tool (TkEden), and explores the possibilities for implementing EM tools 

using various existing technologies. The author has also developed three prototype 

tools to explore new possibilities for better tool implementations which are more 

suitable for novice users: the Windowing and Graphics tool (WING) – originally 

developed as an undergraduate project [Won98] and subsequently enhanced by the 

author in the preparation of this thesis, the Empirical Modelling Environment (EME) 

and the Dependency Modelling Tool (DMT).  
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During the preparation of this thesis, the author has contributed to three refereed 

publications [Bey00b, Bey01a, Bey01b]. The EM models built by the author as case 

studies in this thesis include: the Dishwasher model (chapter 3), the interface for the 

Temposcope (chapter 4), the Crossnumber model (chapter 4), the drink stock control 

model (chapter 6), the central heating control model (chapter 6), the Business Deal 

models (developed for the tool evaluations in chapter 7 by using TkEden, Excel, Java 

and Forms/3) and the ATM model (chapter 8).  
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2 Empirical Modelling 

 

 

 

 

 

In this chapter, we shall give the reader an overview of EM principles and tools. The 

contents of this chapter are organised in such a way that it gradually moves from 

abstract concepts to concrete implementations. Section 1 describes the underlying 

philosophy of EM. Section 2 introduces the modelling framework that is based on the 

underlying philosophy. Section 3 explains how the framework is realised in practice.  

 

This chapter should not be regarded solely as a literature review. Since the 

concepts of EM itself have been evolving over the past 20 years or so, this chapter can 

be regarded as a consolidation of concepts introduced in the EM project. In particular, 

we gather the EM concepts into a unified and coherent framework (the Definitive 

Modelling Framework) that has characteristic concepts for agent representation 

(section 2.2.1) that support modelling activities (section 2.2.2) based on a distinctive 

interactive style of model building (section 2.2.3). 

 

2.1   A commonsense understanding of phenomena 

 

The philosophical foundation of EM is based on the way we understand and interact 

with the world. In this section, we shall discuss the main concepts associated with it. 

These concepts are not new in the sense of having been newly invented. On the 

contrary, they originate from a commonsense way of understanding phenomena in the 

world that we experience in everyday life. EM privileges these commonplace 

concepts and provides a framework to embody them into computer-based artefacts – 

to help the cognitive process of understanding phenomena. The discussion in this 

section is based on Beynon’s exposition of concepts of EM in [Bey02a, Bey02b].  
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In this context, the classical notion of concurrency is relevant only when issues 

associated with subjectivity, discrimination of essential entities and discretion over 

viewpoint can be resolved in an unambiguous way. This is the time when the observer 

has a full and precise understanding of the phenomena in question. Therefore, 

classical formal specification notations are suitable for representing the end-result of 

the understanding. In contrast, EM privileges powerful concepts (namely observation, 

agency and dependency) derived from the analysis of commonsense concurrency 

outlined above, and provides tools to assist the process of understanding before a 

possible end-result may eventually emerge. 

 

We shall discuss the concepts of observation, agency and dependency 

respectively in the next three subsections. 

 

2.1.2 Observation 
 

Observation plays a key role in understanding phenomena. Observation is typically 

associated with our sensory experience of the environment through vision, hearing, 

touch, taste and smell. In EM, the concept of observation is extended to embrace 

determinants of state that can be directly apprehended by the observer whether or not 

they are sensory in nature. On this basis, observation can be purely abstract in that it 

involves only exploration of our own thoughts. In fact, observables are anything that 

can be given an identity. The identification of observables is a matter of the observer’s 

interests. Therefore, existence of observables is subjective in nature. 

 

From this subjective perspective, the observables that are present can be 

regarded as defining the observer’s ‘current state of mind’. In explaining this, Beynon 

[Bey02b] likens a state of mind to a physical location in the real-world, in which the 

observer can dwell, from which he can leave, and to which he can return. The current 

state of mind is associated with the observer’s current focus of interest. A change in 

the current state of mind may be linked to a change in the observer’s current focus of 

interest. A state-change can be the result either of an action on the part of the observer 

(either voluntary or involuntary and at the conscious or the subconscious level) or an 

action on the part of other agents in the situation.  

 

When it comes to understanding complex phenomena with concurrency (e.g. 

understanding the complex behaviour of a concurrent system), the observer’s state of 

mind can be overloaded in the sense that there are too many observables at different 

levels of abstraction that have to be considered at the same time. In this case, the 
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conceptual integrity of the complex phenomena is difficult to maintain – so sense 

making becomes difficult. EM addresses this issue by seeking to embody and manage 

the state of mind of the observer using a special-purpose computer-based artefact. 

 

2.1.3 Agency 
 

Agency is a commonplace concept in our informal understanding of phenomena and 

interactions with the world. It is associated with attributing state-changes to what is 

understood to be their primary observed source. The informal nature of agency as 

perceived presents a challenge for conventional approaches that try to formalise 

agency or even factor out agency (as in a formal notation such as Concurrent 

Sequential Processes (CSP) that focuses on processes rather than agency as its 

primary abstraction in studying concurrency). 

 

A natural question to ask at this point is: what entities in the world can be viewed 

as agents? This question cannot be answered without making reference to a particular 

context, and more importantly it can be answered only with reference to the state of 

mind of some observer. Agency is shaped by the subjective requirements, private 

interests and previous experience of the external observer. A change in the value of an 

observable can arise in a wide variety of ways. 

 

In our informal interaction with the world, there is no single characterisation of 

the agency concept. In this respect, commonsense agency differs in nature from the 

two notions of agency widely accepted in the agent-oriented research community 

[Woo95]. In the strong notion of agency, an agent should be explicitly defined in 

terms of cognitive concepts such as beliefs, desires and intentions. In the weak notion 

of agency, an agent should be defined in terms of the observable properties that it 

exhibits, such as autonomy, reactivity, pro-activity and social ability. Both notions of 

agency try to formalise the agency concept and reduce it to a set of universal definable 

properties. They are arguably both inappropriate for the construal of agency in the 

context of commonsense concurrency.  

 

It is difficult to discriminate between one entity as an agent and another. In fact, 

even a primitive observable can be an agent in a broad sense (e.g. “Ouch! This 

wooden spike is hurting me!”). Commonsense agency has more in common with what 

Lind calls the very weak notion of agency where indeed anything can be an agent 

[Lin00]. In the context of system design, Lind explains that:  
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“…the conceptual integrity that is achieved by viewing every 

intentional entity – be it as simple as it may – in the system as an agent 

leads to a much clearer system design and it circumvents the problem 

to decide whether a particular entity is an agent or not.” [Lin00] 

 

This quotation highlights the pragmatic advantage of adopting the very weak 

notion of agency. But the conceptual advantage of avoiding a prescriptive notion of 

agency is even more important – if we make a conscious effort to identify ‘sources of 

state change’ as we experience them in our everyday life, we find that they suggest 

three quite different views of agency: 

 

 Primitive agency: agents as associations of observables. When considering 

the sources of state change, we commonly identify particular groups of 

observables as constituting a single agent. One significant characteristic 

that guides such grouping of observables is ‘existence dependency’ – sets of 

observables are observed to be present or absent at the same times, and so 

‘act as one’. Even if we have no direct experience of how such association 

of observables can effect state change, their presence or absence alone 

typically influences the perceptions of the observer. This leads us to regard 

such associations as agents in so far as they can potentially be the cause, cue 

or trigger for some action on the part of another agent. By this criterion, 

every observable is an agent and so is the external observer. 

 

 Explicit agency: agents as the perceived sources of open-ended state change. 

A primitive agent can be viewed as an explicit agent when empirical 

evidence leads us to attribute state changes to it. Identifying explicit agency 

is typically associated with growing familiarity with a particular context for 

observation on the part of the observer, and with a degree of specialisation 

of observation towards a specific focus of interest or goal. The attribution of 

state change does not normally entail assumptions concerning the 

circumstances in which it occurs or what stimulus might be responsible. 

Such issues will typically be the subject of ongoing experiment. 

 

 Circumscribed agency: agents as actors with circumscribed behaviour. In 

some circumstances, the attribution of agency and the context for 

interaction can be so precisely identified or prescribed by the observer that 

the agent can be interpreted as acting like the actors in a play or the 

components of a system. Identifying circumscribed agency is generally 
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associated with a very high degree of specialisation of observational context 

that involves strong presumptions and discretionary constraints concerning 

acceptable interaction on the part of the observer. Like real world actors in a 

play, circumscribed agents are in significant respects no longer autonomous 

in the way that explicit agents can be. They are ‘virtual’ agents in the 

closed-world, where the context of observation is so circumscribed that (as 

far as the observer’s specific viewpoint is concerned) nothing new can be 

learnt from further study of the phenomenon that is the subject of interest.   

 

As we understand phenomena in the world, our view of agency has a tendency to 

progress from the primitive through the explicit to the circumscribed. EM provides a 

framework to accommodate all three views and is particularly concerned with explicit 

agency, which is somewhere between the primitive view, where the agency is almost 

vacuous, and the circumscriptive view where it is very tightly constrained.  

 

2.1.4 Dependency 
 

Dependencies are patterns of stimulus-response between observables with some 

degree of persistency. Identifying dependencies among observables also plays a key 

role in understanding phenomena. To identify dependencies, the observer needs to 

have a perception of state-change and identity (e.g. to see what moves), combined 

with the ability to remember and so to have an expectation (e.g. to predict what will 

move), and to correlate the action with the state-change (e.g. to know what causes the 

move). Typically, such identification is associated with a prolonged period of 

observation and/or interaction with the phenomena that may be either deliberate or 

accidental. Activities that lead to the identification of dependencies by the observer of 

a phenomenon can be categorised as follows: 

 

 Pure observation – The observer either has no way to, or intentionally does not, 

influence the phenomena. For example, cosmology is entirely founded on pure 

observation of a system over which we apparently can exercise no direct 

influence. 

 

 Direct interaction – In some cases, direct and directed intervention is possible. 

The observer can interact with the phenomena in the role of experimenter. 

 

 Off-line experimentation – The observer may be able to carry out ‘off-line’ 

experiments to test particular hypotheses about stimulus-response patterns 
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without directly interacting with the phenomena.  

 

In all cases, dependencies originate from past experience and are confirmed by 

the present observation and/or interaction. The purpose of identifying dependencies is 

to inform future expectations of events associated with the phenomena. In all three 

activities, the capacity of the observer to be surprised by responses is particularly 

important. Surprises typically reveal subtleties of phenomena that require further 

investigation and may eventually lead to the discovery of new observables, agents and 

dependencies. In this respect, being able to recognise explicit agency is significant.      

 

2.2   The Definitive Modelling Framework (DMF) 

 

In this section, we introduce the Definitive Modelling Framework (DMF). The DMF 

is a framework for building artefacts that embodies understanding of phenomena in 

terms of commonsense notions of concurrency, observation, agency and dependency. 

It is a ‘modelling’ framework because it is primarily associated with building artefacts; 

it is ‘definitive’ because the modelling process involves exploring definitions that 

form an important part of an artefact. The term ‘Definitive Modelling Framework’ 

rather than ‘Empirical Modelling Framework’ is adopted on the basis that there are 

arguably modelling activities that involve embodying observation, agency and 

dependency in artefacts that do not explicitly use the computer-based representations 

to be described below. The main aim of the DMF is to assist the cognitive process of 

understanding phenomena. The introduction of the DMF serves to consolidate EM 

concepts developed in the past 20 years or so that include the Abstract Definitive 

Machine (ADM) [Sla90], an EM environment for concurrent engineering [Adz94a] 

and Interactive Situation Models (ISMs) [Sun99a]. 

 

2.2.1 The representation of observables, dependencies and 
agents 

 

In the DMF, observables and dependencies can be represented as definitions. A typical 

definition takes the form: 

 

y is f(x1,x2, … , xn) 

 

where y, x1, x2, … , xn are definitive variables (or variables for short), is is a separator 

and f is a formula. A definition is divided into two parts separated by the is separator, 
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viz. its left-hand-side (LHS) and its right-hand-side (RHS). The LHS of a definition 

typically contains only one variable (y) whose value is determined by the formula on 

the RHS. The formula contains algebraic operators and functions that reference a set 

of variables (and possibly some constants) as operands and is used to calculate the 

current value of the LHS variable (y). The purpose of the formula is similar to that of 

the formulae in the cells of a spreadsheet.  

 

A definition is a representation of an indivisible stimulus-response pattern (or a 

dependency) between observables. Observables are represented by variables. The 

current status of observables is represented by the current values of variables. The 

maintenance of the stimulus-response pattern is specified by the formula – ‘stimulus’ 

is associated with any change of value in the variables referred at the RHS; ‘response’ 

is associated with an update to the value of the variable at the LHS. The term 

‘indivisible’ is used to convey the idea that the maintenance of the relationship 

established by the stimulus-response pattern permits no external interruption. 

 

In the DMF, a set of definitions provides the fundamental representation of state. 

The primary role for such a set of definitions is similar to that of the set of definitions 

underlying a spreadsheet: it supplies values and dependencies that correspond closely 

to the observables and dependencies in the situation it represents. A set of definitions 

can also be used to model behaviours. For this purpose, subsets of definitions are 

grouped into entities that correspond to primitive agents in the environment. The 

current state of the environment is determined by the primitive agents that are present 

typically together with generic persistent observables such as time and gravity; in the 

DMF, a set of definitions that represents state accordingly comprises groups of 

definitions within an entity that come and go together (in view of their existence 

dependency), together with isolated definitions that are typically persistent. 

 

With this model of state, the effect of all kinds of agent actions can be expressed 

in the DMF. A typical action takes the form: 

 

g(x1, x2, … ,xn)  ( variable redefinition | entity creation | entity deletion )* 

 

where x1, x2, … ,xn are variables, g is a guard, and the action consists of a sequence of 

operations to redefine variables, and create or delete of entities. The guard is a logical 

expression that references a set of variables (and possibly some constants) as 

operands. An action is a representation of a latent interaction or experimental action 

associated with some agent. When the guard evaluates to true, the agent who owns 
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this action has the privilege to perform the sequence of redefinitions, creations and 

deletions specified at the right-hand-side of the action. Note that the fact that the agent 

has the privilege to act does not necessarily mean that the agent has to act.  

 

Definitions and actions equip the DMF with the mechanisms needed to support 

our commonsense construal of phenomena. Their expressive power stems from the 

intelligent engagement of the human observer in their interpretation and execution. 

The appropriate way to represent an explicit agent in the DMF is by an entity that 

comprises a group of definitions together with an associated group of latent actions. 

By default, all action is conceived as performed by the human observer. Only the 

human observer can make due allowance for provisional and imperfect knowledge of 

the conditions governing action. Only the human observer can play the part of a 

super-agent, contributing actions that are not preconceived such as representing 

experimental interactions and random events.  

 

When using the DMF for modelling and simulation, it is not practical or 

appropriate for the observer to be responsible for all actions. Some actions are 

typically executed automatically as in a machine. The extent to which automatic 

execution is meaningful depends upon the extent to which the activities of explicit 

agents can be circumscribed. In general construal and simulation of concurrent 

behaviour within the DMF, both human and machine execution are represented. What 

is more, whether such behaviour is to be understood as design, use or testing activity 

is a matter of interpretation. 

 

Figure 2.1 depicts the dual perspective on agency in the DMF. From the human 

perspective, an agent can be viewed in terms of the observables it owns, identified 

dependencies among the observables (i.e. indivisible stimulus-response patterns), and 

latent interactions and experiments. From the machine perspective, an agent is 

represented by an entity that consists of a group of definitions, possibly together with 

a group of guarded actions. 
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Figure 2.1: The dual perspective on agency 

 

In the DMF, any agent can be described from both the human and the machine 

perspective whenever they are appropriate. It is important for the external observer to 

keep both perspectives in mind when analysing agencies. When we consider the 

absolute discretion that is involved in human execution of actions, the significance of 

the definitions and actions attached to an agent in the machine perspective is called 

into question. Human execution can discount these definitions and actions entirely. 

Viewed in this light, the purpose of representing agency from the machine perspective 

is to provide a representation of what is already known but provisional; in contrast, the 

human perspective encourages exploration of what is still unknown. On this basis, the 

duality facilitates the representation of provisional knowledge about the context in 

which agent actions are performed and the acquisition of knowledge of a similar 

nature that is still unknown.  

 

The motivation for the dual perspective is similar to that explained by McCarthy 

in his discussion of “ascribing mental qualities to machines” [Mcc79]. McCarthy 

points out that it is sometimes useful to ascribe certain mental qualities like beliefs, 

intentions and wants to a machine. In the context of understanding the behaviour of a 

program, he describes the reason for ascribing mental qualities as epistemological:  

 

“… ascribing beliefs is needed to adapt to limitations on our ability to 

acquire knowledge, use it for prediction, and establish 

generalizations in terms of the elementary structure of the program.” 
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[Mcc79] 

 

Our concern is to understand phenomena in general rather than to understand the 

behaviour of specific programs. However, in the DMF, the rationale for being able to 

treat any agent as human-like is similar to McCarthy’s reason for ascribing mental 

qualities to machines. 

 

Figure 2.2 shows a representation of multiple agents identified in the process of 

understanding a phenomenon. We can see that there is a circumscribed agent whose 

behaviour has been well understood; there is an explicit agent that has yet to be – and 

may never be – circumscribed; there are primitive agents associated with sets of 

variables with integrity, and with definitions outside the boundaries of all agents. In 

the picture, a solid outline around an agent means that the boundary of the agent is 

fixed; a dotted outline means that the boundary of the agent is subject to further 

revision. This convention will be used to depict the various kinds of agency 

throughout the discussion of the DMF in this chapter. 

 

 
Figure 2.2: A representation of multiple agents 

 

The significant features of the representation of multiple agents within the DMF 

can be summarised as follows: 

 

 Concurrency – There are two main types of concurrency. Firstly, different 

agents can perform actions concurrently. Secondly, the dependencies 

associated with definitions are maintained concurrently. 

  

 Indivisible stimulus-response patterns – Definitions represent dependencies 

among observables whose evaluations permit no external interruption.   

 

 Dual perspective on agency – Any agent can be viewed as a human-like 

agent.  
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 Openness of privileges – The representation imposes no constraint on how 

the observables/variables owned by an agent are referenced by others.  

 

In the next subsection, we shall discuss how modelling activities of EM can be 

performed using the DMF. 

 

2.2.2 The modelling activities 
 

The representation of multiple agents described above serves as an artefact that 

embodies our understanding of the phenomenon. To understand the modelling 

activities under the DMF, we need to conceptually distinguish between four entities: 

the modeller, the phenomenon, the referent and the artefact. Figure 2.3 depicts the 

relationships between them. The artefact embodies general experience of the 

phenomenon. The referent is the aspect of the phenomenon that is of particular 

interest to the modeller, and in general evolves to reflect the specialised ways of 

interacting with and interpreting interaction with the artefact that develop in the 

modelling process. The modeller as the external observer is the archetypal agent who 

makes the fundamental and essential semantic link between the referent and the 

understanding of it (as embodied in the artefact he builds). Only the external observer 

has the capacity to be surprised by responses from the referent or the artefact. Surprise 

can lead to a shift in perspective that prompts a point of departure from what has been 

previously explored, and leads to a deeper understanding of the referent and an 

enrichment of the artefact. We shall discuss the importance of using an artefact, 

typically computer-based, to represent our understanding in more detail in the next 

subsection.  

 

 
Figure 2.3: Relationships between the modeller, the phenomenon, the referent and the artefact 
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There are two important and interrelated modelling activities namely 

agentification and role-playing. Agentification involves identifying agents in the 

referent and analysing the observables to which they may be construed to respond. 

Figure 2.4 depicts the typical pattern of progress in the agentification activity over 

time. Initially, only a few observables and dependencies have been identified by the 

modeller. The view of agents is at its most primitive – all observables can be 

interpreted as primitive agents. As the modeller obtains more understanding about the 

referent, some explicit agents are identified as being responsible for state-changes to 

some observables. An element of shift in observational perspective on the part of the 

modeller is also involved here. Gradually, deeper understanding shapes some 

circumscribed agents whose behaviour is so predictable that they cannot surprise the 

modeller at all. This is a creative and experimental process. There is no universal 

generic procedure to follow through which successful representation or understanding 

is guaranteed. Success depends upon being able to correlate state-based observations 

in order to identify stimulus-response patterns by interacting and experimenting with 

the artefact as well as the referent. 

 

 

Figure 2.4: Agentification as progression from primitive to explicit and circumscribed views of 

agency 

 

The concept of role-playing activity is a feature of EM that has been discussed by 

several previous researchers (cf. [Sun99a, Run02]). This involves a conceptual 

distinction between different roles that the modeller can play. The modeller can be 

considered as a super-agent who can play the roles of the external observer, actor and 

director described as follows: 

 

 The modeller as the external observer – The modeller interprets what is going on 

in the artefact with reference to his observation and perception about the 



2 Empirical Modelling 

26 

phenomenon. There are many factors that can affect the modeller’s interpretation 

which include his past experience, future expectation, knowledge of current 

interactions, subjective judgement, and even his physical ability. Observations 

and their interpretation contribute to a deeper understanding of behaviour of both 

the artefact and the referent. 

 

 The modeller as an actor – The modeller construes a situation from the 

perspective of an internal agent who is directly interacting with other agents. 

When the modeller acts in the role of an actor, she is not only able to see things 

from the perspective of the actor, but is also in a position to reflect upon the 

actor’s role in its overall context. 

 

 The modeller as a director – As a director, the modeller directs the internal agents 

in the execution of their actions. This activity is similar to directing a play or 

simulating the execution of a concurrent program. In this case, the modeller can 

experiment by executing, modifying and interrupting existing actions, or by 

introducing new actions. 

 

Figure 2.3 depicts the relationships between the modeller, the phenomenon, the 

referent and the artefact in an abstract and simplistic way. The figure is helpful to the 

reader in understanding their significance in the modelling activities, but does not 

always convey the full nature of the phenomena and the referents that arise in practice. 

When we consider the modelling context for system development in more detail, we 

can distinguish three scenarios (see Figure 2.5):  

 

 Scenario 1: the artefact represents a fixed referent – In this scenario, the modeller 

constructs the artefact by observing a specific aspect of the phenomenon as its 

given fixed referent. Interactions with the phenomenon are primarily aimed at 

obtaining more understanding of the referent rather than changing it. The key 

activities involved in this scenario are analysis and simulation of an existing 

phenomenon that is at some level well-understood, as for example, in creating a 

football game simulation [Tur00]). 

 

 Scenario 2: the artefact and its referent co-evolve – The aspects of the 

phenomenon that are of interest change as the artefact is developed. Thus, 

changing the artefact affects the referent. The modeller is not only observing the 

phenomenon but also shaping the referent. The key activity involved is the 

design of the artefact that contributes to the discovery of new aspects of the 
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phenomenon (cf. [Loo98]), as for example, in the design of a digital watch 

[Roe01]. 

 

 Scenario 3: the phenomenon comprises model-building activities – The 

modelling involves treating modelling activities performed by some other 

modellers from a higher viewpoint. The meta-modeller can be thought of as a 

coordinator whose purpose is to negotiate meanings with other modellers within 

the phenomenon. The referent (not depicted in Figure 2.5) is associated with 

those aspects of the interaction between other modellers that concern her in the 

role of coordinator. These might include issues such as requirements and 

deadlines imposed upon modellers, work patterns for their collaboration and key 

characteristics of their artefacts. 

 

 
Figure 2.5: Scenarios of relationships between the phenomenon, modeller and artefact 

 

Scenario 3 conveys the idea of collaborative definitive modelling in the DMF 

that requires some further elaboration. In the context of applying EM to concurrent 

engineering, Adzhiev et al. [Adz94a] introduce the concept of a hierarchy of designer 

agents who collaborate with each other in designing engineering products. This 
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concept can be generalised or reinterpreted to apply to all kinds of definitive 

modelling that involve a team of human-like agents, i.e. a team of modellers. 

Collaborative definitive modelling involves developing interpretations and 

negotiating and sharing understanding of a referent among a team of modellers. The 

current status of the consensus can be understood with reference to a hierarchy of 

modellers, as shown in Figure 2.6 below.  

 

 

Figure 2.6: A hierarchy of modellers in collaborative definitive modelling 

 

The hierarchy of modellers is actually a generalisation of Scenario 3 in Figure 

2.5. Each modeller internal to the hierarchy has two roles. As a coordinator, a 

modeller supplies a frame for the work of other modellers and resolves conflicts. As a 

worker, a modeller receives requirements from and is answerable to a higher authority, 

that is, act as a modeller at a higher level of the hierarchy. At the upper-levels of the 

hierarchy, the modelling activity has a managerial aspect that involves framing the 

design objectives and patterns of interaction between the modellers at the next lower 

levels. At the lowest level of the hierarchy, the modelling activity focuses more on 

working on specialised experiment and understanding that impacts on specific aspects 

of the whole consensus.  

 

The consensus in collaborative definitive modelling is evolving all the time 

according to emerging understanding of the referent. Each modeller builds an artefact 

to help his understanding of certain aspects of the phenomenon that contributes to the 

whole consensus. This interaction of minds is in the same spirit as Minsky’s agent 

hierarchy in his Society of Mind [Min88]. The artefact also serves as a medium for 

sharing knowledge. This hierarchical framework for collaborative definitive 

modelling expresses the potential conceptual integrity of the intermediate 

understanding of the referent, which has a potential for consensus that encompasses 
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every modeller in the team. This issue will be further discussed in chapter 5. 

 

We summarise the significant features of the modelling activities in the DMF as 

follows: 

 

 State-based observation – It is important for the modeller to be able to 

directly observe and experience states of the referent and the artefact so that 

he can correlate them and identify patterns among them. 

 

 Evolutionary construal – Agentification is an evolutionary learning process 

typically starting from identifying primitive agency to shaping explicit 

agency and eventually but not necessarily proceeding to specifying 

circumscribed agency. 

 

 Role-playing – The modeller can play several different roles (external 

observer, actor, director and coordinator) to effect the shifts of perspective 

necessary to acquire deeper understanding. 

 

 Subjectivity – Modelling as a personal affair is represented in the DMF. 

Subjective interpretations and interactions are central to the concerns of 

understanding phenomena.  

 

 Collaboration – Modelling as a collaborative affair is represented in the 

DMF. The DMF has a potential to facilitate the collaborative creation and 

understanding of complex phenomena that involves a team of modellers 

(see chapter 3 and 5 for examples). 

 

2.2.3 Interactive Situation Models (ISMs) 
 

This subsection discusses the importance of the interactive nature of the artefact in the 

DMF. From the discussion in the previous subsection, we know that the artefact in the 

DMF plays several important roles: 

 

 in representing the modeller’s personal understanding (in terms of 

definitions, actions and agents); 

 in the activities involved in acquiring new understanding (agentification 

and role-playing); 

 in the animation of behaviour (through potentially automatable dependency 
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maintenance and action triggering); 

 in communication between modellers (collaborative definitive modelling). 

 

These roles indicate that the artefact in the DMF is more than an abstract 

representation such as a formal specification might provide. The artefact actually 

facilitates the whole cognitive process of understanding and creating phenomena. To 

construct an artefact that can meet the demands of all the above roles, we need to use 

the computer. Indeed, EM is particularly concerned with using the computer as an 

instrument [Bey01a] that mediates between a phenomenon as conceived by the 

modeller and the phenomenon as perceived.  

 

To emphasise that we are in fact concerned with a very special kind of artefact, 

we refer to the artefact built by using the DMF as an Interactive Situation Model 

(ISM), a term introduced by Sun [Sun99a]. An ISM is a computer-based artefact 

constructed through situated modelling activities. The use of term ‘situated’ reflects 

the significance of both the social and cultural context (cf. [Suc87]), and the specific 

physical environment in which the modelling is conceived [Bey98]. Unlike most 

computer models, which have a fixed interface and preconceived use, an ISM is 

‘interactive’ in the sense that it is open to elaboration and unconstrained exploratory 

interaction. In something like the way that clay is suitable for modelling physical 

shapes, an ISM is suitable for modelling our conceptual understandings. By 

embodying patterns that reflect commonsense concepts of concurrency, observation, 

agency and dependency in an ISM, the modeller aims to establish an intimate 

relationship between the ISM and his or her evolving knowledge about the referent. 

 

Building ISMs is closely related to the way in which experimental scientists use 

artefacts as a means of devising construals through observation and experiment. The 

term ‘construal’ was used by Gooding to refer to the concrete artefacts that embody 

insight into experimental interactions such as are described in [Goo90]. In particular, 

Gooding describes how Faraday, in developing his understanding of electromagnetic 

phenomena, constructed artefacts to represent observables such as electrical currents 

and magnetic fields, and dependencies such as the relationships between the polarity 

of a magnetic field and the direction of current. The importance of physical artefacts 

in supporting understanding is also endorsed by Feynman’s view of what it means to 

be a physicist: 

 

“a physical understanding is a completely unmathematical, imprecise, 

and inexact thing, but absolutely necessary for a physicist” [Fey64]. 
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In its essence, an ISM resembles what Gooding characterises as a construal. There is 

ambiguity concerning the extent to which a construal should be identified with a 

physical object or with a mental model. As Gooding observes in [Goo01] this 

ambiguity presumes a philosophical stance that is at odds with the traditional dualist 

separation between the mind and the physical world.  

 

Throughout this thesis, we shall make no distinction between the terms ‘ISM’, 

‘EM model’ and ‘artefact’. They are synonyms that describe a model built by using 

the DMF but emphasise different aspects of the nature of the model.  

 

2.3   EM in practice 

 

This section describes two important techniques developed to support EM in practice. 

Firstly, we shall introduce an implementation of the DMF that is commonly used in 

EM, namely ‘modelling with definitive scripts’. Secondly, we shall introduce a 

technique that has the potential to document the understanding gained from modelling 

activities, namely the LSD notation. 

 

2.3.1 Definitive scripts 
 

The main EM tool currently used for supporting modelling activities under the DMF 

is TkEden. As explained in more detail later in this subsection, to construct an ISM, 

the modeller can specify definitions by using some definitive notations to form a 

script of definitions, or definitive script. TkEden interprets the definitive script that is 

input by the modeller and introduces the definitions into the ISM. TkEden also 

automatically maintains the dependencies among definitions by keeping the value of 

every definitive variable up-to-date. This subsection only gives the brief explanation 

of constructing an ISM using definitive scripts that is needed for the reader to 

understand the illustrative models introduced throughout this thesis. For an extended 

treatise on modelling with definitive scripts, the reader can refer to [Run02]. 

 

The core of the TkEden interpreter is a simple interpreter, called TtyEden, that 

was originally developed by Y. W. Yung in his final year undergraduate project in 

1987 [Yun90]. TtyEden has a text-based command line interface that supports 

interactive model construction in a single definitive notation called Eden (a general 

purpose language for definitive modelling). The tool was later extended by Y. P. Yung 
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in his study of the ‘definitive programming paradigm’ [Yun93]. In addition to Eden, Y. 

P. Yung integrated two other definitive notations into the tool: Donald (for 2D 

line-drawing) and Scout (for screen display). Since the tool makes use of the Tcl/Tk 

library for implementing windowing and graphical drawing, it is called TkEden. 

Subsequently, TkEden has been maintained and enhanced by several people in the 

EM research group, most recently and extensively by Ashley Ward who has 

developed and maintained an open-source distribution [Ope02]. Enhancements 

include implementing a prototype distributed version of TkEden (namely DtkEden 

developed by Sun [Sun99a]) and introducing other definitive notations (e.g. Sasami 

for 3D graphics and Eddi for database modelling [EMWeb]). 

 

Figure 2.7 shows a screenshot of the TkEden interface. It displays four windows, 

namely the ‘input window’, the ‘output window’, the ‘history window’ and a 

‘definition window’. The ‘input window’ is where the modeller can redefine, delete 

and create definitions by writing definitive scripts. The ‘history window’ records the 

sequence of commands that have been input by the modeller. The ‘definition window’ 

shows some of the definitions that reside in the ISM: other windows to display 

complementary definitions can be accessed via the View option in the ‘input 

window’. 

 

 

Figure 2.7: A screenshot of the TkEden interface 

 

A definitive script may contain definitions in several different definitive 

notations. The term ‘definitive notation’ was first introduced by Beynon [Bey85] to 
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refer to a simple language that can be used to specify definitions in formulating a 

definitive script. The basic semantics of a definitive notation is determined by an 

underlying algebra of data types and operators but the syntax of definitions can take a 

variety of forms. For example, a definition to establish the following dependency: 

 

“the value of the variable A is the sum of the values of the variables B and C” 

 

can be formulated in TkEden in three different ways: 

 
 A is B + C; 
 A = B + C 
 A = B + C; 

 

A definitive notation can be specifically designed for a particular application 

domain to facilitate ease of use by using domain-specific terms and syntactic 

constructs. For the most part, the models illustrated in this thesis are constructed by 

using Eden, Donald and Scout in TkEden. The three illustrative definitions above are 

in Eden, Donald and Scout respectively. Some similarity with these notations is 

helpful in understanding the models introduced later in this thesis. 

 

Eden 

Eden (the Evaluator for DEfinitive Notations) was first designed and implemented by 

Y. W. Yung [Yun88]. The Eden notation is a general purpose language that 

implements the DMF concepts of definitions and actions. The Eden syntax and data 

types are similar to those in the C language. The basic programming constructs 

include for, while and if. The basic data types include integer, float, 

string and list. In fact, Eden is a ‘hybrid’ programming language that allows 

both definitive modelling and procedural programming to be performed in the same 

environment. The modeller can even specify their own functions that can be used in 

specifying definitions. This makes Eden extremely expressive but, to make most 

effective use of the tool, the modeller has to be conscious of the need to be as faithful 

as possible to the principles of EM in the DMF. 

  

Significant features of Eden are described with illustrative examples as follows: 

 

 syntax for definitions – the sample definitions shown below specify the 

dependencies between three variables. Note that each definition has its LHS and 

RHS separated by the is separator, and each definition is terminated by a 
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semi-colon ‘;’. There is no need to declare a variable before its use. The type of 

a variable is determined by the interpreter automatically. The dependencies 

between variables specified by the definitions are also maintained automatically. 

In this case, if the value of b or c has changed, the value of a will be updated 

according to its formula. 

 

a is b+c; 

b is 10; 

c is 30; 

 

 difference between a variable assignment and a definition – the two statements 

below are semantically different. The first statement specifies a definition but the 

second statement specifies an assignment. The first statement specifies that the 

value of a is always dependent on the sum of values of b and c so that a gets 

updated every time the value of b or c has changed). The second statement 

specifies that, unless and until it is reassigned, the value of a is equal to the 

current value of the sum of b and c at the point of assignment. In this case, the 

calculation is one-off, so that subsequent changes of b and c do not have any 

effect on the value of a. We refer to a as a definitive variable in the first 

statement and a procedural variable in the second. 

 

a is b+c; 

a = b+c; 

 

 specifying a function – an example of the definition and use of a function is given 

below. This function determines the greater of two numbers. After introducing 

this function into the model, the modeller can use it anywhere on the RHS of a 

definition, as, for example, in the definition: “a is greater(b, c);”. 

 

func greater { 

   para x, y; 

   if (x>y) result = x; 

   else result = y; 

   return result; 

} 

 

 specifying an action – an example of an action is given below. An action in Eden 

is a ‘triggered procedure’. In this case, the action testaction redefines a 
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whenever the variable m changes. The current definition of a depends on the 

value of m. 

 

proc testaction: m { 

   if (m>0) a is b+c; 

   else a is b*c; 

} 

 

 basic means for querying a definition – examples of two different types of query 

are given below. The first statement asks for the current definition of variable x. 

The second statement returns the current value of x. In both cases, the output is 

directed to the ‘output window’. 

 

?x; 

writeln(x); 

 

Donald 

Donald is a definitive notation for 2D line-drawing. Its design was first conceived by 

David Angier in his final year undergraduate project, and later extended by Beynon et 

al. [Bey86b]. Donald supports a variety of data types including integer, real, 

char, point, line, shape, arc, circle, ellipse, rectangle and label. 

Drawings are grouped into viewports. Each viewport is like a drawing board 

with independent coordinates. Variables in Donald need to be declared before their 

use. There is no procedural assignment in Donald. In Donald, the equals sign ‘=’ 

denotes a definition, rather than a procedural assignment as  in Eden. Each statement 

in Donald is terminated by a carriage-return. For example, Listing 2.1 below shows 

sample Donald definitions for specifying a circle within a square on the screen (see 

Figure 2.8 for the result in a screen capture). 
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1. %donald 
 
2. viewport testDrawing 
 
3. rectangle theRectangle 
4. circle theCircle 
5. int x1, y1, x2, y2, centreX, centreY, radius 
 
6. x1 = 100 
7. y1 = 700 
8. x2 = 300 
9. y2 = 900 
10. centreX = x1 + (x2 - x1) div 2 
11. centreY = y1 + (y2 - y1) div 2 
12. radius = (x2 - x1) div 2 
 
13. theRectangle = rectangle({x1,y1},{x2,y2}) 
14. theCircle = circle ({centreX,centreY},radius) 

 

Listing 2.1: Definitions for drawing a circle within a square in Donald 

 

 

Figure 2.8: Screen capture of a sample Donald drawing 

 

Scout 

 

Scout (SCreen layOUT) is a definitive notation designed for specifying the contents 

and layout of windows on screen. It was introduced and implemented by Y. P. Yung in 

1992 [Yun92]. The basic data types include integer, string, point, box, 

frame, window and display. In a Scout script, as in Donald, variables need to be 

declared before use, and the equals sign ‘=’ denotes a definition. Each statement is 

terminated by a semi-colon ‘;’. Listing 2.2 shows sample Scout definitions that 

specify a window containing the string “move me!” that can be moved about the 

screen by a drag-and-drop mouse operation. 
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1. %scout 
 
2. display d; 
3. window w; 
4. integer x,y; 
 
5. w={ 
6.   frame: ([{x,y},{x+60,y+40}]) 
7.   type: TEXT 
8.   string: "move me!" 
9.   sensitive: ON 
10.   bgcolor: "blue" 
11.   fgcolor: "white" 
12. }; 
 
13. d=<w>; 
14. screen= d; 

 

15. %eden 
 
16. proc dragdrop: w_mouse_1{ 
 
17. /* button pressing */ 
18. if(w_mouse_1[2] == 4){ 
19.    logicalx=w_mouse_1[4]; 
20.    logicaly=w_mouse_1[5]; 
21. } 

 
22. /* button released */ 
23. if(w_mouse_1[2] == 5){ 
24.    x=x+w_mouse_1[4]-logicalx; 
25.    y=y+w_mouse_1[5]-logicaly; 
26. } 
 
27. } 

 

Listing 2.2: Definitions for specifying a movable window in Scout with a supporting Eden action 

 

Lines 2-4 contain some Scout variable declarations. Lines 5-12 define the 

window. Lines 13-14 put the window on the screen. Lines 15-27 is an Eden action that 

recalculates the coordinates of the window whenever the modeller does a 

drag-and-drop mouse operation. The action is triggered by the variable w_mouse_1 

(line 16). Because the window w is defined to be sensitive (line 9), redefinitions of this 

variable are generated by mouse events. The variable w_mouse_1 records the 

current status of the mouse and cursor position using an Eden list. A screen capture of 

the result of inputting the definitions and action in Listing 2.2 is shown in Figure 2.9 

below. 

 

 

Figure 2.9: Screen capture to illustrate the use of Scout 

 

The way in which Eden, Donald and Scout are integrated in TkEden is depicted in 

Figure 2.10. The core of TkEden is the Eden interpreter that is responsible for 

automatic dependency maintenance and for generating output. The Donald and Scout 

scripts specified by the modeller are translated to Eden script and actions to be 
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interpreted by the Eden interpreter. Other definitive notations can also be integrated 

into TkEden in a similar way. This is in keeping with Eden’s primary role as an 

evaluator for definitive notations. 

 

 
Figure 2.10: The integration between Eden, Donald and Scout in TkEden 

 

TkEden is the principal tool for EM, and has now been used by several hundred 

students at Warwick University. A few hundred models have been built by using 

TkEden and its variants and many of these are available to download from the web 

[EMWeb]. Most of them include descriptions and tutorials that help users to learn 

about EM. Throughout this thesis, we shall use TkEden to build illustrative examples. 

In addition, in chapter 7, we evaluate TkEden as a tool to support modelling activities 

in the DMF. The prospects for introducing new EM tools will also be discussed in 

both chapters 7 and 8. 

 

2.3.2 The Language for Specification and Description (LSD) 
 

The LSD (Language for Specification and Description) notation was originally 

developed by Beynon in collaboration with Norris of British Telecom in 1986 to 

support a special form of agent-oriented analysis for concurrent systems [Bey86a, 

Bey88c]. Subsequently, Slade [Sla90] developed the design of LSD and investigated 

the scope for using LSD to generate executable models. The key activities that are 

performed in an LSD analysis are identifying agents and classifying the observables 

that are deemed to govern their interaction.  

 

An LSD account of an agent classifies the observables associated with it into five 

categories, namely state, oracle, handle, derivate and protocol. Their meanings are 

briefly explained as follows: 

 



2.3  EM in practice 

39 

 state – contains observables that the agent owns. The existence of these 

observables is dependent on the existence of the agent. 

 oracle – contains observables that the agent may respond to. 

 handle – contains observables that are conditionally under the agent’s 

control. 

 derivate – contains definitions that specify indivisible stimulus-response 

relationship between observables.  

 protocol – contains possible actions that the agent can perform subject to 

certain enabling conditions being met. 

 

For an illustrative example, consider the description of the Vehicle and Driver 

agents from a vehicle cruise control simulation in Listing 2.3 [Bey92a, Adz99]. Note 

that an observable does not necessarily have a single exclusive classification. For 

example, engineStts is both an oracle and a handle for the Driver agent. Also, 

because the same observables can be associated with different agents, an LSD account 

helps to express the subjective views of the agents which are not explicitly modelled 

in an ISM. 

 
agent Vehicle{ 
 
  state: 
    mass     /*total mass of car*/ 
    actSpeed /*actual speed*/ 
    accel    /*acceleration*/ 
    windF    /*wind resistance force*/ 
    brakF    /*braking resistance force*/
    ... 
        
  oracle: 
    brakePos /*brake position*/ 
   
  derivate: 
    windF = windK * sq(actSpeed) 
    brakF = brakK * actSpeed * brakPos   
    accel = (traceF-brakF-windF)/mass 
    actSpeed = integ_wrt_time(accel,0) 
    ... 
} 

agent Driver{ 
 
  oracle: 
    engineStts /*engine settings*/ 
    cruiseStts /*cruise settings*/ 
    ... 
 
  handle: 
    brakePos 
    engineStts 
    cruiseStts 
    ... 
 
  derivate: 
    brakePos = user_input(brakPos_Type) 
 
  protocol: 
    (engineStts == off)-> engineStts = on
    (cruiseStts != off)-> cruiseStts = off
    ... 
} 

Listing 2.3: Fragments of the Vehicle Cruise Control Simulation in LSD notation 

 

There is no prescribed role for LSD analysis within the DMF because in general 

we can perform modelling activities without explicitly thinking about the concepts of 

LSD. However, LSD provides a means to classify observables that can be used in a 

variety of ways in connection with the construction of ISMs. An initial LSD analysis 

has been the basis of several ambitious EM models (such as the five-a-side football 

simulation [Tur00] and the train arrival and departure model [Bey90b]), but modellers 

have the freedom to derive their own ways of analysis according to context. For this 

purpose, the LSD notation can be interpreted and used in three ways: for construal, 
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for description and for specification.  

 

For construal. An LSD analysis can be used to support the activity of constructing an 

ISM. In this context, LSD notation is used to frame an account that expresses the way 

in which the modeller construes the phenomenon of current interest. There are two 

aspects to this construal: the identification of agents as groups of observables 

(‘agentification’), and the exploration of the role that various observables play in 

mediating their interaction, as typically disclosed through projected or actual 

role-playing activity. For example, by thinking about the interaction between the 

driver and the vehicle, we are led to classify brakePos as an oracle observable for 

the Vehicle agent but a handle for the Driver agent. An LSD account of a 

phenomenon helps the modeller to acquire and document evolving understanding of 

the phenomenon that can be provisional, subjective and personal. It typically helps to 

stimulate a rich set of questions concerned with the phenomenon that would be 

difficult to identify without thinking about agents and their access privileges and 

interactions.     

 

 

For description. The LSD notation can be used to provide information about the 

current status of an ISM. For instance, it can be very hard to know how to interact with 

a complex ISM. We can use LSD to document the intended user interactions, or – 

more generally – experimental interactions representative of the most interesting 

scenarios known to the modeller. In this way, an LSD description serves a useful role 

in communication between modellers as a complement to the sharing of an ISM. 

 

For specification. The LSD notation can be used as a specification language to 

circumscribe understandings. However, the LSD notation has no formal operational 

semantics, and an LSD specification cannot be directly or automatically translated 

into an executable model (for more discussion of the issues involved the reader can 

refer to [Bey88a, Bey90a]). To give an operational interpretation to an LSD account 

additional assumptions have to be introduced. 

 

2.4   Summary 

 

In this chapter, we have identified the roots of EM in a commonsense way of 

understanding phenomena. EM is associated with the conception of concurrency as 

experienced in our everyday life in terms of observation, agency and dependency. 
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This philosophy leads to the Definitive Modelling Framework (DMF), which is 

characterised by an interactive style of model building based on a distinctive mode of 

representation and style of modelling activity. The DMF represents agents using 

groups of definitions and actions. Modelling activities in the DMF include 

agentification, role-playing and collaborative definitive modelling. The DMF 

supports an interactive style of model building, in which the use of the computer 

resembles the use of an instrument. We have also introduced the TkEden tool and its 

associated definitive notations that are used in practical EM, and described the role of 

LSD in EM. 
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3 System Development 

 

 

 

 

 

Promising applications for EM concepts have been identified in many research areas. 

These include: software system development [Sun99, Ras01, Maa02], education 

[Bey97, Roe02], business process reengineering [Eva01, Che02], and product design 

[Fis01]. These wide ranging potential applications of EM give some empirical 

evidence of the generality of EM concepts in respect of system development. 

However, there has been no attempt so far to account for this generality explicitly. In 

this chapter, we shall explore the generality of EM concepts and argue that the 

philosophical foundation of EM is domain-independent. In other words, EM concepts 

can be framed and applied to the development of any kind of system.  

 

The structure of this chapter is as follows. In the first section, we shall review 

two of the most important research strands in the literature on system development. 

These strands will be contrasted with the EM perspective on system development 

discussed in later sections. In addition, we shall specify the aims for the application of 

EM to system development. In section 3.2, our discussion will focus on thinking 

about intrinsic properties of systems and their relationship to an EM perspective on 

system development. In section 3.3, we focus on thinking about system development 

activities and discuss how EM takes these activities into account. In section 3.4, we 

conduct a case study of modelling a dishwasher system in both EM and another 

common modelling approach, object-oriented modelling using UML. Our aim is to 

explore the differences between these two styles of system modelling. In section 3.5, 

we review possible ways in which the aims of applying EM to system development 

set out in section 3.1 can be achieved.  

 

3.1   Research on system development 

 

System development is an area of research that has interested researchers from many 

different disciplines including engineering, computer science, business studies and 

philosophy. Despite the general interest, however, there is no agreed definition of 
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‘system’. For example, Jordan [Jor68] lists fifteen different definitions of the term 

‘system’; the most updated version of Oxford English Dictionary Online [Oed02] also 

has more than ten different uses of the word. The main reason for this terminological 

vagueness is that researchers tend to propose their definition of a system as a basis for 

a prescription for how system development should proceed. This chapter makes no 

attempt to seek a compromise from the sea of definitions of the term ‘system’ in the 

existing literature or to introduce a new one. The purpose of this chapter is to 

investigate how EM concepts help system development and relate the general 

principles behind an EM approach to system development to mainstream thinking on 

system development. 

 

By looking at the literature, we can find two principal perspectives from which 

system development is discussed. One is generally based on thinking about the nature 

of systems. The other is based on thinking about activities involved in system 

development. We shall first discuss the main ideas from both these strands of research 

which will be contrasted with the EM perspective on system development to be 

discussed in the rest of this chapter.    

 

 

3.1.1 System development guided by thinking about systems 
 

Much research on approaches to system development has been guided by thinking 

about systems. In philosophical terms, the focus is on the ontology and epistemology 

of systems. Such approaches aim to come up with guidelines about how systems 

should be studied and developed by first discussing what a system is and how the 

properties of a system can be determined. The tension between a reductionist and a 

holistic view of explaining phenomena in the world has had an important impact on 

the ways in which system development is conceived. 

 

In the reductionist view, every phenomenon can in principle be explained 

through an application of a hierarchy of natural laws. Such a reductionist outlook is 

expressed in the following quotation from Dawkins [Daw86]: “an ecosystem is 

explained in terms of organisms whose behaviour is explained in terms of proteins 

and macromolecules and DNA code… until ultimately all behaviour is reduced to The 

Theory of Everything.“. Reductionism presumes that the behaviour of the whole can 

be understood entirely from the properties of its parts.  

 

The counter to a reductionist view sees the whole as more than the sum of its 
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parts. Checkland [Che93] justifies this view with reference to a simple example: 

carbon dioxide cannot be reduced to carbon and oxygen because the properties of 

carbon dioxide such as inter-atomic distance and bond angles are irreducible. The 

rejection of reductionism leads to another way of thinking about systems which Capra 

[Cap96] describes as the holistic view. In the holistic view, a system can only be 

defined as an integrated whole rather than simply as a collection of parts. The 

properties of a system emerge from interaction between parts that cannot be 

understood by just studying every part alone [Che93, Cap96].  

 

In practical system development, there is always a tension between these two 

views – it is not possible to adopt one view and to ignore the other. However, different 

people might put more emphasis on one view rather than the other. The implications 

of putting the emphasis on each view can be contrasted as follows: 

 

Abstract representation vs. embodiment. Putting the emphasis on the reductionist 

view, one tends to believe that knowledge about a system can be reduced to 

knowledge about components and expressed by using abstract representations such as 

formal documents. System development is mainly aimed at identifying and building 

components that constitute the system and creating formal documents that purport to 

completely explain these components and their interaction.  

 

In contrast, when adopting the holistic view, one is more aware of the limitations 

of formal documents as a representation of knowledge about a system. The emphasis 

in holistic approaches to system development has been on providing a management 

structure for synthesising knowledge of the proposed system drawn from a variety of 

different viewpoints. There are two key principles of this approach to system 

development: the documents and artefacts generated in the system design embody 

knowledge about the system that is always open for interpretation; the emergence of 

the system is associated with management processes for organizing interpretations 

based on several viewpoints. 

 

Approaches to system development that are holistic in the sense that they take 

account of many viewpoints on system design may nevertheless adopt representations 

for systems that are reductionist in spirit (e.g. object-oriented representations). Other 

approaches to system development, such as the use of genetic algorithms or neural 

nets, adopt holistic representations. Such approaches can deal effectively with issues 

of system optimization where the interpretation is constrained, but do not appear to be 

so well-suited to creative system development where open human mediated 
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interpretation is required. 

  

Functionality vs. realism. The reductionist view favours the idea that a system can 

be developed by putting together a prescribed set of functionalities. System 

development involves identifying and creating the components that can achieve the 

functionalities necessary to meet the objectives of the system (as e.g. in use-case 

driven system development [Jac92]). In contrast, a holistic view favours the idea that 

a system should emerge from modelling – or constructing artifacts within – the 

projected real world environment for its operation. This is consistent with the 

philosophy behind alternative object-oriented approaches to system development, 

which proceed by modelling real world objects without first prescribing the 

functionalities of the final system.  

 

 

3.1.2 System development guided by thinking about 
development activities 

 

In the system development literature, thinking about systems is complemented by 

thinking about the human activities that are involved in system development, 

especially those activities that relate to the design of a system. Research interests are 

along the lines of domain-independent theory of design, empirical studies of design 

activities, and empirical studies of designers [Log95]. The most relevant research 

within the scope of our discussion is on the comparison of two paradigms for 

describing design activities made by Dorst and Dijkhuis [Dor95]: the rational 

problem solving paradigm and the reflection-in-action paradigm (cf. Table 2 in 

Appendix E). 

 

The rational problem solving paradigm originates in theories of rational problem 

solving advocated by Simon [Sim68]. It sees design as a rational problem solving 

process. According to Simon, problem solving can be seen as a search process over a 

solution space. The problem definition is assumed to be stable, and it determines the 

solution space where a solution lies. In this paradigm, designers are information 

processors in an objective reality. Here we quote some comments about the rational 

problem solving paradigm from Dorst and Dijkhuis [Dor95]: 

 

“Seeing design as a rational problem solving process means staying 

within the logic-positivistic framework of science, taking ‘classical 

sciences’ like physics as the model for a science of design. There is 
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much stress on the rigour of the analysis of design processes, 

‘objective’ observation and direct generalizability of the findings.” 

 

It is of interest to note in passing that other researchers, such as Gooding, would 

take issue with this characterisation of science as rational problem solving (cf. 

subsection 2.2.3). 

 

The reflection-in-action paradigm advocated by Schön [Sch83] takes a radically 

different view of the design process. According to Schön, every design problem is 

unique. The design process is seen as a “reflective conversation with the situation”. 

The designer takes actions according to the current problem situation; these may in 

turn change the situation on which new actions will be based. In this paradigm, the 

designer is essentially constructing his or her reality [Dor95].  

 

The implications of adopting these two different paradigms can be contrasted as 

follows: 

 

Objective observation vs. subjective interpretation. The rational problem solving 

paradigm places much emphasis on objective observation made by the designer 

during the design process. This promotes the idea that system development should be 

done according to well-recognised or standardised methods. In contrast, the 

reflection-in-action paradigm places much emphasis on the subjective interpretation 

of the designer. This promotes the idea that system development can be guided by 

psychological research on cognition. 

 

Generality vs. uniqueness. The rational problem solving paradigm emphasises the 

importance of identifying the commonality of problems, drawing on abstract 

knowledge and theories, and reuse of general principles and solutions. System 

development is typically seen as rationally guided by generic methods. The 

reflection-in-action paradigm emphasises that every design problem is unique. 

System development is a negotiation of meaning depending on the designer’s 

situational experiences. 

 

 

3.1.3 Aims of EM perspective on system development 
 

The EM perspective on system development emphasises capturing the system 

developers’ construal of the emerging system within its environment. EM is not 
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primarily concerned with modelling the system but modelling for the construal. An 

EM model for system development can embody a variety of knowledge and 

experience of the modeller or system developer that cannot otherwise be easily 

expressed using conventional approaches. EM is in the spirit of constructivist 

approaches to system development which emphasise “the mental and social nature of 

the construction of forms of information” [Cro96]. The abstract merits of a 

constructivist approach to system development are typically discussed without 

reference to techniques for implementation (cf. [Ras01]). EM provides commonsense 

concepts and a philosophy of system development that are not only useful for 

academic discussion of system development but are also helpful in practical system 

development. Our aims in adopting an EM approach to system development are: 

 

 To promote flexible system design  

 To create more reliable systems 

 To support the cognitive needs of system development 

 To facilitate collaborative work  

 

We shall explain how we believe EM can help us to achieve these aims at the end of 

this chapter. 

 

In the previous two subsections, we have discussed two ways in which 

researchers have approached the subject of system development, namely by thinking 

about the intrinsic properties of a system and by considering the activities involved in 

system development. These two ways to approach system development are 

respectively associated with two cultures: research into systems theory, and research 

into problem solving and design. Both these cultures have an extensive literature but 

seem to be quite separate.  

 

Modern computer science cannot avoid engaging with both cultures in the 

construction of large-scale computer-based systems. (e.g. object-oriented 

analysis(OOA) and design (OOD) is an example of this kind of engagement). Whilst 

both cultures have quite well-explored foundations, it seems to be hard to put them 

together except in ad hoc ways. The practical consequences are to be seen in the 

difficulties of integrating OOA and OOD, business process modelling and software 

development [Fer01], and project management with product design. 

 

In the next two sections, we shall consider how the EM perspective on system 

development relates to both the research cultures described above (see Figure 3.1). In 
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section 3.2, we shall explain the EM perspective on system development as it relates 

to thinking about systems. The discussion will focus on three intrinsic properties of 

systems: complexity, predictability and unity. In section 3.3, we shall explain the EM 

perspective on system development as it relates to thinking about activities of system 

development. The discussion will be focused on three aspects of the activities: 

cognitive, collaborative and methodological. Explaining the EM perspective from 

these two directions has two purposes. Firstly, it offers a convenient way to contrast it 

with other perspectives discussed in the previous two subsections. Secondly, we 

believe that the picture of EM perspective on system development can only be 

completed by combining complementary discussions from both research directions. 

 

 
Figure 3.1: EM perspective on system development 

 

3.2   From thinking about systems 

 

Research on systems is generally based on thinking about the parts and the whole of a 

system. A reductionist view emphasises the importance of parts – it seeks a 

decomposition of the whole. A holistic view emphasises the importance of 

wholeness – it is concerned with the emergence of the parts from the whole. All 

discussions of systems from a traditional perspective centre upon the notions of the 

parts and the whole.  
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EM takes a radically different view. We believe that it is more fruitful to take a 

more relaxed view of part-whole relationships, and think about systems in terms of 

observation. That is to say, we allow the discussion of observation to shape the way 

we think about systems. Since observation presumes no fixed conception of the part 

and the whole, this naturally leads to a flexible conception of a system boundary. 

Systems are the products of observation. Systems emerge from observation. On this 

basis, we believe that observation is prior to concern for whether a system is best 

conceived in terms of decomposition or emergence.  

 

Anything that we call a system has three intrinsic properties: complexity, 

predictability and unity. These properties are intrinsic because we would not call 

something without all these three properties a system. We shall study each of these in 

terms of observation along with the implications for system development in 

relationship to:  

 

 Revealing hidden assumptions 

 Exposing complexity in what is superficially simple 

 Modelling unreliability 

 Modelling for system development that is situated rather than conducted in 

isolation. 

 

 

3.2.1 Complexity 
 

Complexity is intrinsic to any system as is especially evident where system 

development is concerned. This is because we call something a system only when we 

realise or appreciate its complexity. For example, what we normally call a ‘television’ 

is a ‘television system’ from the viewpoint of the people who developed it or maintain 

it. The complexity of a given system or a target system stems from the many 

viewpoints from which it can be observed. The complexity of a system is reflected in 

the difficulty of making sense of these viewpoints (e.g. in understanding the 

relationship between them). Acknowledging that complexity is intrinsic to a system, 

our real concern in dealing with the complexity of a system in the process of 

development is with how to manage it and not how to reduce it.  

 

In EM, complexity can be managed by gradually building up a series of 

observations and representing them within an EM model. Each observation in the EM 

model reflects what a developer can understand about the system. The observation, 
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dependency and agency that are embodied in an EM model represent the construal of 

the system in view of the developer.  

 

It is this construal that manages the complexity and from which the properties 

and behaviour of the target system eventually emerge. In this respect, EM is more in 

line with a holistic view than a reductionist view. However, in EM, the system 

emerges from observations rather than from parts. The distinction between 

observations and parts is an important one. Studying a system in terms of emergent 

parts promotes the idea that we can distinguish a specific mode of analysis and a 

particular viewpoint on the system. Studying a system in terms of emergent 

observations does not restrict the ways to analyse the system, and therefore 

encourages conscious management of multiple viewpoints in terms of dependency 

and agency. EM encourages the evolutionary development of a system with arbitrary 

complexity from the simplest to the deepest level of understanding. An illustrative 

example, the noughts and crosses (OXO) model, described in [Gar99] shows this 

quality. A screen capture of the model is shown in Figure 3.2 below. The purpose of 

building this model is to study the cognitive processes involved in playing an OXO 

game. The model was built in an incremental way so that the complexity of each layer 

of analysis (termed ‘cognitive layering’) is added as the modeller understands the 

previous layer. The end result is a comprehensive model that metaphorically 

represents many aspects of the cognitive processes in playing the OXO game. 

 

 

Figure 3.2: The OXO model 
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3.2.2 Predictability 
 

Predictability is intrinsic to any system because the essence of systematic behaviour is 

that what happens and can happen is predictable, at least to the extent that the states 

encountered are preconceived to be possible. The notion of system presumes 

phenomena (associated with the components of the system and their interaction) 

together with a system conception on the part of the observer (associated with familiar 

observations and expectations within a preconceived observational frame). By way of 

illustration, the phenomena that underlie a library system embrace the movement of 

books into, out of and around the library and the manipulation of catalogues and card 

indexes. The observational frame1 for such system excludes the height of the chief 

librarian or the number of steps between floors. Systematic behaviour is primarily 

concerned with the movement of books between identifiable abstract locations such 

as ‘at shelf-mark Q32.4’, ‘at reception’ or ‘on loan to borrower Smith’. The familiar 

observations and expectations feature actions such as the transfer of a book from a 

library assistant to a borrower at the checkout. An action such as handing over the 

book after first tearing out some pages on the part of the assistant would be outside the 

scope of preconceived systematic behaviour. 

 

The primary focus in traditional approaches to information system development, 

such as Jacobson’s OOSE [Jac92] is on analysing abstract patterns of interaction that 

prescribe systematic behaviour without explicit regard for the specific phenomena 

that will implement them. Critics of this style of OO development argue that the 

preliminary stages of the system development should involve a more comprehensive 

analysis of the behaviour of the objects that supports a richer model of the 

environment in which the system operates. Whichever approach is adopted, the 

principles used to specify the methods in such objects and to ensure that their 

combined behaviour is predictable involve an abstraction from situation. This 

abstraction is ill-suited to relating the system behaviour as conceived to the 

underlying phenomena involved in realising the system. In EM, a close relationship 

between the current state of an EM model and the situation it represents is maintained 

through conducting ‘what-if’ interactions and recognising patterns of dependency 

between observables that are characteristic of the system environment. 

 

                                                 
1 Observational frame is the context of a system. Put informally, it is the ‘things one would expect’ 

from the system. 
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System predictability is closely related to system reliability. Especially in the 

context of system development, creating reliable behaviour is the central concern. 

Reliability is a measure of the exactness of the match between the intended system 

behaviour and the system’s behaviour in use. There are two views of reliability: 

 

 Reliability as a matter of endurance – In this context, our concern is with 

expected failures. For example, we need to know the extreme values of strength 

and stress for a car’s wheels and test them at the margins. In such testing, the 

focus is on dealing with the failures that would be expected under extreme 

conditions. Reliability of this nature can be quantified by gathering 

measurements and statistics about failures. In this aspect, system reliability can 

be assessed and predicted by mathematical formulation. 

 

 Reliability as a matter of accident – In this context, our concern is with 

unexpected failures. The focus is on exposing the hidden assumptions and 

parameters that lead to unexpected system behaviour. Reliability of this nature 

cannot be quantified. 

 

To ensure system reliability, we need to keep both views in mind. The complaints 

about the predominance of mathematical literature in journals and at conferences in 

the field of system reliability [Oco00] are evidence that research on system reliability 

puts too much emphasis on the first view. In view of the fact that the most disastrous 

system failures are caused by unexpected failures, typically stemming from ignorance 

or neglect of some important observables, we need to put more emphasis on the 

second view. 

 

EM is a particularly suitable paradigm for investigating the second view of 

reliability. When building an EM model, our primary concern is not with modelling 

the abstract observations that characterise the system but the phenomena that sustain 

the system operation in practice. EM leads to a model that is open-ended and 

extensible, and can supply a richer model of the environment in which the system is 

used. In such a model, hidden assumptions and parameters can be explored through 

intervention of the system developer as a super-agent. In principle, an EM model can 

simulate the target system in use and generate situations of failure quickly and 

economically. The reliability of the system can be improved continuously through 

exploring different ways of interacting with the model. 
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3.2.3 Unity  
 

Unity is intrinsic to any system because in order to see a thing as a system we need to 

distinguish it from other parts of the world. Traditionally, this is associated with 

defining the ‘system boundary’, which is usually established at an early stage in 

system development. In that context, the aim is to fix what should be considered to be 

part of the system and its relationship to non-system entities based on developer’s 

knowledge about requirements of the target system. The term ‘system boundary’ 

gives an impression that there is a sharp distinction between system entities and 

non-system entities. This may lead to a premature focus of attention on building what 

lies within the boundary whilst ignoring the most significant concern of how the 

system interacts with the environment.  

 

An EM model for supporting system development does not specify any system 

boundary. Observables in the EM model are always open for interpretation either as 

belonging to the system or to the environment. For this reason, the representation of a 

system in an EM model is very different from that in a traditional system specification. 

In such a system specification, a system is often represented in terms of parts that 

presume that appropriate preconditions will be met in the operational environment. 

With an EM model, the system is represented in terms of observations that presume 

no precondition on the environment other than – possibly – that observables preserve 

their integrity. An EM model serves as a description of the system and the 

environment. Therefore, the unity of a system can always be negotiated by the 

developer at any time. 

 

3.3   From thinking about systems development 

activities 

 

System development is a process that involves a variety of human activities. In this 

section, we shall discuss the EM perspective on system development with reference to 

three important aspects of development activities: cognitive, collaborative and 

methodological aspects. 
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3.3.1 Cognitive aspect 
 

From an EM perspective, one of the most significant elements in system development 

is knowledge creation. Not all the knowledge created in system development 

contributes to ‘the system’. Significant knowledge may relate to scenarios to be 

avoided in the system. The knowledge generated in systems development in EM is 

similar in character to the empirical information gathered by the engineer through 

experiment prior to systems building. The activity of knowledge creation is associated 

with the construction of an artefact to embody experiences of the environment from 

which the system emerges. The process for knowledge creation comprises two 

important activities: 

 

 Emergence of knowledge - This activity begins in the realm of the unknown, as 

epitomised by primitive interactions with state potentially having a subjective 

and private significance for the developer. The medium for exploring the 

unknown is an artefact with which interaction is open and whose interpretation is 

open-ended. An EM model has the quality of such an artefact. It can embody 

experience of interaction with a referent that is possibly but not necessarily 

‘real-world’ (cf. Gooding’s construal [Goo90]). Through interaction with the EM 

model, we can identify persistent features and contexts associated with the 

unknown. Practical skills can be acquired to repeat the observation of these 

persistent features and contexts. By exercising these practical skills, we can 

identify dependencies and postulate independent agencies from which generic 

patterns of interaction and stimulus-response mechanisms are identified as 

knowledge. 

 

 Exposure of the unknown - In this activity, the givens are the knowns. The 

unknown results from the organization of what is known. T deppically the 

knowledge is associated with familiar experiences, and may be perceived as 

having a universal relevance, being concerned with objective events and 

interactions. The knowledge is also associated with patterns of interaction with 

an EM model which are encountered by the designer in analysis. The aim of the 

analysis is to find conflicts and expose hidden assumptions within the knowledge. 

By altering the hidden assumptions, we can obtain new insight about the system. 
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essential principle. In the Periodic Table, chemical elements are arranged by 

atomic number and the way in which their electrons are organised. Early 

versions of the table contained gaps between entries. The existence of elements 

in the gaps was predicted before they were actually discovered – often at a much 

later time. The prediction of missing elements is the unknown that requires 

further investigation. 

 

These two activities are prior to circumscription of any system knowledge. They 

complement each other as shown in Figure 3.3. The source of the knowledge is the 

unknown, and the source of the unknown is the knowledge. The generation of the 

knowledge and the unknown convolve to provide the basis for learning. Therefore, 

building an EM Model can be seen as an evolutionary process of learning. This is in 

line with the reflection-in-action paradigm of design discussed in subsection 3.1.2 - in 

which the design process is seen as a "reflective conversation with the situation” 

[Sch83]. EM principles and tools provide direct support for this evolutionary design 

process.  

 

 

Figure 3.3: An EM perspective on knowledge creation in system development 

 

In EM, we build artefacts to assist our construal of experiences that inform the 

knowledge of the proposed system. The nature of experiences concerned depends on 

the current status of the design and purposes of the modeller. Such experiences may 

relate to the general phenomena that sustain the system behaviour, or the more 

specific environment from which the system will emerge or in which it will operate. A 

central activity in development of such construal is the correlation of interaction with 

the artefact and interaction with the relevant phenomena, environment or prototype 

system implementation. Such activity is similar in spirit to the ‘what-if’ interaction 

with the spreadsheet that is aimed at establishing a close correspondence between 

interaction with the artefact and interaction with its referent. Its effect is to generate 
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experiences and knowledge representative of all the many viewpoints on the 

emerging system. As will be discussed and illustrated in more detail in chapter 5, the 

emergence of a system is associated with a process for bringing coherence to this body 

of experiences and knowledge. This gives conceptual integrity to the system design. 

 

 

3.3.2 Collaborative aspect 
 

System development is an activity that typically involves a group of developers rather 

than one individual. Collaborative system development imposes extra interrelated 

technological and social concerns. Sharing explanation and understanding of 

knowledge and experiences is the key to effective collaboration.  

 

In current practice, documentation plays a central role in sharing knowledge. It is 

where most knowledge of the target system is captured. This is reflected in current 

groupware, in which documents and document-related processes predominantly 

define the logical context for collaboration [Mar98a]. However, what can be shared 

by documentation is only the tip of the iceberg where system knowledge is concerned. 

Documentation is best suited for recording explicit propositional knowledge which is 

derived from only a part of stable experience. The source of propositional knowledge, 

which is practical knowledge and experience embodied in individual developers, 

remains for the most part unsharable (cf. the Empiricist Perspective on Learning 

[Bey97]).  

 

In EM, practical knowledge and experience of the target system can be embodied 

in an EM model. The distinction between conventional documentation and an EM 

model is not a matter of style but concerns the character of the knowledge being 

represented. An EM model serves as a medium for sharing practical knowledge and 

experiences in collaborative system development. In EM, all the activities associated 

with collaborative system development, including interactions within the system and 

the meta-interactions between the developers, can be framed as state-change 

associated with interaction of agents within the DMF. An agent can be a person, a 

technological entity (e.g. a computer) or a social entity (e.g. a company). This idea 

was originally developed in the context of concurrent engineering [Adz94b], but we 

can adapt the framework to any form of system development. The framework 

includes a hierarchy of agents where agents at upper levels of the hierarchy coordinate 

agents directly under them. This framework has been studied in [Adz94b] with 

reference to a case-study: the design of a lathe spindle. 
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Figure 3.4: Hierarchy of agents in design of a lathe spindle and agents associated with the shaft 

design (adopted from [Adz94b]) 

 

The left-hand-side of Figure 3.4 shows a hierarchy of agents involved in the 

design of the lathe. The design coordinator is an agent who is responsible for 

maintaining an EM model that integrates all EM models from the agents directly 

under him or her. For instance, in shaft design, there are three agents: analyst, detailer 

and manufacturer. Each agent has their own view of how the shaft should be designed 

(cf. the right-hand-side of the Figure 3.4). The three EM models of the shaft 

constructed by the three agents will typically contain complementary and potentially 

conflicting observations. The design coordinator’s job is to merge the observations 

and maintain a coherent EM model of the shaft. 

 

As the example shows, this framework uses a meta-EM model to describe the 

hierarchy of agents who are developing an EM model for the target system. The 

meta-EM model is accessible to all the developers involved – it allows them to 

maintain a sense of the whole development process and progress – helping them to 

maintain conceptual integrity of the system architecture. This framework can 

accommodate the demands of developing not only systems which once deployed 

usually remain unmodified (such as a dishwasher) but also systems which need 

constant adaptation (such as information systems). For instance, a change of 

personnel during system development can be directly reflected in the meta-model. 
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Two challenges for collaborative system development relate to the 

decomposition and the synthesis of a system. Where decomposition is concerned, the 

system is divided into components for each developer. However, after the initial 

decomposition, the system may sometimes need to be decomposed again in another 

way due to a change in the requirement. By explicitly representing dependencies and 

automating dependency maintenance, an EM model admits several different ways of 

decomposition without any need to compromise the integrity of the system. Where 

synthesis is concerned, the system components have to be integrated either for final 

deployment or for testing purpose. System synthesis involves merging concepts from 

different developers and resolving conflicts between their viewpoints. It involves 

explanation of one’s own work and understanding other people’s work (cf. [Gri98]). 

Developers can get hands-on experience of components by interacting with the EM 

models of components. Practical knowledge can be transferred in this way. 

 

From the discussions in this and the previous subsections, we can see that 

developers can simultaneously use EM models both as a medium for reaching 

consensus and resolving conflicts in system development, and as a playground for 

individual experiment. 

 

3.3.3 Methodological aspect 
 

One common motivation for studying system development is to identify some 

universal principles to help improve the effectiveness of system development. Taking 

software system development as an example, different formal methodologies have 

been developed to tackle the so-called ‘software crisis’. These methodologies usually 

provide structured and standardized procedures and techniques aiming at improving 

the software system development process (cf. SSADM [Eva92], the waterfall process 

model [Beo76] and the spiral process model [Boe81]). However, there is an 

increasing amount of research literature questioning the usefulness of formal software 

system development methodologies (e.g. [Bas92, Fit94, Tru00]). Their main criticism 

is that in practice people do not follow the formal development procedures provided 

by methodologies (cf. Table 1 in Appendix E). At best, people modify and adapt 

methodologies to suit their purpose [Rus95, Gre98b]. This argument exposes the 

same tension between the rational problem solving and reflection-in-action paradigms 

for describing design activities discussed in subsection 3.1.2. Critics of formal 

methodologies argue that in practice every process of software system development is 

unique, and questions the usefulness of standardising any development procedures. 
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Most experienced researchers and developers are becoming more convinced that 

system development should not focus on following formal methodologies. For this 

reason, attention has recently turned away from standardising system development 

processes to standardising system representations. At present, the Unified Modelling 

Language (UML) is the most popular system representation standard. UML provides 

a set of standard diagrams representing different views of a system in development. 

Two claims have been emphasised in connection with UML: that it is 

methodology-independent, and that it is suitable not only for the development of 

software systems but also for that of other non-software systems [Uml02]. It is 

beyond the scope of this thesis to discuss whether these claims are justified. 

Nonetheless, the influence of UML to system development in general is huge. Moving 

from a process-focused approach (where development is driven by applying a formal 

methodology) to a representation-focused approach (where development is driven by 

sharing standard diagrams) of system development is a significant shift in perspective 

in the research and practice of system development.  

 

The EM perspective on system development is different from both 

process-focused and representation-focused approaches. Formal systems 

development methodologies are perhaps most useful as guidelines for a new 

developer with little experience in system development - EM prescribes no general 

method for system development [Bey98]. A standardised set of representations of a 

system cannot do justice to the dynamic variety of views of a system from different 

system developers – from an EM perspective, views of a system should be formed 

through negotiation amongst developers involved in every aspect of system 

development. In summary, we cannot in general standardise either the development 

process or the system representation. In EM, the emphasis in system development is 

shifted to interaction with EM models. Both process and representation can be 

modelled in interaction with an EM model. System building should be guided by 

interaction between actions and situations, and both process and representation should 

evolve as the development proceeds. Individual and collaborative system 

development activities are both mediated by interaction with EM models. 

 

In the next section, we shall compare the application of UML and EM in system 

development with reference to a case study: modelling a dishwasher system. 
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3.4   Case study: comparing modelling with EM and 

UML 

In this section, we compare and contrast two styles of modelling that might be used in 

developing a dishwasher system. The aim is to explore the difference between system 

development based on EM and on modelling using UML. For EM, we use TkEden as 

our supporting tool; for UML, we use Rhapsody from I-Logix. Both tools provide 

mechanisms for creating a simulation of the target system interactively. A model of 

the dishwasher system has been built by using each tool. The processes of building the 

models have been recorded in subsection 3.4.1. Observations and comparisons are 

discussed in the subsection 3.4.2. Our simple case study has been chosen with 

comparison of the two modelling approaches in mind – our main purpose is not to 

conduct a detailed analysis of both two styles of modelling but to capture major 

fundamental differences. 

 

A detailed description of UML and Rhapsody is beyond the scope of this thesis. 

We assume that the reader has a reasonable amount of understanding and hands-on 

experience of using UML with any one of its supporting tools (e.g. I-Logix Rhapsody 

[Ilo02], Rational Rose [Rat02], TogetherSoft ControlCenter [Tog02]). We use 

Rhapsody in this case study mainly because it is more accessible under academic 

license, and it contains a simple tutorial of how to build a dishwasher model. However, 

we believe that Rhapsody includes all the common features available in most of the 

UML tools in the market – these include support for drawing standard UML diagrams, 

mechanisms for navigating through the model, code generation for the major 

programming languages, dialogs for filling in properties using forms, etc. On this 

basis, our findings are also applicable to other UML tools. 

 

The initial requirement of the dishwasher system is adapted from Rhapsody’s 

online tutorial [Ilo02]: 

 

The Acme Company requires software for use in the control of a 

dishwasher. Acme supplies three custom components to control: a 

tank, jet, and heater. The dishwasher washes dishes by spraying the 

water stored in the tank using the jet. The jet sprays the water to rinse 

the dishes and sends pulses of water to wash them. After the dishes are 

clean, the heater is activated to dry them. One cycle through the 

dishwasher consists of washing, rinsing, and drying. You can select 
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three different cycle modes: 

 

 Quick – used when guests are on the way and the dirty dishes 

need to be cleaned quickly. 

 Normal – used under normal circumstances. 

 Intense – used when the dishes are extra dirty, and there is more 

time to let the dishwasher run.  

 

It should be possible to switch modes at any time. The dishwasher can 

be started only if the door is closed. If you open the door while the 

dishwasher is running, operation halts. When you close the door, 

operation resumes from the point that it was interrupted. To ensure 

that the dishwasher continues to work properly, it gives an indication 

for scheduled maintenance after completing a predetermined number 

of cycles. 

 

The EM model is generated in its entirety starting from this initial requirement. 

The UML model is built by following Rhapsody’s online tutorial. Comparisons are 

made based on our experience of building these two models. 

 

3.4.1 Two processes for modelling a dishwasher 
 

Development of the EM model 

 

In this section, we shall briefly describe how we built an EM model of the dishwasher 

system. The definitions shown in Listing 3.1 and 3.2 below are extracted from the 

model to illustrate our discussion. For a complete listing of all definitions in the model, 

the reader is directed to Appendix A. 

 

In EM, we can start modelling with whatever observations we deem to be 

significant in mind. In the case of the dishwasher, we may first observe a door that can 

be in two states: open and closed (lines 5-8). We know that the dishwasher can be in 

three modes: quick, normal and intensive (lines 9-13). The rinsing, washing and 

drying time are dependant upon the mode selected (lines 14-16). For example, at line 

14, the rinsing time is 1 second for quick mode, 2 seconds for normal mode and 8 

seconds for intensive mode. We can check that the rinsing, washing and drying time is 
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automatically updated whenever the mode is redefined. Such testing of the model as it 

is being built is characteristic of EM.  

 

Having introduced the door and the dishwashing modes, we turn to making 

definitions for the tank, jet and heater. We will only describe the making of the 

definitions for the tank here (lines 17-29). In addition to being a water container, the 

tank has two valves: one for filling water and the other for draining water. Lines 18-22 

define some states that we can use for defining the water level and valves. Line 23 

defines the tank capacity. Lines 24-27 define some interdependent observations about 

the water level. For example, the water level status can be empty, full or in between 

empty and full (line 27). Lines 28-29 define the behaviour of the valves. Their 

definitions show that the washing progress and water level status determine whether 

the valves are open or closed. We can check that the definitions of the tank are 

working properly by altering observables they depend on. For example, on redefining 

water level to 20000 (line25), we should expect the value of waterLevelStatus 

(line 27) to be tankFull (line 19). 

 
1. /***********************  
2. AS AN ENGINEER 
3. ************************/ 
4. %eden 
5. /* door */ 
6. open is 0; 
7. close is 1; 
8. door is close; 
 
9. /* wash mode */ 
10. quick is 1; 
11. normal is 2; 
12. intensive is 3; 
 
13. mode is normal; 
14. rinseTime is (mode == quick)?1:((mode 

== normal)?2:8); 
15. washTime is (mode == quick)?1:((mode == 

normal)?2:8); 
16. dryTime is (mode == quick)?1:((mode == 

normal)?2:8); 
 

 

17. /* tank */ 
18. tankEmpty is 0; 
19. tankFull is 1; 
20. tankSomewater is 2; 
21. valveClose is 0; 
22. valveOpen is 1; 
 
23. tankCapacity is 20000; 
24. waterFlowPerSecond is 50; 
25. waterLevel is 1; 
26. waterPercent is float(waterLevel) / 

float(tankCapacity) * 100; 
27. waterLevelStatus is 

(waterLevel==0)?tankEmpty:((waterLe
vel>=tankCapacity)?tankFull:tankSom
ewater); 

28. drainValve is (progress==washed && 
door==close && 
waterLevelStatus!=tankEmpty)?valveO
pen:valveClose; 

29. fillValve is (progress==go && 
door==close && 
waterLevelStatus!=tankFull)?valveOp
en:valveClose; 

 

Listing 3.1: Definitions extracted from the EM dishwasher model 

 

The model is built up incrementally by introducing definitions one by one. In 

introducing the definitions considered so far, the modeller is acting in the role of an 

observer who resembles a component engineer. During the modelling process, we 

notice that there are other roles we can play. We can play the role of a user and define 

what he or she can observe and act on. Lines 30-49 in Listing 3.2 define three actions 

for the user – the user can change the washing mode, close the door and open the door. 

For example, to change the washing mode to intensive in the role of a user we input 
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“changeMode(‘I’);” – this redefines the definition of mode as “mode is 

intensive;”. The duration for rinse, wash, and dry will be automatically changed 

to 8 seconds according to the definitions in lines 14-15. 

 

Another role we can play is that of an interface designer who designs the layout 

of the dishwasher interface. Lines 50-59 define the appearance and position of the 

quick-mode button in Donald. For example, line 57 defines that if the machine is in 

quick mode, the quick-mode button lights up in yellow. In order to test or evaluate the 

model, we can change the washing mode to quick by inputting 

“changeMode(‘Q’);”  to see the quick-mode button light up as a result of 

automatic dependency maintenance.  

 
30. /*********************** 
31.         AS A USER 
32. ************************/ 
33. %eden 
34. proc changeMode{ 
35.    para char;  
36.      if(char=='Q'){ 
37.        mode is quick; 
38.      } else if(char=='N'){ 
39.         mode is normal; 
40.      } else if(char=='I'){ 
41.         mode is intensive; 
42.      } 
43. } 
44. proc openDoor{ 
45.      door is open; 
46. } 
47. proc closeDoor{ 
48.      door is close; 
49. } 
 
50. /******************************* 
51. AS AN INTERFACE DESIGNER 
52. ********************************/ 
53. %donald 
 
54. #mode buttons 
55. circle quickButton 
56. quickButton = circle({80,290},5) 
57. ?A_quickButton is 

(mode==quick)?"color=yellow,fill=sol
id":""; 

 
58. label qLabel 
59. qLabel = label("Q",{80,300}) 

 

60. /***************************** 
61. DISHWASHER COMPONENTS VISUALISATIONS 
62. ******************************/ 
63. %donald  
 
64. # tank visualisation 
65. rectangle theTank 
66. theTank = 

rectangle({100,50},{200,50+waterPer
cent!}) 

67. ?A_theTank = 
"color=blue,fill=solid"; 

 
68. line theTankTop, theTankLeft, 

theTankRight, theFillValve, 
theDrainValve 

69. theTankTop = [{100,180},{200,180}] 
70. theTankLeft = [{100,70},{100,180}] 
71. theTankRight = [{200,50},{200,160}] 
72. ?theFillValveX is 

(fillValve==valveOpen)?180:200; 
73. ?theDrainValveX is 

(drainValve==valveOpen)?80:100; 
74. theFillValve = 

[{theFillValveX!,160},{200,180}] 
75. ?A_theFillValve = 

"color=red,linewidth=2"; 
76. theDrainValve = 

[{theDrainValveX!,50},{100,70}] 
77. ?A_theDrainValve = 

"color=red,linewidth=2"; 
 
78. label theTankLabel 
79. theTankLabel = label("water tank", 

{150,200}) 
 

 

Listing 3.2: Definitions extracted from the EM dishwasher model 

 

To make it easier to check the states of the tank and its interaction with other 

components, we can build up a simple Donald visualisation for it. The definitions in 

lines 60-79 are all we need to visualise the tank. For example, lines 65-67 define the 

appearance of the water level in the tank as a size-changing blue solid rectangle. The 

size of the rectangle changes according to the percentage of water in the tank. Figure 
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3.5 below shows three kinds of visualisation. The top-left segment shows the layout of 

the dishwasher interface. The top-right segment shows visualisations of the three 

major components of the dishwasher. The bottom-left is an animated state-chart 

whose current state is synchronised with the actual state of the dishwasher. 

 

 

 
Figure 3.5: Visualisations of the EM Dishwasher model 

 

Appendix C contains an LSD account for the EM Dishwasher model. It 

illustrates what was in the modeller’s mind when constructing this model. It is based 

on the script model of the dishwasher described above. It can be used as a 

specification for the actual implementation of the dishwasher. 

 

Development of the UML model 

 

In developing the UML model, we have followed most of the steps in the online 

tutorial of Rhapsody [Ilo02]. The UML diagrams created are shown in detail in 

Appendix B. There are four major steps to creating the dishwasher model. Each step 
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creates UML diagrams of a particular type. Altogether we have created five types of 

diagram: the Use Case diagram, Class diagrams (Object Model diagrams), Sequence 

diagrams and State Chart diagrams. 

 

The first step is to create the Use Case diagram. This is based on the dishwasher 

requirement statement. The diagram shows interactions between the system and 

external actors. It also defines a system boundary (depicted by the bold rectangle in 

Figure 3.6). Three use cases are identified. The Wash Dishes and Configure Washing 

Mode use cases belong to the actor Cleansing. The Service Dishwasher use case 

belongs to the actor Service. This diagram provides a high level view of how the 

dishwasher will be used. 

 

 
Figure 3.6: The Use Case diagram 

 

The second step is to create Class diagrams. A Class diagram shows the static 

structure of the system including classes, attributes, operations and relationships like 

aggregation and inheritance. Figure 3.7 shows a part of a class diagram – we can see 

that a Dishwasher class owns a Tank class, Heater class and other classes. We 

can edit all properties of a class by bringing up a class edit dialogue. For example, the 

display at the bottom-left corner of the figure shows that we are editing the properties 

of the Tank class. 
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Figure 3.7: Part of a dishwasher Class diagram and a class edit dialogue. 

 

 

The third step is to create Sequence diagrams. A sequence diagram shows a 

scenario in the execution of a use case. Typically, it shows a sequence of message 

passing between different participating objects. Figure 3.8 depicts a part of a sequence 

associated with the Wash Dishes use case. The arrows in the sequence diagram depict 

message passing. The time line runs from the top to the bottom of the diagram. In 

Figure 3.8, we can see two objects, Dishwasher and Tank, participating in the 

sequence. First, the sequence is initiated by a event called evStart() which is 

received by Dishwasher. The Dishwasher initialises itself by calling setup(). 

Then, the Dishwasher sends an event by calling evTankFill() to the Tank for 

filling up the Tank. After filling up, the Tank confirms it is full by calling evFull() 

back to the Dishwasher. All the function calls we specified during drawing the 

diagram are registered in their corresponding classes. For example, the function 

setup() will be registered in the Dishwasher class. 
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Figure 3.8: A part of a Sequence diagram for Wash Dishes use case 

 

The last step is to create State Chart diagrams for each class in the model. A State 

Chart diagram defines the behaviour of an object by explicitly specifying all the states 

the object can be in and the conditions for transition from one state to another. Figure 

3.9 shows a State Chart diagram for the Tank. There are four states: empty, filling, 

full and draining. Initially, the Tank is in the empty state. When an event 

evTankFill has been generated, the Tank goes into a filling state. In the filling 

state, the Tank fills water until the water level equals the tank capacity. The Tank 

then enters the full state. An event evFull is generated by the Tank to notify the 

Dishwasher that the Tank is full. Similarly, the Tank can go on to draining and 

back to the empty state as a response of some system events. 

 

 

Figure 3.9: A State Chart diagram for the Tank class 

 

After specifying all the UML diagrams, we created the user interface by using 

Java and linked the interface to the dishwasher system by adding the interface as an 

Observer class. We then compiled the UML diagrams into Java source code and 
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compiled the Java source code into byte code ready for execution. Figure 3.10 shows 

a snapshot of the dishwasher system in execution. At the right-hand-side of the figure, 

we have an animated sequence diagram that shows all message passing between 

objects as it occurs. 

 

 
Figure 3.10: A snapshot of running the UML model 

 

 

3.4.2 Comparisons 
 

In this subsection, we shall make comparisons between EM and object-oriented 

modelling using UML under five headings: Modelling focus, Interactiveness, 

Comprehension, Openness and Interfaces. 

 

Modelling focus 

 

We notice that one fundamental difference between the two approaches 

concerns what is being modelled. EM focuses on modelling the potentially 

subjective interpretations of the modeller. Observations recorded in an EM model 

are based upon the modeller’s imagined interaction in the roles of agents acting 

within or on the target system. In EM, the model-building demands more awareness 

of the situation in which the target system operates. The design of the system 

emerges from accounting for different aspects of state as viewed by a variety of 

agents. UML is focused on modelling the structure and behaviour of the system. All 

the UML diagrams represent views that are most relevant to the system designer. 
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Subjective use is outside the scope of modelling with UML. Consequently, once the 

system boundary is established, the system design is typically constructed in a 

setting that is isolated from its operating environment and use.  

 

Interactiveness 

In EM, the representation of specific states is an intrinsic feature of any model. 

The modeller can always get immediate feedback on enquiries about any particular 

states for investigation throughout the development of the EM model. The scope for 

experimental interactions is only constrained by the modeller’s construal. Such 

interactions may involve adding observables without conceptual change of state, or 

the consideration of states and behaviours outside the scope of normal use. A model 

offers a real-time response to an experimental interaction. Further experiments can be 

conducted immediately after changing the model.  

 

UML diagrams are abstract representations of a system that are not primarily 

intended to be interpreted with reference to a particular system state. The main role of 

UML is to specify system behaviour. When the modeller makes an experimental 

change to a UML diagram, it affects the specification of system behaviour. Such 

experimentation is quite different in character from open-ended interaction with a 

specific system state. The modeller may be able to change particular system 

parameters (e.g. the tank capacity or the length of the rinsing phase in the dishwasher) 

that affect the system behaviour as whole, but experimental interaction with specific 

system states is constrained by the specified system behaviour (only initial states that 

lie in the path of a system execution are accessible). Moreover, every time a UML 

diagram is changed, it has to undergo two phases of compilation before the modeller 

can get feedback about system states and behaviours. One phase involves translation 

from diagrams to the source code of a target programming language, and the other 

involves compiling the source code into an executable program. In addition, code 

generation from UML diagrams is not fully automatic – the modeller has to manually 

resolve programming language specific issues (e.g. the declarations of language 

specific types). As a result, interactive experiments are more difficult to conduct in 

UML than in EM. 
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Comprehension 

Experimental interaction plays an important role in understanding real world 

phenomena. The scope and quality of the possible interaction with an EM model 

facilitates comprehension where specific details of structure, behaviour and 

performance are concerned. For instance, interaction with the EM dishwasher model 

allows us to explore the relationship between the behaviour of the fill valve and the 

filling of the tank. The mechanism can be such that the opening and closing of the fill 

valve is directly controlled by the dishwashing cycle or by an autonomous 

stimulus-response mechanism that switches off the valve automatically when the tank 

is full. Exploration of this nature has no counterpart in the UML model of the 

dishwasher. Where comprehension is concerned, the function of UML diagrams is to 

display the predetermined relationships between components rather than to allow the 

modeller to explore possible alternatives. 

 

A complementary aspect of system comprehension is concerned with 

understanding the integrity of the system as a whole. In our case study, the modeller 

cannot grasp this integrity easily when modelling with UML for three reasons: 

 

 The confusing interface – information about a class is scattered throughout 

different diagrams and interfaces. For example, Figure 3.11 shows two dialogs, 

one on top of another, that contains information about one class. Bits and pieces 

of information about the class are scattered throughout tabs and fields whose 

positions are semantically irrelevant to the model.  

 

 Code generation – In translating UML diagrams to source code, the tool 

automatically generates additional code, that is not directly relevant to the UML 

diagrams, making it difficult – if not impossible – for the modeller to understand 

the source code. 

 

 Consistency between diagrams – There are a lot of dependencies between 

different UML diagrams. There are few cues to enable the modeller to trace these 

dependencies easily. This is a well-recognised problem of UML (e.g. [Kim99]). 

Some suggest introducing automatic consistency checking to the supporting 

tools [Rob00]. However, even if the consistency can be automatically 

maintained by a tool, the dependencies cannot be easily comprehended by a 

human interpreter. 
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Figure 3.11: Dialogs showing information about a class 

 

Openness 

Openness here is related to two principal questions – to what extent does the 

modelling style support the modeller in: 

 

• exploring hidden problems relating to the requirements as currently framed, 

• adapting the model to deal with changing requirements.  

 

In UML, a fixed set for diagrams, representing different viewpoints on the 

system under development, guides the system modelling [Smo01]. Modelling activity 

starts with use-case diagrams that define the system boundary. The next step is to 

draw a class diagram that defines the main components of the system. Classes define 

what we need to observe by way of attributes of component in order to develop the 

system.  

 

Other diagrams are constructed based on the use-case diagram and class diagram. 

These introduce additional properties and constraints governing the interaction 
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between components until the model is specific enough for implementation. 

Therefore, modelling with UML resembles a top-down approach to analysis and 

design. The system is built as a result of circumscription. The circumscription takes 

place from the beginning of the modelling process – use-case diagrams specify the 

system boundary of interest; class diagrams specify the available observations. These 

preliminary commitments affect the ability of the model both in accommodating 

changing requirements and in exploring hidden requirements. The openness of the 

model is also constrained by the limited viewpoints that a system designer can use. 

 

EM presumes no fixed set of viewpoints. The modelling process involves the 

identification of observables that may or may not belong to any agents initially. 

Attributing observables to agents is very different from assigning attributes to classes 

in UML. The former is a process of discovery and invention whereas the latter is a 

process of analysis. In EM, agents emerge as groups of observables. The emergence is 

an ongoing rather than one-off process. It is for this reason that there is no formal 

syntax for defining an agent for an EM model. In EM, the system is built as a result of 

emergence rather than circumscription. Throughout the process of EM, the system 

boundary is undefined. Throughout the modelling process, the model always remains 

open for the exploration of hidden requirements and to accommodate changes in 

requirements (cf. [Loo98, Loo01, Gog94, Gog96]). Furthermore, EM regards the 

modeller as a super-agent within the model. The modeller can conduct interaction 

with any parts of the model to simulate different unexpected exceptional events or 

conditions in operating the system. 

 

Interfaces 

UML does not provide support for specifying interfaces of the target system. 

Neither can dependencies between states and interfaces of the system be specified by 

using UML. This means that developers need to use other techniques to design and 

test the interfaces of the system. In our case study, the interface is created by 

hard-coding it in Java. EM supports interface design and model-building within the 

same framework. Dependencies between the states and interfaces are automatically 

maintained. This feature specifically leads to models for system prototyping that are 

more stable.   
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3.5   Aims revisited 

As we mentioned in subsection 3.1.3, there are four principal aims in applying EM to 

system development. In this section, we shall discuss how these aims can be achieved. 

 

 To promote flexible system design – An EM model serves as a construal of the 

system and its situation that is always open to revision. There is no fixed 

structure within an EM model that is resistant to change - observables in an EM 

model can be regrouped to reflect structural change without affecting the 

underlying dependencies between them. As a result, an EM model can typically 

be easily adapted to accommodate new requirements. 

 

 To create more reliable systems – In EM, the target of modelling is not only the 

system but also the external environments and situations that associated with the 

system. As a result, system developers can be more aware of the external factors 

that may affect the operation of the system in actual use. They can simulate 

various situations of use quickly and economically with the support of the 

computer-based EM tool. This can help to find identify hidden assumptions that 

are crucial to the correct operation of the system. The reliability of the system 

can be tested through interaction with the model. In EM terms, reliability of the 

system stems from the system developer’s experience of stable patterns of 

observation and interaction. 

 

 To support the cognitive needs of system development – An EM model is 

particularly suitable for recording provisional knowledge and experience that is 

subjective and unstable in nature. This provisional knowledge and experience is 

the primary source of creativity and innovation that is important in successful 

system development. An EM model helps to maintain conceptual integrity in the 

face of the inherent complexity of the system design. As a result, the system 

developer can tackle system design problems heuristically. 

 

 To facilitate collaborative work – The concepts of EM are domain independent 

and originate in commonsense. In principle, developers from different 

disciplines can learn EM easily. An EM model can be used as a medium for 

supporting communication. Every developer can build EM models of the system 

within his or her own area of expertise. Different EM models for the same aspect 

of the system represent different views with potential conflicts clearly exposed. 

Resolving these conflicts can lead to new system knowledge. 



3.6  Summary 

75 

 

In addition, research into EM provides not only a philosophy for system 

development but also tools that give practical expression to this philosophy. There are 

several ways to use EM in system development: 

 

 For the study of existing systems - EM can be used for study existing systems. 

The product of the study will be an EM model that embodies deep understanding 

about the system in question. Based on that understanding, we can proceed to 

improve the existing system or create a new better one. Relevant modelling 

techniques for this purpose are discussed in [Bey00a]. 

 

 For the design of new systems – EM principles and tools can be use to design 

new systems. The EM model created by the process of design can be 

circumscribed by producing a LSD specification. The LSD specification can be 

used as a blueprint for implementing the system. 

 

 For the implementation of new software systems – If a software system is to be 

developed, we can create an EM model either to serve directly as the new system 

or as a prototype system from which a suitable conventional system can be 

generated semi-automatically by translation. In either case the EM model that 

underlies the software system is very flexible and adaptable to change. 

 

3.6   Summary 

 

In this chapter, we have discussed the EM perspective on system development from 

two different directions. The first direction involves thinking about the relationship 

between EM for system development and the intrinsic properties of systems. The 

second direction involves thinking about EM in relation to important aspects of 

system development activity. We have also described a case study of building a 

dishwasher model by using both EM and UML. As a result, we have compared the 

differences between EM and UML styles of modelling systems. We have discussed 

the aims of applying EM to system development and how we can achieve these aims. 
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4 Human Problem Solving 

 

 

 

 

 

In this chapter, we shall focus on discussing the application of EM to support the 

human problem solving that is arguably the most important activity in system 

development. In the first section, we shall discuss the importance of developing 

principles and techniques to promote computer support for human problem solving. In 

the second section, we shall explore the relationship between problem solving and 

programming. We shall introduce some relevant researches on general problem 

solving and the psychology of programming. We shall argue that conventional 

programming paradigms fail to give comprehensive support for problem solving. In 

section 4.3, we shall propose EM as a better approach for supporting problem solving, 

and illustrate this with the reference to solving a particular type of recreational puzzle. 

In section 4.4, we shall describe a case study based on a real life timetabling problem. 

 

 

4.1   Human problem solving using computers 

 

In the early development of computer science, much research focused on formalising 

the capability of computers to solve problems automatically. For example, 

Computability and Feasibility research (e.g. [Gar79]) focused on formalising what 

can and cannot be solved algorithmically by computers in theory and practice. Such 

research is commonly regarded as the foundation of computer science. University 

computer science courses traditionally start with teaching the mathematics and logic 

that underlie this formalised notion of computing.  

 

However, this mainstream conception of computer science has recently been 

challenged by a number of researchers. The main argument is that the traditional 

formalist theories of computer problem solving do not take the environmental and 

human aspects into account (e.g. [Bey92b, Weg97, Wes97]). The agenda of computer 

science should not only be considering computer problem solving but the broader 

topic of human problem solving using computers. Notice that, in this shift of 
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perspective, the emphasis changes from the computer to the human. This implies a 

change of focus from research on abstract concerns such as proofs and reducibility to 

research on more concrete situated activities that reflect the dynamic nature of the 

world and human cognitive processes. Of course, we agree with West [Wes97] that, 

whilst we must acknowledge the usefulness of formalism, we also need to be more 

conscious of its limitations. 

 

Human problem solving is described by Martinez [Mar98b] as “…the process of 

moving toward a goal when the path to that goal is uncertain”. He further explains that 

“we solve problems every time we achieve something without having known 

beforehand how to do so”. This definition of problem solving excludes the process of 

achieving goals with prescribed steps. For the purposes of our discussion, this is the 

most appropriate characterisation of human problem solving. Too often traditional 

computer science research focuses on knowledge representation and proofs 

associated with executing prescribed recipes that are far removed in spirit from human 

problem solving. 

 

The question then becomes: what support can computers give humans in 

problem solving? This chapter will propose an answer based on EM principles. 

Edmonds et al. [Edm95] acknowledge that there is a tension between ‘automating 

expertise’ and ‘amplifying human creativity’ in computer-supported problem solving. 

Ideally, both aspects are equally important. To automate expertise, the human problem 

solver is provided with a set of predefined functionalities that are common in solving 

a particular class of problems. To amplify human creativity, the problem solver is 

provided with features for customising predefined functionalities or even for defining 

new functionalities. Too often research tends to stress the automation of expertise, 

rather than promoting human involvement. 

 

Gallopoulos et al. use the term “problem-solving environment” (PSE) to 

describe  a computer-based system that “provides all the computational facilities 

necessary to solve a target class of problems” [Gal94]. The facilities include 

predefined solution methods, automatic or semiautomatic selection of solution 

methods, and ways to add new solution methods. Many PSEs are widely used by 

industries already. Examples are SPSS for statistical analysis, LabView for electronic 

engineering, Matlab for science and engineering, Mathematica for symbolic 

manipulation and visualisation, spreadsheets for finance and word processors for 

publishing. PSEs are usually domain-specific. Their usefulness is bound to their 

intended domain with the arguable exceptions of spreadsheets and word processors. 
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By contrast, the purpose of this chapter is to discuss support for general human 

problem solving using the computer. It is more difficult to provide problem solving 

support for general computer users than for domain experts because we cannot 

presume a particular model of the intended users.  

 

There seem to be several options for a general computer user to solve a problem 

using a computer. An obvious option is to use a software package that is specifically 

designed for solving the problem at hand. This is the best choice provided that the user 

can find what they are looking for, and provided that the problem is common enough 

for software to be already constructed by others. Unfortunately, this is not always the 

case in reality. Since the notion of problem is subjective and changes over time 

[Hoc90], it is hard to find a software package to suit for a given purpose. Even if the 

user can actually find one, the dynamic nature of a problem context may quickly 

render the software package unsuitable without introducing modifications. In addition, 

as has been discussed in [Ped97], traditional user interfaces of conventional software 

packages are usually so rigid that they hinder the ability of the user to approach a 

problem differently.  

 

Apart from finding and using existing software packages, general computer 

users still have two other options: to use one of the conventional end-user 

programming paradigms such as the spreadsheet paradigm, or to construct a program 

using a conventional programming languages such as Java. However, we shall argue 

that even these two options are not satisfactory for supporting human problem solving 

using computers.  

 

In the following section, we shall discuss the complexity of providing adequate 

support for problem solving using the computer. We shall explore the fundamental 

difficulties from both traditional spreadsheet and programming paradigms for 

supporting general human problem solving. The nature and relationship of 

programming and human problem solving is also explored with reference to some 

recent research in psychology of programming and problem solving. 

4.2   Problem solving and programming 

 

4.2.1 Programming as search in problem spaces 
 

Programming can be viewed as fulfilling a requirements specification generated from 

requirement analysis as part of a conventional software development cycle. For the 
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purpose of our discussion, however, we shall take the broader view that programming 

is a form of problem solving.  

 

Following Newell and Simon [New72], human problem solving can be thought 

of as navigation from an initial state to a desired goal state in a problem space. A 

problem space represents all possible states of knowledge of the problem solver 

related to the problem. Problem solving is viewed as a transformation from the initial 

state to the goal state using a set of cognitive operators. This idea of searching in a 

problem space has proved to be useful and widely accepted by many researchers. It 

has also been extended for describing various phenomena of human problem solving. 

For example, Simon and Lea [Sim74] characterise an induction task that involves 

developing general rules from particular instances as a search in two interrelated 

problem spaces: rule space and instance space (a ‘dual-space search’). The problem 

solver generates possible rules from instances, and tests the rules with new instances; 

this in turn may invalidate the rules, and result in the generation of new rules. This 

process goes on and on until the desired rules are found. The concept of dual-space 

search was later adapted by Klahr and Dunbar [Kla88] in their explanation of 

scientific discovery, where scientists search in hypothesis (rule) space and experiment 

(instance) space. 

 

In their research on scientific discovery, Schunn and Klahr [Sch95] suggest a 

4-space search. This research was adapted by Kim et al. [Kim97a, Kim97b] for 

exploring the strategies used by programmers in problem solving. Kim et al. 

characterise programming as a search in 4-spaces: the rule, instance, representation 

and paradigm spaces. In programming terms, searching in rule space is related to 

writing program statements; searching in instance space is related to designing and 

conducting test cases for checking the correctness of the program; searching in 

representation space is related to maintaining a mental model of the programmer’s 

understanding of the problem; and searching in paradigm space is related to selecting 

a suitable paradigm for navigating other spaces. Empirical studies with programmers 

conducted by Kim et al. revealed that the difficulty of programming can be attributed 

to programmers’ intensive searches in representation and paradigm spaces.  

 

Kim et al. has explained the difficulty of programming as a particular kind of 

problem solving activity. To discuss the challenges of providing computer support for 

human problem solving more fully, we also need a wider investigation into how 

people solve problems with and without the support of computer programming. 
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4.2.2 Difficulties of supporting problem solving by 
programming 

 

Traditional programming paradigms are suitable for problem solving at the abstract 

level. They provide a high degree of expressiveness and generality. Programming 

language designs usually give much support to abstract thinking and may even 

enforce programmers to think abstractly (cf. ‘abstraction hunger’ described in 

[Gre98a]). For example, it is generally considered to be more useful to develop a 

program to sort an arbitrary number of names than to sort a fixed number of names in 

alphabetical order, even though the problem at hand is to sort just a given number of 

names.  

 

Hoc and Nguyen-Xuan [Hoc90] point out that in normal problem solving 

situations the goal is specific, whereas in most programming situations the goal is 

usually generic. Learning programming therefore has two difficulties [Hoc90]. Firstly, 

there is “a shift from value to variable processing”. In other words, there is shift from 

thinking in concrete terms to thinking in abstract terms, and from dealing with 

specific to generic problems. Secondly, beginner programmers have to consciously 

transform natural procedures to machine procedures, and search for representations 

that they are not aware of in normal problem solving situations. The difficulty of 

programming therefore can be viewed as stemming from a huge gap between natural 

languages and programming languages [Hon90, Mye98, Pan01]. 

 

By contrast, much end-user programming research promotes programming at a 

concrete level. Examples are programming by demonstration [Cyp93] and 

spreadsheet programming [Nar93]. This is illustrated by considering the traditional 

spreadsheet. The advantages of spreadsheet programming are as follows [Nar93, 

Geh96]: 

 

 it provides task-specific programming primitives that are already in the 

user’s problem domain. The primitives include a set of predefined functions 

that are commonly useful for the task at hand. 

 it supports a trial and error style of programming. The underlying automatic 

dependency maintenance between cells allows the user to explore different 

settings quickly. 

 it supports concrete display of data. The user does not have to worry about 

abstract data types. 
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All the above benefits make learning spreadsheet programming a lot easier than 

learning traditional programming. However, the major drawback of traditional 

spreadsheet programming is the lack of an abstraction mechanism. This makes reuse 

of a spreadsheet difficult. Some recent spreadsheet programming research are 

attempting to introduce abstraction mechanisms into spreadsheet programming. 

Examples are the structured spreadsheet Basset [Tuk96] and the visual programming 

language Forms/3 [Bur01]. However, these mechanisms are usually difficult to use. 

Figure 4.1 depicts problem solving at two different levels of abstraction. The 

conventional spreadsheet paradigm provides facilities for the user to solve a problem 

at a concrete level. It usually supports the user in considering a problem instance and a 

specific method to solve the problem. The goal is usually to obtain a specific solution 

to the problem. On the other hand, a traditional programming paradigm encourages 

the user to think abstractly. It supports the user in considering a problem class and in 

finding a generic method to solve them all. The goal is to obtain potential generic 

solution for all similar problems. 

 

 
Figure 4.1: Programming for problem solving at two different levels of abstraction: concrete and 

abstract 

 

However, the process of problem solving usually involves thinking in both 

concrete and abstract terms at the same time. Therefore, neither the spreadsheet nor a 

traditional programming paradigm gives comprehensive support for the natural 

demands of human problem solving. In the next section, building on pioneering 

research in problem solving [New72] and the psychology of programming [Hoc90], 

we shall investigate an EM approach to problem solving using the computer. 

 

4.3   Empirical Modelling for problem solving 

 

4.3.1 Construal of the problem solving situation (CPSS) 
 

As we discussed in the last section, problem solving not only involves searching in 

multiple problem spaces but also thinking at different levels of abstraction. Figure 4.2 
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depicts our new understanding of human problem solving. For simplicity, the figure 

shows only two levels of abstraction: concrete and abstract. There are three problem 

spaces associated with each level. At the concrete level, they are the problem instance 

space, the method space and the specific solution space. At the abstract level, they are 

the problem class space, the generic method space and the generic solution space. 

Problem solving can be viewed as building up a construal of the problem solving 

situation as informed by the searching of all the problem spaces together with the 

problem solver’s past knowledge and experience.  

 

 

Figure 4.2: Problem solving as search in problem spaces at two different levels of abstraction 

 

Martinez described human beings are “problem solvers who think and act within 

a grand complex of fuzzy and shifting goals and changing means to attain them” 

[Mar98b]. This implies that there is no predetermined order of search in the problem 

spaces. Usually problem solving starts off by a quick analysis of the problem. 

However, after the initial analysis, the problem solver can choose to search in any 

problem spaces according to their subjective judgment about what will make the best 

progress. A complete path from initially posing a problem to finding its solution 

involves arbitrary navigation between the problem spaces.  

 

This new perspective motivates a shift from supporting problem solving by 

programming to supporting problem solving by modelling. With a conventional 

programming approach to problem solving, the role of the computer is mainly to 

provide means to specify and automate the procedural knowledge obtained by 

searching the method and generic method spaces. With a modelling approach to 

problem solving, the role of the computer is extended to provide means to represent 

the construal which consists not only of knowledge obtained from searching the 

method and generic method spaces but also the other problem spaces. By applying 

EM principles, we can construct an Interactive Situation Model (cf. chapter 2) of the 

problem solving situation. This model, which will be referred to as a Construal of the 

Problem Solving Situation (CPSS), embodies knowledge obtained by searching all 

the problem spaces. In a CPSS, knowledge is represented in terms of observation, 
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dependency and agency. Integrated development and use of a CPSS can give powerful 

support for problem solving. In particular, in order to obtain a comprehensive solution, 

the problem solver needs to be able to account for all his or her partial knowledge of 

potential methods and solutions and how these are related to context and previous 

experience. The CPSS supports this kind of problem solving activity. 

 

We shall illustrate the use of a CPSS with reference to a class of simple 

recreational problems, called Crossnumbers. Figure 4.3 shows a Crossnumber 

problem. The task is to place the numbers given in the list into the blank cells of the 

given 5 by 5 grid. Crossnumbers are adopted as a case study in this section because 

they are a convenient vehicle for illustrating the general principles behind CPSSs 

even if in practice a human problem solver would be unlikely to consider 

semi-automatic approaches to their solution. 

 

1 2 3 4
3 5 6 9
9 2 9
9 4 7 8
2 1 2 5

Numbers:
15, 75, 356, 478,
1234, 2125, 3992,
4998, 26242.

Given One possible
answer

 

Figure 4.3: A Crossnumber problem with 5 x 5 grid (left) and its solution (right) 

 

With reference to Figure 4.2, at the concrete level, the particular 5 by 5 

Crossnumber problem is in problem instance space; any particular solution to solve 

the problem sits in the method space; whereas the solution shown on the right of the 

figure sits in the specific solution space. At the abstract level, the problem class space 

may contain all possible Crossnumber problems with grids of different sizes; search in 

generic method space represents development of generic program to solve all similar 

Crossnumber problems; and the generic solution space contains all possible solutions 

for similar Crossnumber problems.  

 

Appendix D contains the complete listing of a CPSS for solving the 

Crossnumber problem. Solving problems like Crossnumbers involves free navigation 

of all spaces at different levels of abstraction. In putting the emphasis on 

semi-automatic human problem solving rather than fully automatic problem solving, 

we are motivated to consider well-recognised heuristics that can be used to guide 



4.3  Empirical Modelling for problem solving 

85 

problem solving. We shall show how the construction of a CPSS gives support in 

applying these heuristics. 

 

4.3.2 Supporting heuristic problem solving 
 

The process of problem solving involves understanding the problem, exploring the 

methods, and designing solutions to test the understanding of the problem and 

methods. The process can be guided by heuristics. Martinez describes a heuristic as “a 

strategy that is powerful and general, but not absolutely guaranteed to work” 

[Mar98b]. There are two kinds of heuristic: heuristics that are specific to a particular 

problem situation; and heuristics that are generic enough to apply in any problem 

solving context. We shall consider some generic heuristics discussed in the literature 

[Pól45, Hew95, Mar98b] and see how the CPSS of Crossnumber supports their 

application. They are External Representation, Problem Reinterpretation, Suspending 

Evaluation, Ends-means Analysis, and Successive Approximation.  

 

External Representation. External Representation relates to finding ways to 

represent what is in our mind externally. By using an external representation, the 

problem solver can lay out complex information that cannot be considered internally 

in our mind at once [Mar98b]. It also forces the problem solver to clarify his or her 

thinking. For example, Pólya [Pól45] encourages the solver to draw a figure and to 

introduce a suitable notation in order to understand mathematical problems before 

solving them. External representation is sharable with other people who might try to 

consider the problem and might offer help. Good external representation renders 

visible what is actually in the problem solver’s mind. However, it is commonly agreed 

that it is not easy to achieve this in practice (e.g. [Hoc90, Pan01). The use of 

observables, dependencies, and agents can arguably help us to construct more natural 

external representations. By way of example, consider the external representation of 

the grid extracted from CPSS of the Crossnumber problem. 

 
grid =  [['x',' ',' ',' ',' '], 
         [' ',' ',' ','x',' '], 
         [' ','x',' ','x',' '], 
         [' ','x',' ',' ',' '], 
         [' ',' ',' ',' ','x'] 
       ]; 
 
a1 is grid[1][1]; a2 is grid[1][2]; a3 is grid[1][3]; a4 is grid[1][4]; a5 is grid[1][5]; 
b1 is grid[2][1]; b2 is grid[2][2]; b3 is grid[2][3]; b4 is grid[2][4]; b5 is grid[2][5]; 
c1 is grid[3][1]; c2 is grid[3][2]; c3 is grid[3][3]; c4 is grid[3][4]; c5 is grid[3][5]; 
d1 is grid[4][1]; d2 is grid[4][2]; d3 is grid[4][3]; d4 is grid[4][4]; d5 is grid[4][5]; 
e1 is grid[5][1]; e2 is grid[5][2]; e3 is grid[5][3]; e4 is grid[5][4]; e5 is grid[5][5]; 

 

The two blocks of script above represent two different conceptualisations of the 
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grid in the problem solver’s mind. The first block is a list of lists. The second block 

defines each cell of the grid as a separate observable. Which representation is closer to 

the problem solver’s conception depends on context. But by using definitive script, 

the problem solver can have many different representations at the same time. The 

consistency between representations can be automatically maintained. For example, 

in this case, values of the second representation are always consistent with the 

corresponding values in the first representation by definitions. 

 

Suspending Evaluation. It is sometimes useful to temporarily stop evaluating the 

usefulness of the observations we introduced. This heuristic facilitates the discovery 

of new methods to solve a problem. For example, all the following definitions were 

initially conceived simply by observation of the grid structure with no specific 

purpose or goal in mind. 

 
blocks  is [a1,b4,c2,c4,d2,e5]; 
position1 is [a2,a3,a4,a5]; 
position2 is [b1,b2,b3]; 
position3 is [d3,d4,d5]; 
position4 is [e1,e2,e3,e4]; 
position5 is [b1,c1,d1,e1]; 
position6 is [a2,b2]; 
position7 is [a3,b3,c3,d3,e3]; 
position8 is [d4,e4]; 
position9 is [a5,b5,c5,d5]; 

 

In a definitive script, introducing extra observations does not affect the existing 

observations. Therefore, there is no harm in introducing observations which may 

never be used to solve the problem. Eventually, such apparently redundant 

observations may lead us to a reinterpretation of the problem, such as will now be 

discussed. 

 

Problem Reinterpretation. The way in which a problem is interpreted may affect the 

difficulty of solving the problem [Hew95]. Therefore, when we have found the 

problem is not as easy as expected, it is useful to reinterpret the problem in other ways. 

This is usually accompanied by a change of problem representation. In the case of the 

Crossnumber problem, the problem is transformed when we choose to represent the 9 

positions where the given 9 numbers are to be filled in as follows: 

 
numbers is ["1234","2125","26242","3992","4998","356","478","15","75"]; 
position1 is [a2,a3,a4,a5]; 
position2 is [b1,b2,b3]; 
position3 is [d3,d4,d5]; 
position4 is [e1,e2,e3,e4]; 
position5 is [b1,c1,d1,e1]; 
position6 is [a2,b2]; 
position7 is [a3,b3,c3,d3,e3]; 
position8 is [d4,e4]; 
position9 is [a5,b5,c5,d5]; 
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The problem becomes: assign digits to cells so that each of the observables from 

position1 to position9 contains one of the numbers in the observable 

numbers. After this reinterpretation of the problem, the criteria for the correctness of 

the solution can be specified as follows:  

 
ok1 is containsString(numbers, digitsToString(position1)); 
ok2 is containsString(numbers, digitsToString(position2)); 
ok3 is containsString(numbers, digitsToString(position3)); 
ok4 is containsString(numbers, digitsToString(position4)); 
ok5 is containsString(numbers, digitsToString(position5)); 
ok6 is containsString(numbers, digitsToString(position6)); 
ok7 is containsString(numbers, digitsToString(position7)); 
ok8 is containsString(numbers, digitsToString(position8)); 
ok9 is containsString(numbers, digitsToString(position9)); 
solved is ok1 && ok2 && ok3 && ok4 && ok5 && ok6 && ok7 && ok8 && ok9; 

 

The definitions ok1 through ok9 monitor the correctness of numbers filled in 

from position1 to position9 respectively. The overall correctness is defined 

by the definition solved. This can be regarded as a big step towards solving the 

problem because the goal is clearly represented by definitions. We can also monitor 

the status of any purported solution by querying the related definitions. 

 

 

Ends-means Analysis. Ends-means Analysis involves “form[ing] a subgoal to reduce 

the discrepancy between your present state and your ultimate goal state” [Mar98b]. In 

other words, try to do something which seems to be making progress towards the 

ultimate goal state. This heuristic is useful when the problem is too complex for a 

solution to be found at once. In constructing the CPSS of Crossnumber, the 

introduction of the following definitions enables a semi-automatic way of solving the 

problem (‘achieving a subgoal’), which may also eventually lead to an automatic 

solution. 

 
set1 is findNumberWithConstraints(numbers, digitsToString(position1)); 
set2 is findNumberWithConstraints(numbers, digitsToString(position2)); 
set3 is findNumberWithConstraints(numbers, digitsToString(position3)); 
set4 is findNumberWithConstraints(numbers, digitsToString(position4)); 
set5 is findNumberWithConstraints(numbers, digitsToString(position5)); 
set6 is findNumberWithConstraints(numbers, digitsToString(position6)); 
set7 is findNumberWithConstraints(numbers, digitsToString(position7)); 
set8 is findNumberWithConstraints(numbers, digitsToString(position8)); 
set9 is findNumberWithConstraints(numbers, digitsToString(position9)); 
 
stuck is set1#==0 || set2#==0 || set3#==0 || set4#==0 || set5#==0 || set6#==0 || set7#==0 
|| set8#==0 || set9#==0; 

 

The initial values of set1 to set9 are: 

 
set1: ["1234","2125"] 
set2: ["356","478"] 
set3: ["356","478"] 



4 Human Problem Solving 

88 

set4: ["1234","1215","2992","4998"] 
set5: ["1234","1215","2992","4998"] 
set6: ["15","75"] 
set7: ["26242"] 
set8: ["15","75"] 
set9: ["1234","1215","2992","4998"] 

 

We can immediately observe that set7 contains only one number 26242. This 

means that only number 26242 can go into position 7. This is the number to be 

assigned into the grid first, which may further constrain the choices of numbers in 

other positions. One strategy may be to assign numbers to the positions where fewest 

choices are available. The observable stuck indicates when we should stop 

assigning numbers and backtrack to make an alternative choice. 

 

Successive Approximation. Successive Approximation involves initially 

constructing a less than satisfactory solution and then making iterations to improve 

the solution until a satisfactory one is developed. The whole development and use of 

CPSS for Crossnumber problem can be viewed as Successive Approximation. 

Initially the support of CPSS is limited in terms of actually solving the problem. Over 

time, semi-automatic or even automatic methods for solving the problem may emerge 

from the CPSS. 

 

 

4.3.3 Integrating development and use 
 

Problem solving skills can be regarded as a form of tacit knowledge. Heuristics 

provide guidance for us in learning and applying these skills. Constructing a CPSS of 

a problem helps the problem solver to apply these skills. We have shown how the 

development and use of CPSS supports the application of a variety of generic problem 

solving heuristics. Being able to develop and use a CPSS at the same time is very 

important to its ability to help problem solving. There are three reasons. First, by 

integrating development and use, the problem solver can get immediate feedback on 

the progress in terms of the understanding of the problem, the reliability of proposed 

methods and the validity of the solution. The problem solver can directly take this 

information into account to improve the usefulness of CPSS. Second, the problem 

solver is more able to deal with the changes made to the requirement of the problem 

by constantly reviewing the situation of the problem. Finally, the separation of 

development and use is artificial. The interaction between development and use is the 

key to problem solving. CPSS guides a more natural way of human problem solving. 

CPSS is a medium to support thinking. 
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4.4   Case study: a timetabling problem 

 

In this section, we describe an application of EM principles and tools to solve a real 

life timetabling problem. The problem involves scheduling the time and location of 

undergraduate final year project oral presentations in the Computer Science 

Department at Warwick University. A CPSS called the Temposcope was built to 

support the timetabling process. The name ‘Temposcope’ stands for ‘An instrument 

for Timetabling with Empirical Modelling for Project Orals’ [Bey00b]. A 

departmental administrator has been successfully using the Temposcope over the last 

two years as a support for solving the timetabling problem. This case study is a 

practical demonstration of the concepts of EM for problem solving discussed so far in 

previous sections of this chapter. 

 

4.4.1 Timetabling problem for project oral presentations 
 

The initial situations of this timetabling problem are briefly described as follows. 

There are about 125 students who are in the final year of two similar undergraduate 

courses, Computer Science (CS) and Computer and Business Studies (CBS). One of 

the requirements for their final year project is to have a project oral in the last week of 

the first semester. Each student’s supervisor and an assessor from the members of staff 

are expected to attend the oral. The oral week lasts from Monday to Friday, 9 am to 6 

pm. Each oral is allocated a 40-minute timetable slot. Each day has 13 timetable slots 

available. Each oral is held in one of up to 5 departmental rooms that are available. 

The Temposcope is used to support timetabling process which was previously being 

done by hand with pen and paper, and took about a whole week. The problem involves 

assigning projects to slots while taking account of the availability of staff, students 

and rooms. 

 

Solving timetabling problems on this scale is usually non-trivial for either a 

human timetabler or a computer program. A huge number of choices and constraints 

make it difficult for a person to take all factors into account at once. Determining 

whether there is a feasible solution of a timetabling problem is a well-known 

NP-complete problem [Gar79]. Conventional techniques for computer-supported 

timetabling usually involve extensive searches of a huge solution space that involves 

evaluating an assigned weight or penalty to each decision made according to 

constraints [Cor94]. To construct the timetable reasonably efficiently, to achieve a 

good quality result and maintain flexibility, a high degree of co-operation between 
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human and computer is required. Research on computer-based support for solving 

timetabling problems are no longer solely about finding optimum computer 

algorithms but more about supporting human problem solving as a process that 

consists of a number of activities such as data capturing, data modelling, data 

matching, report generation and storage of timetabling results [Opt00, Sch00b].  

 

EM principles support both the development and use of the Temposcope but do 

not impose the order of them. This makes the Temposcope highly adaptable to change 

of situations. By integrating development and use, the quality of the Temposcope is 

constantly improving. As the timetabler’s knowledge and experience increases, better 

strategies may be found to produce quality timetables in a shorter period of time. In 

the next subsection, we shall describe how the development and use of the 

Temposcope helps to solve the problem. 

 

4.4.2 Integrated development and use of the Temposcope 
 

Construction of the timetabling EM model, Temposcope, started off from a 

state-based analysis of the problem in terms of observable, dependency and agency. It 

is an informal analysis of the particular problem at hand as perceived by the problem 

solver. This includes identifying key observables of the problem and finding a 

representation for them. For example, the basic observation might be: there are 5 

rooms, 2 staff with their availability, and 2 students with their final projects. They can 

be represented by the following definitions: 

 
room = ["104", "327", "313", "LL1", "444"]; 
WMB_AV = [1,2,3,7,8]; 
SBR_AV = [7,8,9,10,11,12]; 
data1 = ["Al-Khaburi", "Ali", "How secure is a secure website? ", "CBS", "DA", "AB", 
"SBR"]; 
data2 = [" Andand", "Aradhana", "Impact & utilisation of the internet in Indian companies", 
"CBS", "YM", "MCK", "AB"]; 

 

Choosing the right representation is very important to problem solving (as 

mentioned in previous section). Representing a problem in one way might make the 

problem easier to solve than representing in another way. One important feature of 

representing a problem using definitions is that the problem solver has freedom to 

specify different representations within the model. Different representations can exist 

together in the model without introducing problems of inconsistency. This is because 

dependencies between the data and representation are automatically maintained. For 

example, there are two different styles to represent staff availability in the 

Temposcope: 
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WMB_AV is [1,2,3,7,8]; 
WMB_AVBinary is makeBinary(WMB_AV); // the value would be [1,1,1,0,0,0,1,1] 

 

The above two definitions demonstrate the co-existence of different 

representations of the same observable. The consistency between two representations 

of the availability of a particular staff WMB is maintained. 

 

Also note that the observables introduced so far are at the concrete level specific 

to the current situation of the problem. For example, WMB_AV, SBR_AV, DA_AV are 

observations of the availability specific to three staff. This may be considered to be 

poor style for conventional programming paradigms, where the emphasis is on 

generality and abstract variables are used. However, the ability to specify observables 

at the concrete level (or ‘concrete variables’) in the Temposcope empowers the 

problem solver to be more engaged with the situation of the specific problem. The 

flexibility of representation also has a profound effect on mediating the interaction 

between human and computer. One example is the definition: 

 
staffAV is [WMB_AV, SBR_AV, DA_AV…]; 

 

This definition relates to observation at a more abstract level than the previous 

ones. staffAV represents a list of availability for all staff. This supports different 

kinds of agency: facilitating the computer to iterate through the availabilities of staff, 

whilst also supplying a specific definition of the availability of each staff member that 

is more understandable by the human problem solver.  

 

In the Temposcope, dependencies are specified: 

 
// example definition showing explicit dependencies here! 
class is makeclass(data); 
ataff is makestafflist(data, [5,6,7]); 
AVSTAFF is makeAVSTAFF(staff, avail); 
avx is map(proj2_1, [avstud], class); 
// definitions showing some joint observations here: 
DJKTJA_AV is union(DJK_AV, TJA_AV); 

 

When compared with a conventional programming paradigm, where 

dependencies are implicitly scattered around the procedural code, explicit 

dependency specification helps to make the model more flexible to change and 

comprehensible in use.  

 

The definitions introduced so far are all intrinsic to the problem – they are not 

associated with any specific method for solving the timetabling problem. The 

emphasis on state-based rather than behavioural-based analysis enables the problem 
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solver to take richer observables into account with deeper insight into the 

dependencies amongst them. This helps the problem solver to gain more insight into 

the problem, with which eventually strategies or even efficient algorithms may 

emerge. However, even without further extending the model, the problem solver can 

already use the model to support decision making in timetabling. For example, the 

joint availability of staff can be easily obtained. Subsequent enhancement of the 

model will make the model more useful, but even at present it is already usable (cf. the 

Successive Approximation heuristic).  

 

Recall that one of the heuristics we have discussed is External Representation. 

The script itself, as an interactive textual artefact, can be regarded as a form of 

external representation of our understanding of the problem. In addition, the 

Temposcope incorporates visual representations to help the problem solver to make 

decisions in the process of development and use. Figure 4.4 is a screen capture of the 

visualisation of the Temposcope. 

 

 

Figure 4.4: A screen capture of the Temposcope 
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The visualisation shown in the Figure 4.4 was developed incrementally 

throughout the development and use of the Temposcope. Its development involves 

defining hundreds of Scout windows on-the-fly, which is a tedious job if every 

window has to be defined manually. This task was assisted by using the mechanism of 

virtual agents in DTkEden (a distributed version of TkEden [Sun99a]). Scout supports 

building up visualisation and interface quickly without possibly losing track of the 

problem. The visualisation also reflects the conception of the final timetable. This 

enables the problem solver to ‘work backwards’ by modelling a virtual solution for 

the problem. 

 

As the modelling of a variety of aspects of the Temposcope goes on interactively, 

the problem solver’s knowledge about the problem is gradually increased. This 

knowledge enables the problem solver to develop possible methods to tackle the 

problem in an incremental way. Immediate feedback given by the Temposcope helps 

the problem solver to assess whether he or she is heading in the right direction, and 

enables the application of the Means-ends Analysis heuristic. The initial strategy 

employed was “place-and-seek” [Pae94]. This involves assigning a project to a slot 

and checking whether there is conflict or not. If there is a conflict, other slots will be 

tried until the conflict is resolved. Even with this simple strategy, the Temposcope 

helps the problem solver to make decisions by automatically checking for conflict 

on-the-fly. 

 

As we gather experience in using the Temposcope, we can develop more 

advanced strategies. One strategy is to count the number of possible slots for each 

project after each assignment of slots. This statistic can be used to find out the most 

tightly constrained projects. The timetabler tries to schedule these projects first before 

the others. Counting the number of possible slots for more than one hundred projects 

is a tedious job for human but the computer can do it quickly and accurately. 

Human-computer co-operation makes solving the timetabling problem easier than 

solving by either human or computer alone.  

 

Another important feature of the Temposcope is its openness to the problem 

solver: it provides free access to all its definitions at any time without restrictions. 

This facilitates integrated development and use that enables the quality of the 

Temposcope to be improved over time with possible adaptation to new situations. 
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4.4.3 Distinctive qualities of the Temposcope 
 

The distinctive qualities of the Temposcope stem from its integrated development and 

use, based on EM concepts of observation, dependency and agency. They can be 

summarised as: support for a heuristic approach to problem solving; comprehensive 

problem analysis; adaptation and extension to a dynamic problem situation; and 

deeper engagement of human agents with the computer.  

 

Support for a heuristic approach to problem solving 

 

In the last subsection, we have shown that the Temposcope facilitates the use of a 

variety of human problem solving heuristics that include Means-ends Analysis, 

Successive Approximation and External Representation. The freedom to adopt any 

approach and heuristic at any time in problem solving is essential for solving 

problems whose solutions are uncertain.  

 

The Temposcope also enables more flexible human-computer co-operation than 

conventional timetabling applications. The problem solver can conduct exploratory 

experiments. The computer automatically maintains dependencies between 

observables that are central to giving immediate feedback from the experiments. The 

process of conducting experiments resembles the process of making a scientific 

discovery [Kla88], in which people make hypotheses and test them by conducting 

experiments. As a result of experiment, the hypotheses are validated or invalidated. 

Based on the new results, new hypotheses can be made which in turn direct new 

experiments. In particular, the Temposcope represents a construal in which 

provisional knowledge about the project timetabling problem is embodied and ready 

to be refined. The results of experiment may eventually lead to the discovery of better 

methods to solve the timetabling problem. 

 

Support for comprehensive problem analysis 

 

In the solution of a timetabling problem, there are two aspects to be considered. On 

the one hand, there are generic algorithms and strategies for timetabling that are not 

specifically related to the particular problem. On the other hand, we need to develop a 

rich understanding of the specific timetabling situation. In a traditional timetabling 

program, the abstract algorithms and strategies are built into the program itself. This 

means that they are determined by the developer in isolation from the problem solving 

context. The timetabler’s task is to make the best possible use of the given timetabling 
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mechanisms to tackle the specific problem. 

 

In using the Temposcope, it is possible to consider both the development of a 

timetabling method and the exploration of the specific timetabling problem in one and 

the same environment. In other words, timetabling using the Temposcope can be 

regarded as an integrated study of the timetabling problem and methods for its 

solution. In principle, this can lead to a deeper understanding of every aspect of the 

timetabling problem, out of which strategies for the best use of the power of both 

human and computer may emerge.  

 

It should be noted that the integration of development and use envisaged here is 

more intimate than can be achieved simply by interleaving conventional development 

and use. By way of analogy, allowing arbitrary interleaving of conventional 

development and use is similar to allowing a car driver to return her car to the factory 

to be redesigned whenever she encounters unexpected problematic road conditions. In 

EM, there is no ontological distinction between the states in which development and 

use take place; it is as if the car driver can invoke car redesign in the context in which 

problematic conditions arise. This is significant for a variety of reasons: because (in 

the traditional redesign scenario) problematic road conditions may not be 

reproducible, making testing difficult; because there is a semantic issue concerning 

whether the redesigned car can return to ‘the same context’; because it is hard for the 

driver to communicate her experience in a remote situation to the designer at the 

factory.  

 

As the above analogy suggests, EM involves a blurring of the roles of designer 

and user. This means that, when using the Temposcope, the timetabler can not only 

conduct problem analysis in systematic ways but also in ad hoc ways. In particular, 

the problem solver can change definitions in the Temposcope and observe the 

consequences. This helps the problem solver to comprehend the full implications of 

dependencies in the model.  

 

The definitions introduced as the result of problem analysis are intrinsic to the 

problem. We can regard them together as a model of the problem from which new 

strategies of solving the problem can be tested.  
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Support for adaptation and extension to a dynamic problem situation 

 

Conventional timetabling applications may have algorithms that are optimised to 

solve a particular timetabling problem. The flexibility of these applications is limited 

to the situations that can be conceived during the development process. Timetabling 

problems like the one we have discussed are dynamic in nature. The requirements and 

situations are changing according to the external environment in unpredictable ways. 

The observables of the Temposcope are direct reflections of the observables in the 

external environment. Changes in the external environment can be directly related to a 

need for change in the model. The problem solver’s job is to maintain the 

relationships between the model and the external environment by modifying existing 

definitions or adding new definitions.  

 

Since adding new observables to the Temposcope does not affect existing 

observables in general, new modes of observation can be introduced independently of 

existing observations. If new observations are based on existing observation, their 

dependencies are automatically maintained. Redefinition of an observable is also easy 

with automatic update of other observables that are dependent on it. All these features 

make extension to the model relatively easy. And, most importantly, new extensions 

can be tested quickly to allow a proper evaluation of their usefulness. The 

Temposcope has been already extended to allow online submission of staff 

availability and to estimate workload for each staff (workload weighting). 

 

 

Support for deeper engagement between human and computer  

 

Problem solving is related to subjective cognitive processes that originate from the 

problem solver’s intuition, knowledge and experience. Thinking in terms of 

observables, dependencies and agents is arguably more natural than thinking in 

variables, procedures and functions. The gap between our natural language and 

machine language can be kept to a minimum. The problem solver can be more 

engaged with the problem at hand rather than worry about language translations. 

 

The Temposcope allows the incorporation of subjective views of the problem 

solver. These views may reflect unresolved issues and unpredictable circumstances. 

They are provisional knowledge about the problem and its solution. Extensive 

interaction with the model may convert this provisional personal knowledge into 

more stable knowledge that can be shared with others. 
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4.5   Summary 

 

In this chapter, we have explored the use of the computer to support human problem 

solving. Based on research on general problem solving and the psychology of 

programming, we have proposed a better explanation of the phenomenon of human 

problem solving using a computer that emphasises cooperation at two levels of 

abstraction in searching many different problem spaces. We have discussed the 

difficulties of using a conventional programming paradigm to support problem 

solving. We have explained how integrated development and use of a Construal of the 

Problem Solving Situation (CPSS) can give powerful support for problem solving. In 

particular, we have shown how a CPSS supports the application of well recognised 

problem solving heuristics with reference to a simple example: the Crossnumber 

problem, and to a real life application: the use of the Temposcope. 
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5 Before Systems: Conceptual Integrity 

 

 

 

 

 

In his famous book, The Mythical Man-Month [Bro95], Brooks contends that 

“conceptual integrity is the most important consideration in system design”. This 

chapter endorses and elaborates this idea, and contends that obtaining conceptual 

integrity is essential before a coherent system conception can be established. We 

believe that, in successful system design, conceptual integrity emerges from activities 

that are prior to system identification. Along with the discussion we shall explain how 

the EM perspective on system development helps to address the issues of obtaining 

conceptual integrity. 

 

This chapter is organised as follows. Section 5.1 explores the meaning of 

conceptual integrity. Section 5.2 discusses the importance of conceptual integrity in 

system development, and identifies issues that arise in maintaining the conceptual 

integrity of a system design. Section 5.3 describes how EM can help system 

developers to maintain conceptual integrity by addressing the issues identified in 

section 5.2. Section 5.4 illustrates the discussion with reference to a TkEden model of 

a railway. Section 5.5 compares EM with other technologies that aim to help system 

developers to maintain the conceptual integrity of a system design. 

5.1   What is conceptual integrity? 

 

In the context of system development, the term ‘conceptual integrity’ was first 

introduced by Brooks in the 1975 edition of his book The Mythical Man-Month 

[Bro95]. Drawing on much experience of system development, Brooks contends that: 

 

“Conceptual integrity is the most important consideration in system 

design. It is better to have a system omit certain anomalous features 

and improvements, but to reflect one set of design ideas, than to have 

one that contains many good but independent and uncoordinated 

ideas…Conceptual integrity in turn dictates that the design must 

proceed from one mind, or from a very small number of agreeing 
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resonant minds.” [Bro95]  

 

Our discussion in this chapter aims to endorse and elaborate the importance of 

conceptual integrity in the design of systems, and offers EM to help developers to 

maintain conceptual integrity in a system design. 

 

Brooks associates ‘conceptual integrity’ with the ‘unity of design’ but offers no 

further satisfactory explanation on what conceptual integrity is. To appreciate the 

importance of conceptual integrity, we need to take a closer look at its meaning. The 

word ‘conceptual’ is associated with the cognitive process of concept forming that 

involves the conscious recognition and identification of elements of our experience; 

and the word ‘integrity’ is associated with the idea of ‘being integrated’ or ‘being one’. 

The idea of a coherent whole is reflected in the way that ‘having integrity’ is used to 

describe something that always conforms to one’s expectations – there is an implicit 

reference to future events. We describe something as having conceptual integrity, if 

the concepts formed from our experience of the thing can reliably determine the future 

events which are associated with the thing (there is no surprise). In obtaining 

conceptual integrity, we are concerned with the emergence of concepts (representing 

the rational world) from experience (representing the empirical world). As the 

American philosopher, William James, points out in his Essays on Radical 

Empiricism, first published in 1902: 

 

“Experiences come on an enormous scale, and if we take them all 

together, they come in a chaos of incommensurable relations that we 

cannot straighten out. We have to abstract different groups of them 

and handle these separately if we are to talk of them at all.” [Jam96] 

 

Raw experiences are potentially confusing or incoherent as “they come in a 

chaos of incommensurable relations”. To make sense of them, we need to abstract 

groups of relations between them and study them separately. Abstracting groups of 

relations from experiences is the embryonic concept-forming activity. The concepts 

formed may conflict each other. Obtaining conceptual integrity is a process of 

removing conflict. To remove conflict, we need to access the raw experiences that 

originally informed our concepts – to explore them, to understand, to compare and to 

analyse. This idea is depicted in Figure 5.1. At the left-hand-side of the figure, two 

groups of concepts are formed by abstracting relations from raw experiences. To 

obtain conceptual integrity, we need to combine the concepts into one group of unified 

concepts. This involves the resolution of potential conflict between concepts so that 
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they acquire coherence.  

  

 

Figure 5.1: Obtaining conceptual integrity from raw experiences 

 

Significant features of the above observations that relate to the nature of 

conceptual integrity include: 

 

 Conceptual integrity is something appreciated by an observer. This is because we 

cannot talk about experience without reference to the observer.  

 To obtain conceptual integrity, we need to resolve conflicts between concepts. 

This involves access to the raw experiences that inform these concepts. 

 A central issue in obtaining conceptual integrity is the potential incoherence of 

raw experiences. 

 

The process of obtaining conceptual integrity is closely associated with heuristic 

cognitive activities that are hard to formalize (cf. Naur’s characterisation of a science, 

which regards “coherent description as the core of the scientific/scholarly acitivity” 

[Nau01]). Since, as mentioned in the last chapter, EM has the potential to support 

heuristic problem solving, we believe that EM can help in obtaining conceptual 

integrity. An illustration of this process can be found in section 5.4 

5.2   Conceptual integrity of system design 

 

System development is located at the intersection of formal and informal, objective 

and subjective, and technical and non-technical activities (cf. [Sun99a, Wes97]). It is 

difficult for developers to maintain the conceptual integrity of the system design. By 

‘system design’, we mean the current state of the design of the system under 

development. A system design evolves throughout the system development process. 

Changes to the system design are usually made concurrently by different members in 

the system development team. This makes maintaining conceptual integrity of the 
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system design even more difficult. But conceptual integrity is surely necessary 

because it is essential for: 

 

 innovation – with deep understanding of the current state of the system design, 

the developers can relate concepts in the system design more easily to new ideas; 

 flexible system design – a system design with conceptual integrity can be more 

easily adapted to possible change of requirements; 

 effective project management – better knowledge about the status of the design 

makes it easier to adjust available resources. 

 

Conceptual integrity is of the essence in system development in that what lacks 

conceptual integrity cannot be easily perceived as a coherent system. The difficulty of 

maintaining conceptual integrity can be understood in relation to a tension involved in 

system development depicted in Figure 5.2 below. This tension exists between 

distinguishing and synthesising different viewpoints at both personal and 

interpersonal levels. 

 

  
Figure 5.2: A major tension in system development 

 

At a personal level, distinguishing viewpoints involves discriminating different 

observations from apparently the same experience; synthesising viewpoints involves 

integrating different observations as a unified experience. At the interpersonal level, 

distinguishing viewpoints is the key to the division of labour; and synthesising 
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viewpoints involves conflict resolution. The tension between distinguishing and 

synthesising viewpoints always exists in system development – we want to 

distinguish viewpoints on an experience but at the same time see them as a unified 

whole. The potentially incoherent experience that originates from trying to reconcile 

these viewpoints is the main obstacle to obtaining conceptual integrity. The key 

questions that need to be answered in relation to obtaining conceptual integrity in 

system design are: 

 

At a personal level, 

 How can we represent experience that is potentially incoherent? 

 How can we effectively abstract concepts from experience? 

 How can we resolve inconsistency in concepts? 

 

At the interpersonal level, 

 How can we ‘share’ experience and concepts? 

 How can we resolve conflicts and reach consensus? 

 How can we represent alternative views? 

 

These are difficult questions to answer because, as mentioned above, the process 

of obtaining conceptual integrity is hard to formalise. For this reason, conventional 

formal methodologies have limited applicability. To address the questions, we need to 

have a human-centred approach to system development that emphasises the creative 

nature of the cognitive process. We believe that the principles and techniques of EM 

offer a plausible solution that can satisfactorily address these questions. 

 

5.3   EM for maintaining conceptual integrity 

 

The central idea applying EM to help developers to maintain conceptual integrity in 

system development is to construct Interactive Situation Models (ISMs). ISMs can be 

used to represent situated experience acquired through a variety of system 

development activities. An ISM serves a role in knowledge representation in the sense 

that ‘one experience knows another’ [Bey99]. In introducing the concept of an ISM, 

Beynon and Sun [Bey99] cite writings on philosophy [Jam96], linguistics [Tur96] and 

experimental science [Goo00] that reflect the importance of negotiating meaning 

through interaction with artifacts where processes of explanation and knowledge 

creation are concerned. They point out that “[w]here formalisms aim at freedom from 

ambiguity and independence of agency and context, experiential representations rely 
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essentially upon the engagement of the human interpreter”. This highlights the limited 

role that formalisms can play in system development. The EM approach to 

overcoming this limitation is to use an ISM to embody experience (potentially 

incoherent) that human interpreters can abstract and share by interacting with it, and 

that may eventually lead to conceptual integrity in a system design.  

 

In EM, there is a direct correspondence between observables, dependencies and 

agents in the external world and variables, definitions and actions in an ISM. It is this 

faithful metaphorical representation of real world entities that makes an ISM a 

powerful representation of what we observe and experience. Specifying variables, 

definitions and actions in an ISM is not primarily a rational process – because the 

modeller does not have to give a logical justification for their existence in the model – 

rather it is an empirical process in which observations are faithfully recorded. On this 

basis, even incoherent experience can be embodied in an ISM. By analogy, an ISM 

resembles a draft sketch for a painting (cf. [Ras01]). Its purpose is primarily 

concerned with forming concepts rather than specifying concepts –not all the lines in 

the sketch will eventually remain in the final painting; nevertheless, every line in the 

initial sketch contributes – even if only indirectly – to the final painting at some stage 

in the painting process. EM is concerned with identifying and exploring relevant 

observations prior to formulating concepts from which the system emerges. By its 

nature, this process of identification demands that we explore things that are 

eventually deemed to be outside the final system. 

 

As mentioned earlier, James’s prescription for making sense of experience is “to 

abstract different groups of [relations] and handle these separately”. In EM, activity of 

this nature can be performed by extracting groups of definitions from an ISM and 

studying them separately. An effective way to study concepts is to experiment with 

them in the manner that is similar to the use of a spreadsheet. A typical use of a 

spreadsheet involves correlating the real world situation with the state captured in the 

spreadsheet cells. For instance, a spreadsheet can represent the financial situation of a 

company. A change in the value of a cell may reflect a change in the real world 

situation of the company. An accountant can perform many ‘what-if’ type of 

experiments to explore a variety of situations in which the company will be affected. 

By interacting with a spreadsheet, one can obtain experience that reflects the 

experience of changing the real world financial situation of the company. Based on 

this experience, one can analyse existing concepts and form new concepts. Using an 

ISM resembles using a spreadsheet in this respect, but provides more general 

functionalities that are suitable for studying concepts in potentially any domain. For 
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this reason, an ISM is a test-bed within which the concepts of a system design can be 

studied, which is essential for obtaining conceptual integrity of the system design. 

 

Since an ISM embodies experience and concepts, a developer can share 

experience and concepts with others by sharing an ISM. Unlike a static document, an 

ISM can be shared and studied by others interactively. For this reason, an ISM is like 

a concrete physical prototype of a product which one can study by directly 

experiencing it rather than merely in an abstract fashion.  

 

Where collaborative work is concerned, the collaborative definitive modelling in 

the DMF provides an agent hierarchy structure within which ISMs can be shared and 

conflicts can be resolved. The detail of the structure and mechanisms involved has 

been already discussed in chapter 2, and chapter 3 illustrates the idea with reference to 

the design of a lathe spindle.  

 

To show that the EM perspective on system development is highly relevant to the 

conceptual integrity of a system design, we can reinterpret the concerns of system 

development discussed in chapter 3 in terms of conceptual integrity. 

 

 Complexity – In system development, a system design will be expressed with 

reference to many different ideas and viewpoints. The viewpoints are not 

necessarily or typically consistent when taken in conjunction. In other words, 

they all come together with such a degree of complexity that is difficult to make 

sense of them. If we are to achieve conceptual integrity, we need to be able to 

represent complex experiences of this sort that lack conceptual integrity. At 

present, we ‘represent’ such experiences in a rather incoherent way using 

documentation in both natural and formal languages, possibly supported by 

prototypes, and manage sense making through documented meetings between 

developers. If we cannot represent such experiences effectively, we cannot begin 

to resolve the conflicts that inhibit sense making and are tempted to resort to 

simplifying compromises. By using EM, we aim to achieve conceptual integrity 

of a system design without compromising complexity. There is evidence that 

achieving conceptual integrity without compromising complexity is possible. 

For instance, Brooks [Bro95] cites the cathedral at Rheims as an example of a 

complex structure having conceptual integrity.  

 

 Predictability – The perception of conceptual integrity is associated with 

confirmation of expectation. Things have conceptual integrity if they do not 
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surprise us, in the sense that what we know about the system is a reasonable 

guide to what we do not know. It should be noted that this predictability, that is 

fundamental to conceptual integrity, manifests itself in observation and 

interaction. The fact that all concepts are expressed by using a set of common 

modelling abstractions (as e.g. in the proposals for ‘seamless’ software system 

development discussed in [Lid94, Pai01]) does not necessarily mean that a 

system will exhibit conceptual integrity. For example, representing a set of 

programs using a functional programming paradigm arguably does not guarantee 

their conceptual integrity. Functional programming is well-suited to the 

representation of simple programs whose entire significance is captured in their 

input-output relation. It cannot easily meet the need to embrace other viewpoints 

on programs, such as arise where complex interaction or visualisation is involved. 

For this reason, where programming is concerned, the use of the functional 

paradigm entails trading complexity for conceptual integrity. 

 

 Unity – The coherence of things that have conceptual integrity means that we can 

experience them as ‘being one thing’. Grouping observables into objects as in 

OOA is one way to try to bring unity to a complex phenomenon, but the 

coherence and integrity of an object is achieved by extracting it and viewing in 

isolation from a single viewpoint. On the other hand, the coherence needed for 

conceptual integrity in a system design needs to embrace many viewpoints. This 

is similar to the situation in everyday experience, where the integrity of 

observables is not simply confined to object associations but extends to more 

subtle dependencies. As explained and illustrated with reference to modelling a 

door in subsection 4.2.2 of Rungrattanaubol’s thesis [Run02], “in modelling with 

definitive scripts, dependency is the feature that gives integrity to [the] diverse 

representations of a ‘single’ object”. The key feature of modelling with definitive 

scripts is that it allows us to add observables within conceptually the same state. 

In other words, adding a definition to the script need not mean changing the state 

to which it refers, but rather enriching our perception of the state to which it 

refers. With such use of definitions, dependencies between observables are seen 

to be the mediators of unity, expressing ‘what belongs to what’. 

 

 Cognitive aspect – In the convolving generation of knowledge, systematic 

elements emerge. These elements sometimes make sense individually but are 

incoherent when combined. Potentially, subject to suitable compromises and 

shifts in perspective, all the requisite systematic elements can be made coherent 

(cf. Naur’s idea of science as ‘coherent description of aspects of the world’ 
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[Nau01]). Conceptual integrity emerges in system development through bringing 

coherence to groups of systematic elements taken together – as an incremental 

and evolving process. 

 

 Collaborative aspect – Even when each individual developer’s view has integrity, 

we still need to bring them together to realize a coherent overall design in the 

spirit of Brooks’s ‘one mind’. The DMF provides collaborative definitive 

modelling in which a hierarchy of agents/developers interact with each other by 

sharing ISMs to achieve a coherent and consistent representation. 

 

 Methodological aspect – Conceptual integrity cannot be imposed by formal 

methods or business processes. Obtaining conceptual integrity is a heuristic 

cognitive process. EM provides an observation-led approach that is not 

associated with preconceived ideas about how the observables in the domain 

should be organized. For instance, whereas OOA obliges the modeller to identify 

and maintain object boundaries throughout the system development process, EM 

does not favour any specific whole-part decomposition of a system under 

development unless or until one emerges. The motivation for such 

decomposition may come from the properties of the domain (‘thinking about the 

system’) or from the demands of distributed development (‘thinking about 

system development activities’). EM does not separate the phases of the 

development activities according to a preconceived pattern. This promotes 

conceptual integrity through working practices that are in sharp contrast to a 

classical development process, where the contributions made by separate design 

participants at the various stages are largely independent. 

 

 

We summarise this section by offering answers to the questions asked at the end of  

section 5.2: 

 

At a personal level, 

 How can we represent experience that is potentially incoherent? – by using ISMs 

raw experience can be faithfully represented. EM is not primarily concerned with 

modelling a system but facilitating construals of situations in the environment 

from which the system emerges.  

 How can we effectively abstract concepts from experience? – in EM, observation, 

interaction and experiment are the key to the development of concepts. 

 How can we resolve inconsistency in concepts? – by extensive interaction and  
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experiment with the model, inconsistency can be resolved. 

 

At the interpersonal level, 

 How can we ‘share’ experience and concepts? – an ISM resembles a concrete 

physical prototype in that it can be shared amongst developers, but offers a far 

richer level of conceptual support through interaction than a conventional 

prototype. By interacting with a shared ISM, developers can share experience 

and concept. 

 How can we represent alternative views? – the modeller is able to add 

observables to an ISM without changing its conceptual state. Observables or 

groups of observables representing alternative views can be linked together with 

underlying dependencies. 

 How can we resolve conflicts and reach consensus? – the hierarchical 

collaborative definitive modelling structure in the DMF helps developers to 

resolve conflict and reach consensus in a manageable way. 

 

In short, EM aims at enhancing the scope for interaction in system development by 

allowing experience and concepts to be embodied in computer-based models that can 

be shared, explored and discussed dynamically to facilitate the maintenance of 

conceptual integrity in a system design. 

5.4   Case study: the Railway model 

 

In this section, we shall describe the Railway model and use it to illustrate the ideas 

discussed in earlier sections. The model was developed by Y. P. Yung in the EM 

research group, and has been used to illustrate various aspects of EM research in other 

contexts [Bey90b, Adz94a, Adz94c]. It is a TkEden model with scripts of a variety of 

definitive notations. The model contains a number of submodels which will be 

described one by one as the discussion develops. 

 

The Railway model contains a model for designing track layout. Figure 5.3 

shows the visualisation of the track layout model. The track segments are arranged to 

form two circuits one inside the other. The two circuits are connected by the pair of 

sets of points located at the top of the figure. Although the track layout is simple, the 

definitions for track segments are based on standard track segments from a track 

catalogue - so that the length and curvature of each piece is based on a standard 

specification. Listing 5.1 shows an extract from Donald definitions that defines one of 

the segments in the track layout. The openshape ST226 defines a standard 



5.4  Case study: the Railway model 

 

109 

prototypical segment with the product code ST226. The openshape A9 defines a 

segment on the track that is based on a transformation of the segment ST226.  

 

 
Figure 5.3: The track layout model 

 
# standard prototypical curved track segment 
openshape ST226 
within ST226 { 
 real angle 
 angle = pi div 4 
 real x1, y1, x2, y2 
 x1 = (~/Radius2 - ~/TrackWidth div 2) * sin(angle) 
 y1 = x1 * tan(angle div 2) 
 x2 = (~/Radius2 + ~/TrackWidth div 2) * sin(angle) 
 y2 = x2 * tan(angle div 2) 
 line f, e 
 f = [{0, ~/TrackWidth div 2}, {0, -~/TrackWidth div 2}] 
 e = [{x1, y1 + ~/TrackWidth div 2}, {x2, y2 -~/TrackWidth div 2}] 
 arc l, r 
 l = [{0, ~/TrackWidth div 2}, {x1, y1 + ~/TrackWidth div 2}, \ 
  -angle * 180 div pi] 
 r = [{0, -~/TrackWidth div 2}, {x2, y2 -~/TrackWidth div 2}, \ 
  -angle * 180 div pi] 
} 
# A9 track segment based on transformation of ST226 
openshape A9 
within A9 { 
 point start, end 
 real inDir, outDir 
 start = ~/A10/end 
 inDir = ~/A10/outDir 
 shape track 
 track = trans(rot(~/ST226, {0,0}, inDir), start.1, start.2) 
 end = rot(start, start + {~/Radius2 @ inDir + pi div 2},~/ST226/angle) 
 outDir = inDir + ~/ST226/angle 
} 
 

Listing 5.1: Definitions of a track segment based on transformation from a standard prototypical 

part. An extract from the script producing Figure 5.3.  

 

The use of standard track pieces in Figure 5.3 resembles the use of physical 
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prototypes. In this case, the designer chooses to use small-scale replicas of real 

standard track segments. The task involves selecting the right pieces and connecting 

them together in order to experiment with possible layout options. By its nature, the 

process is interactive and informal. The merit of a physical model over a 

mathematical model is that the designer can get concrete experience from the model 

by interacting with it - this helps the cognitive process of understanding and 

stimulates creativity (cf. Gooding's construals [Goo90]). The EM model of the track 

layout has the same quality as a physical model. The designer can interact with the 

model by making definitions. The Donald visualisation of the model gives immediate 

feedback to the designer's actions. Of course, the physical model has many attributes 

and behaviours that are not represented in the EM model, such as the weight of each 

segment and the rate of track expansion on heat under sunlight. Identification of 

additional attributes and behaviours is part of the design process. In EM, the designer 

can always extend the model by adding extra definitions to reflect his understanding 

and to embody practical experience obtained through interacting with the model. In 

this respect, an EM model has an significant advantage over a physical model. For 

example, if there is a budget for the cost of the track, the designer can introduce a price 

for each standard segment and add definitions for maintaining a total cost for the 

design. In the case of a physical model, it is necessary to manually maintain a separate 

cost model in parallel. The synchronisation between the two models has to be 

performed manually.  

 

In a real situation, the designer typically has to consider integrating a wide 

variety of such different viewpoints. It is difficult for the designer to maintain the 

conceptual integrity of the whole design. In EM, such models can be integrated into 

one model in such a way that the selection of segments in the layout is automatically 

reflected in the total cost.  

 

The model depicted in Figure 5.3 and the associated Donald definitions only 

specify the geometric appearance of the track. To further appreciate the potential 

power of integration, we can consider the segment connectivity model depicted in 

Figure 5.4. This model is a part of the Railway model that describes the combinatorial 

relationships between track segments. It defines a topological layout of the track. 

Such a layout is essential because the connectivity of track affects the possible paths 

that the trains can travel. We need a representation that expresses the relationship 

between adjacent track pieces more explicitly than physical coincidence of endpoints 

on the display. The topological layout depicted in the left-hand-side of the Figure 5.4 

serves this purpose. 
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Figure 5.4: The connectivity model 

 
 
1. mode Point1 = 'abc'-diag 5   #points have 5 vertices and 3 colours 
 
2. Point1Stts = 1   #status of the points, 1 = closing the loop 
3. #defining the edges 
 
4. a Point1{1}=1; b Point{1}=1; c Point1{1}=if(Point1Stts==1) 2 else 3 
5. a Point1{2}=2; b Point{2}=4; c Point1{2}=if(Point1Stts==1) 1 else 2 
6. a Point1{3}=3; b Point{3}=5; c Point1{3}=if(Point1Stts==1) 3 else 1 
7. a Point1{4}=2; b Point{4}=4; c Point1{4}=4 
8. a Point1{5}=3; b Point{5}=5; c Point1{5}=5 
 
9. Scale = 100                 #scaling factor for locating vertices 
10. Point1!1=A!1                #defining locations of the vertices of Point1 in 
11. Point1!2=A!1–[Scale/2,0,0]  #terms of the location of the first vertex of 
12. Point1!3=A!1-[Scale/2,Scale/10,0] #A, the graph representing the outer loop 
13. Point1!4=A!1-[Scale,0,0] 
14. Point1!5=A!1-[Scale,Scale/5,0] 
 
 

Listing 5.1: Definitions that specifies the digraph at the right of Figure 5.4 

 

The topological layout uses a directed graph with coloured edges to describe the 

connectivity between segments. Each vertex of the graph represents a track piece and 

each edge represents a join of connected track pieces. In the graph, the direction of an 

edge represents a direction for the traversal of the associated track segments. The 

right-hand-side of Figure 5.4 depicts one of the sets of points that link the two circuits 

- it contains 5 vertices (numbered from 1 to 5) and edges of 3 colours (colour a, b and 

c). The corresponding definitions are shown in Listing 5.1. The a-coloured edges 

represent the path that a train can travel in an anti-clockwise direction in the circular 

track. Similarly, the b-coloured edges represent the path in a clockwise direction. The 

c-coloured edge is an undirected edge that conditionally links to one of two vertices 

depending on the current status of the points (i.e. vertex 1 connects to either vertex 2 

or vertex 3). The definitions in lines 2-6 of Listing 5.1 serve this purpose. 

 

The track layout model and the segment connectivity model complement each 
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other as two alternative views for the track design. Together they also provide the 

necessary context for adding the third submodel: a train simulation model. One 

feature for this model is that it introduces two trains as autonomous agents. Figure 5.5 

depicts an integrated view of three models. In the figure, the positions of two trains are 

represented as bold lines on the track layout model. The current direction of a train 

can be inferred from the circle at the tail of the train. The bottom of the figure shows 

the interfaces for the signalman who controls the points and the two drivers of the 

trains. As the interface shows, each train can travel in a clockwise or an 

anti-clockwise direction, and at any time the train can be stopped by pressing the stop 

button. Moreover, the speed of train movement in the simulation is governed by a 

clock agent. 

 

 
Figure 5.5: An integrated view of the track layout model, the connectivity model and the train 

simulation model 

 

Adding a train simulation model to a track design potentially enables us to study 

it in a very rich context. For example, we can explore the consequences of track 

failure. Where normal operation is concerned, we can also use the integrated model to 

study the co-operation between the drivers and the signalman. 

 

The last submodel integrated into the Railway model is the train station model. 

This model simulates the train arrival and departure protocols with reference to one of 



5.4  Case study: the Railway model 

 

113 

the trains (namely Train 1 in Figure 5.5) and the three stations (namely A10, B5 and 

A5 in Figure 5.5.). Figure 5.6 shows the entire visualisation of the Railway model. 

The right-hand-side of the figure depicts two stations: the most recent departure 

station for Train 1 (namely A10 as displayed at the top of Figure 5.6) and its next 

scheduled arrival station (namely B5 as displayed below). Passengers on Train 1 and 

at the stations A10 and B5 are also depicted. Each station has a stationmaster who 

communicates with a guard on the train to manage the train arrival and departure. The 

protocols that govern the interaction of the various agents within the train station 

model were derived from an LSD account listed in Appendix J. 

 

 
Figure 5.6: Visualisation of the entire Railway model 

 

The Railway model itself has no clear purpose. It is an EM model that illustrates 

the possibility for embodying incoherent experience that lacks conceptual integrity. 

Bits of the model make sense independently but not when taken as a whole – the 

model can partially sustain a whole variety of interpretations, but every interpretation 

is problematic in some respect if the entire model is taken into account. For example, 

one obvious interpretation for figure 5.5 is that it is a model railway operated via the 

interface supplied by Train 1 and Train 2 controls. On the other hand, the visualisation 

of the train itself resembles the visualisations that are used in practice in electronic 

signal boxes to indicate which real life ‘track segments’ are currently occupied. In this 
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case, there is a conflict between whether we interpret a track segment in Figure 5.5 as 

a standard piece of model railway track or as representing a segment of a real track 

possibly several miles long that can (according to normal real-life conventions for 

railway operation) be occupied by at most one train at any time. To resolve this 

conflict, we should need either to develop a track layout that more closely resembles a 

context for real world railway operation (e.g. match the layout to part of a particular 

real world railway network) or to visualise the trains as spanning several track pieces, 

as would be realistic in the model railway scenario.  

 

Another example of a conflict relates to agency. In the model railway model in 

Figure 5.5, the trains themselves do not ‘really’ have drivers. It is the modeller or user 

who drives the train through operating the simplified control interface. Whether this is 

appropriate depends on the purpose for using this model. A track layout designer will 

probably find that a simple control interface is all he needs for testing different design 

layouts. However, a railway safety supervisor might find that it is crucial to model the 

drivers of the train in more detail. For instance, a driver’s reaction to signals is very 

significant where the safety of the railway is concerned (see e.g. the EM railway 

accident simulation model described in [Sun99b] which involves extensive 

exploration of a historical railway accident involving three drivers and two 

signalmen).  

 

In developing a complex railway system, division of labour is unavoidable. 

There are many people involved in different aspects of the system. This diversity of 

concerns leads to conflicts in the design. A railway model such as this one facilitates 

the sharing of understanding across different members involved in the development. 

In this respect, the railway model acts as a medium for communication between 

developers.  

 

When the train arrival and departure model was originally developed, there was 

no visualisation for the actual stations and the physical track between them. In an 

early prototype of the integrated model, passengers were observed to get off the train 

in unexpected contexts. This illustrates that some conflicts between aspects of the 

system under development can only be discovered in the process of integrating 

different aspects of the system. The concept of collaborative definitive modelling in 

the DMF provides an effective way to integrate different aspects of the system, to 

discover and resolve hidden conflicts, and thereby helps developers to maintain the 

conceptual integrity of the whole system design.  
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5.5   Enabling technologies for maintaining 

conceptual integrity 

 

EM can be viewed as an enabling technology that helps to maintain conceptual 

integrity in the design of systems. It uses observations, dependencies and agencies as 

abstractions that can potentially bring unity to diverse human interpretations and 

viewpoints. Where software systems are concerned, the most closely related 

technologies are associated with the search for paradigms for data modelling and 

programming that are well-matched to human cognitive processes and everyday 

interaction. In this section, we review key data modelling and programming 

paradigms, and briefly consider their connection with EM. 

 

5.5.1 Data modelling 
 

In the early years of computing, all persistent state was stored in program and data 

files. The data in such files was recorded in many different formats, using data types 

specific to the programs used to process the data. As applications became more 

complex, the diversity of data representations and structures made an integrated data 

processing strategy problematic. The lack of conceptual integrity in data models lay at 

the root of this problem. The introduction of the first databases was associated with 

new techniques for data modelling aimed at maintaining conceptual integrity.  

 

The central idea behind databases is to separate the presentation of data from 

how the data is stored at the physical level [Car95]. This is intended to achieve 

machine-independent representation of data. Database users do not have to worry 

about how the data is stored on the physical media before manipulating the contents of 

a database. Early database technology included hierarchical and network databases. 

These were then replaced by relational databases. Relational databases succeeded 

because of their foundation in the mathematical theory of relations, and because their 

query languages allowed even end-users to manipulate the database easily. At that 

time, by modern standards, the applications of computers were rather limited. 

Relational databases helped users to maintain the conceptual integrity of systems by 

providing a unified way to represent and manipulate data. 

 

In recent years, as computers have become pervasive and popular, the 

applications of computer-based technology seem to have outgrown the set of 
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primitive and predefined uses that relational databases support. Modes of data 

representation and manipulation are now far more diverse and complex, as are the 

interfaces between data, the users and the environment. 

 

 
Figure 5.7: Modern context for data generation, access and manipulation 

 

Figure 5.7 depicts the modes of data generation, access and manipulation 

represented in a typical modern computing application. The interactions between the 

persistent data depicted in the middle of the figure and the various different agents are 

complex. Many different forms of data input and sources of data are represented in the 

applications. The multi-user environment urges the consideration of different 

visualisations and customisations. The manipulation of persistent data is in part 

automated by transient processes that are hidden from the user using triggers, 

inference rules and data dependencies. It is then very difficult for an individual to 

comprehend the whole system as a whole entity. The conceptual integrity of the 

system is threatened. We need a better approach to data modelling that should be 

sufficiently expressive to meet the challenge of representing such an application in an 

intelligible way.  

 

The principles of EM potentially offer an approach to data modelling that can 

bring conceptual integrity to modern computing applications. Observation, 

dependency and agency provide more general abstractions for data modelling than 

conventional data modelling paradigms can provide, and potentially enable data 

generation, access and manipulation to be managed in a unified framework. To help 
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the reader to understand what EM can offer, we briefly compare the qualities of an 

EM model with those of other data modelling paradigms (cf. [Bey94b]).  

 

EM versus relational data modelling. The main similarity between EM and 

relational data modelling is that both use dependency relationships to organise 

observables. In relational database design, tables are created according to the patterns 

of functional dependency observed amongst sets of attributes. In an EM model, 

observations are also structured with reference to the functional dependencies 

between observables. However, in a relational database, functional dependency is 

only used for designing tables. When it comes to the use of a relational database, 

changes to the table structure are assumed to be rare. In an EM model, functional 

dependency is used to maintain potentially much more dynamic relationships 

amongst observables.  

 

The wide acceptance and powerful influence of relational databases in business 

computing over the last 20 years can be attributed to its major contribution to meeting 

two research challenges: that of end-user programming (as addressed by the 

development of relational query languages) and that of representing real world state 

(as addressed by the pervasive representation of business data in relational tables). It 

is interestingly to note that, since Codd’s conception of the relational model of data in 

1970 [Cod70], the researches on the two themes of ‘end-user programming’ and 

‘representing real world state’ have diverged, so that they are now conducted 

by-and-large separately. Where end-user programming is concerned, the modern 

emphasis is on visual programming. Where representing real world states is 

concerned the modern emphasis is on virtual reality (VR) and augmented reality (AR). 

The integration of these two research strands is no longer comprehensively supported 

by relational data modelling. The principles of EM potentially offer more scope for 

the reintegration of these two themes. Evidence to support this claim can be found in 

the fact that the Information Systems Base Language (ISBL [Tod76]), an early 

prototype for a relational query language, is essentially a definitive notation. This 

means that, by introducing the Eden Definitive Database Interface (Eddi) – a 

definitive notation based on ISBL – it is possible to subsume the functionality of a 

relational database within the EM tool TkEden. The emerging use of Eddi in 

conjunction with agent-related abstractions (e.g. as implemented by TkEden triggered 

actions) and definitive notations that offer more than tabular representations and a 

relational query interface illustrates the scope for EM to generalise relational data 

modelling.  
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EM versus rule-based data modelling. The need for data modelling to support 

rule-based activity underlying ‘intelligent systems’ motivated the deductive database 

as an extension of the relational database. In addition to all the relational database 

features, the database model stores mechanisms for reasoning about the stored 

information expressed using constructs of logic programming [Ram94]. Deductive 

databases can perform sophisticated inferences and draw conclusions from the data 

stored by using a predefined set of logical rules. In EM, the possible forms of user 

interaction are typically subject to fewer logical constraints. Moreover, in principle, 

EM can represent the ideas of triggering and deduction in ways that are safer in that 

they give the user more conceptual control, albeit at the cost of building explicit 

mechanisms that are less efficient. 

 

EM versus object-oriented data modelling. Storing data organised as objects with 

relevant operations is conceptually very different from storing data organised as 

observables within definitions. In particular, indivisible interactions between real 

world entities are very well represented by definitions specifying dependencies 

between observables. In an OO data model, the indivisibility of interactions can only 

be modelled by message passing among objects. Whereas dependency maintenance in 

EM is automatic, in an OO model the integrity of updates can only be guaranteed by 

explicit specification of communications between objects. In the real world, the 

characteristics of an entity are determined by how it is observed. How an entity is 

perceived and how it can be transformed is dependent what agents are present in a 

system. In some circumstances, this means that what constitutes an entity is very 

ambiguous and changes over time. An EM model facilitates this dynamic view of 

entities by allowing the user to change what constitutes an observation on-the-fly. In 

contrast, the OO paradigm, objects have fixed boundaries, and changing the 

boundaries is usually difficult. Moreover, many observations may be associated with 

a context supplied by more than one object – as when we consider the attributes of a 

relation. It is difficult to model this kind of observation in an OO data model. The 

reason for this is that objects are good at representing circumscribed patterns of 

observation and transformation but not the degree of interconnectedness and 

fuzziness that characterises change in the real-world. 

 

Features of the EM approach to data modelling can be summarised as follows:  

 

 An EM model has the fundamental quality of a database that data sources 

are conceptually integrated but offers more scope for rich representation 

and interaction. Definitive notations support more general observables for 
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the metaphorical representation of data of interest.  

 Definitions provide a direct and dynamic mechanism for representing 

dependencies amongst observables.  

 The concept of agency in EM is general enough to embrace all activities 

that are associated with data generation, access and manipulation.  

 EM supports the integrated design and use of data modelling applications 

within the same framework (cf. the ‘factory’ analogy in section 4.4.3). 

 

 

5.5.2 Programming paradigms 
 

In this subsection, we shall consider the efforts made in computer science to help 

developers to maintain conceptual integrity in software systems. The discussion will 

centre around how programming research is converging towards a generic modelling 

concept that helps to achieve conceptual integrity. 

 

Almost every paradigm of programming represents a shift in perspective on how 

we do programming. Most of the well-developed paradigms have a relatively small 

and coherent set of concepts. For example, logic programming sees everything in 

terms of logic rules; functional programming sees everything as functions; and in OO 

programming we are encouraged to see things in object terms.  

 

The variety of programming paradigms reflects the nature of computer 

programming. Software system development resembles general problem solving in 

that there is more than one way of solving a problem. But why is one programming 

paradigm more popular than another if they all seem to have a set of coherent concepts? 

In particular, why is the OO paradigm popular but not the functional programming 

paradigm? One possible explanation is that the OO paradigm is more in line with the 

way we think about problems. Identifying objects is one of the tasks we usually do 

when solving problems in the real world. We also invoke the concept of inheritance 

when we recognise one problem as a special case of another. The success of the OO 

paradigm reflects a deeper concern that relates to conceptual integrity – we are not 

only seeking to design a coherent language around simple and consistent 

programming constructs, but also a coherent as well as a commonsense way of 

thinking about the world. True conceptual integrity of software systems can only be 

achieved by finding ways to represent our natural way of thinking about the world. 

We can find more evidence in support of this claim by considering the extensions of 

the OO paradigm discussed below.  
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One criticism of OO concerns the hierarchical structure of class inheritance. A 

class inheritance diagram depicts a relationship among objects in the real world. It is a 

mechanism for classification. As a commonsense analysis shows, a set of concepts 

can usually be classified in different ways in the real world, but class inheritance only 

represents one of the classifications. Real classification is dynamic whereas class 

inheritance in OO is static. This leads people to argue that OO cannot capture real 

world concepts faithfully [Jac02]. Recent research into ‘subject-oriented’ [Har95] and 

‘aspect-oriented’ [Elr01] programming are trying to address this problem. The term 

‘cross-cut’ is used to describe situations in which there are common concerns amongst 

a set of classes that cannot be captured by a class inheritance diagram. 

 

Other critics are challenging the concept of object itself. Agent-oriented 

programming can be viewed as an extension to OO. In this context, Jennings [Jen00] 

cites the following definition: “An agent is an encapsulated computer system that is 

situated in some environment and that is capable of flexible, autonomous action in 

that environment in order to meet its design objectives.”. This area of research 

recognises that there are in general two kinds of object: passive and active. The 

current OO paradigm favours the modelling of passive objects: most objects respond 

to requests by means of message passing and cannot initiate actions on their own 

behalf. The identification of passive and active objects is also a commonsense feature 

of everyday life situations. 

 

OO and its extensions reflect a trend in programming research towards finding 

ways of representing real world concepts as naturally and faithfully as possible. In 

shifting the focus from objects to agents, we are moving towards a more 

‘commonsense’ kind of modelling. If we regard Agent-oriented programming as a 

‘natural extension’ of OO, then EM can be thought of as a ‘natural extension’ of 

Agent-oriented programming 2 . In fact, some researchers in Agent-oriented 

programming are proposing concepts that are in line with the principles of EM. This 

will be illustrated in the following discussion, in which we compare EM with other 

approaches to programming. 

 

 

                                                 
2 Roughly speaking, classes in OO can be represented by EM agents; inheritance in OO corresponds 

to prototype inheritance in EM. 
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EM versus object-oriented paradigm 

 

Typically, OO software development creates three artefacts: the object-oriented 

analysis (OOA) model – the model of the real-world problem; the object-oriented 

design (OOD) model – the model of a software solution of the problem; and the 

program – the implementation of the OOD model. Although all three models are 

represented in terms of objects and their relationships, they are inherently different. 

As Kaindl [Kai99] observes, the transitions from model to model are not smooth. 

Although the graphical notations used to represent OOA and OOD models are very 

similar, and this gives a feeling of smooth transition, in reality it causes more 

confusion. Also, in practice, the transitions between different OO models are very ad 

hoc (see Figure 5.8) – updating a particular model usually triggers a chain reaction of 

changes in the other two models resulting in time-consuming consistency 

maintenance and potentially more proneness to errors. In EM, we typically have only 

one model to deal with. This is because, in practical situations, we do system analysis, 

design and implementation incrementally in parallel. The fact that there is no clear 

distinction between different models from different kinds of software engineering 

activities helps to make the system design more adaptable and eliminates potentially 

time-consuming transitions between different models. 

 

 
Figure 5.8: Chaotic transitions among different models in an OO software project 
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Another comparison can be made between an EM model and an object model of 

a real world entity such as a house. If we view each transformation of a definitive 

script to represent a house as a method, we can regard an EM model of a house as an 

object. This interpretation is acceptable if we already know the transformations to 

which a house is to be subjected in our proposed system. The distinction here is 

between the circumscribed knowledge required to specify an object in OO and the 

provisional knowledge of attributes and interactions associated with an EM model. 

Comprehending an object involves knowing everything we can do with it, but in itself 

an EM model does not circumscribe the transformations we can apply.  

 

The difference between an EM agent and an object also reflects the different 

philosophies behind the two paradigms. An object contains state of its own. 

Communications between objects are via message passing (as implemented for 

instance by using synchronous function calls). Real world entities communicate with 

each other concurrently and freely in ways that cannot be captured by predefined 

message calls. EM agents can model real world entities more accurately than objects. 

An EM agent is more general than an object. All objects can be interpreted as EM 

agents but not vice versa. 

 

EM versus other extensions of object-oriented paradigms 

 

Agent-oriented software engineering can be viewed as an extension of the OO 

paradigm. There are two common notions of ‘agent’ in the field. The strong notion of 

agency models an agent in terms of mental notions such as beliefs, desires and 

intentions to be explicitly specified in both design and implementation; the weak 

notion of agency models an agent in terms of its observable properties as anything that 

exhibits autonomy, reactivity, pro-activity and social ability [Woo95]. 

 

If we adopt the weak notion of agency, it is difficult to identify agents because 

characteristics such as ‘social ability’ are difficult to define exactly. Lind [Lin00] 

argues for a less restrictive notion of agency. He suggests a very weak notion of 

agency whereby any entity can be an agent, and contends that “the conceptual 

integrity that is achieved by viewing every intentional entity in the system as an agent 

leads to a much clearer system design and it circumvents the problems to decide 

whether a particular entity is an agent or not”. This very weak notion of agency is in 

keeping with the EM notion of agency as discussed in chapter 2. However, the most 

distinctive feature of agency in EM is the mediation of agent interaction through the 

explicit representation of dependencies, which have so far not been well-explored in 
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the traditional agent-oriented paradigms. 

 

 

5.6   Summary 

 

This chapter discusses the importance of maintaining conceptual integrity in a system 

design as the core preliminary activity prior to system conception. We point out that 

the main obstacle to maintaining conceptual integrity is the representation and 

management of the potentially incoherent experience involved in distinguishing and 

synthesising viewpoints at the personal and interpersonal levels. We propose that, by 

using ISMs, system developers can represent incoherent experiences so that they can 

be studied and shared through observation, interaction and experiment. The abstract 

discussion of these principles is illustrated with reference to the construction of the 

Railway model. We have also discussed and compared EM with data modelling and 

programming paradigms as enabling technologies to support the maintenance of 

conceptual integrity in a system design. 
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In this chapter, we discuss how EM principles can potentially be applied to everyday 

practical computing as it may be in the future, where some systems can never be 

formalised by developers. The system concept is formed upon its use in a situation.  

Following Weiser [Wei91] we adopt the term ‘Ubiquitous Computing’ or in short 

‘ubicomp’ to refer to an era where people will use a variety of computer-based devices 

to support everyday life activities. We firstly identify a variety of researches related to 

ubicomp. We discuss and summarise their shared visions. We argue that these visions 

are hindered by the lack of a conceptual framework to encapsulate the complexity and 

new requirements of ubicomp. In particular, little research has so far been conducted 

to develop a conceptual framework that explicitly supports both design and use of 

ubicomp devices. We argue that having a coherent conceptual framework is very 

significant for the conceptual integrity of ubicomp systems, and that this is 

fundamental to the success of ubicomp. We introduce a new conceptual framework 

based on EM principles and tools and illustrate this with examples. We shall discuss 

challenges involved in realising the framework. Finally, we shall describe some 

related research work and make comparisons with our proposed framework. 

 

6.1   Visions of the future computing environment 

 

Vannevar Bush, in his 1945 article “As We May Think”, envisaged a device that can 

manage and disseminate results of research [Bus45]. Baecker et al. [Bae95, p35] view 

Bush as the first person to see beyond the scientific use of the computer to its use as a 

“fundamental tool for transforming human thought and human creative activity”. 

Now, nearly 60 years later, the development of computer technologies has led to the 

realisation of Bush’s dream. A new vision of the role of computers has evolved. 

Computers are getting more and more pervasive. In his 2000 article “As We May 

Live”, Gibbs reports on research into ubicomp that applies computer technologies in 

our everyday life, such as a Georgia Tech’s four-bedroom house where there are more 

than 60 computers, 25 video cameras and 40 cabinet sensors [Gib00]. The vision has 
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shifted from mainly concerning the way computers support us to think to a broader 

concern for the way computers can support us in living (cf. [Dau00, Gor97]). Devices 

with computing power are moving off the desktop into everyday items (cf. [Sch00a]). 

 

Since Weiser’s seminal paper [Wei91], research interests in ubicomp have grown 

tremendously. Amongst these, the most representative research titles include 

ubiquitous computing, invisible computing, disappearing computing, sentient 

computing and augmented reality computing. We shall briefly review these five 

research areas. This review will be the basis for our discussion of how EM principles 

can be applied to ubicomp in the rest of this chapter. All five research areas share 

prominent common themes, but each has its own distinctive emphasis. 

 

Ubiquitous computing. Ubiquitous computing is also sometimes referred to as 

pervasive computing (e.g. [Ark99, Old99]). The term ubiquitous computing or 

ubicomp was coined with Weiser and colleagues at Xerox PARC in the late 1980s. 

Weiser promotes a new way of thinking about computer: “one that takes into account 

the natural human environment and allows the computer themselves to vanish into the 

background” [Wei91]. The motivating idea in ubicomp is to make computing power 

available through the physical environment invisibly. It has been viewed as the Third 

Wave of computing [Fol02]. The First Wave was many people per computer 

(mainframe). The Second Wave was one person per computer (personal computer). 

The Third Ware is characterised by many computers per person. The initial research 

areas identified by Weiser included new interaction devices, power consumption and 

wireless connectivity [Wei93]. More recent areas of interest include natural interfaces, 

context-aware applications, and automated capture and access [Abo00]. The goal of 

developing natural interfaces is to “support common forms of human expression and 

leverage more of our implicit actions in the world”. Context-aware applications need 

to sense the environment and adapt the computation according to the use situation. 

These applications also need to provide facilities for users to capture and access live 

experiences. 

 

Invisible computing. The concept of invisible computing, introduced by 

Norman [Nor99], is primarily concerned with how ubicomp technologies can be best 

integrated into everyday life. The idea of information appliances is central to invisible 

computing. Norman argues that general-purpose personal computers are difficult to 

use because they are technology-centred products that are inherently complex. The 

solution is to develop information appliances that are small, task-focused devices in 

place of big, complex, general-purpose personal computers. This is to design an 
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information appliance to fit the task so well that the device “becomes a part of the task, 

feeling like a natural extension of the work, a natural extension of the person” [Nor99]. 

One distinctive feature of information appliances is their ability to ‘communicate’ 

among themselves and share relevant information. Norman suggests human-centred 

product development with a cross-disciplinary team of experts in marketing, 

engineering, and user experience. He promotes Contextual Design that includes six 

tasks: talk to specific customers while they work, interpret the data in a 

cross-functional team; consolidate data across multiple customers; invent solutions 

grounded in user work practice; structure the system to support this new work practice; 

iterate with customers through paper mock-ups; and design the implementation object 

model or code structure.  

 

Disappearing computing. Disappearing computing is a European initiative on 

research and development of future computing. Its mission is “to see how information 

technology can be diffused into everyday objects and settings, and to see how this can 

lead to new ways of supporting and enhancing people’s lives that go above and 

beyond what is possible with the computer today” [Dis01]. Though the overall goal of 

disappearing computing is similar to that of other ubicomp research, its specific 

research strategy involves three sub-goals of particular interest in connection with this 

thesis. These are: 

 

• creating artefacts that have the attributes of openness and connectivity; 

• promoting emerging functionality through the collaboration of collections of 

artefacts; 

• designing artefacts with the emphasis on people’s experience of them.  

 

Sentient computing. Sentient computing is a collaborative project between the 

AT&T Laboratories and University of Cambridge [Sen02]. Its emphasis is on 

developing and exploiting technologies to give computers access to the state of their 

environment. The project started from the development of an ultra-sonic indoor 

location system. The system can provide the locations of tagged objects or people to 

an accuracy of about 3cm throughout a 10000 square foot building. The 

distinguishing feature of sentient computing is its use of sensors and resource status 

data to maintain a model of the real world which is shared between users and 

applications. One representative application enables a networked scanner to perform a 

selection from a list of functions presented in the form of a poster. A user can use a 

tagged object to point at one of the functions on the poster. This in turn triggers the 

scanner to perform the function. In this case, the system maintains a model of the real 
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world that incorporates the geometric relationship between the poster and the tagged 

object. This model is a communication medium between the scanner application and 

its user. In effect, “the whole world is a user interface” [Sen01]. The goal of sentient 

computing is to make applications more responsive and useful by observing and 

reacting to the physical world [Hop99]. Research is based on three major themes: 

developing sensor technology, experimenting with application devices, and 

constructing platforms that connect sensors and devices together.  

 

Augmented reality. Research on augmented reality aims to superimpose virtual 

objects upon, or compose virtual objects with, the real world. One way of augmenting 

reality is to overlay computer-generated graphics onto the real world. But augmented 

reality is not limited to sight – it might be applied to all senses. The motivation for 

augmented reality is to “enhance a user’s perception of and interaction with the real 

world. The virtual objects display information that the user cannot directly detect with 

his own sense” [Azu97]. A typical augmented reality system consists of three 

components: a head-mounted display, a tracking system, and a wearable computer 

[Bon02]. The head-mounted display allows us to see text and graphics generated by 

computers. The tracking system senses the location of a user’s head and eyes, and 

maintains the correct relationship between virtual objects and real world surroundings 

with reference to the user’s movement. The wearable computer provides portable, 

hands-free computational power to drive the whole system [Nap97]. Applications of 

augmented reality include medical visualisation, maintenance and repair, annotation, 

robot path planning, entertainment, and military aircraft navigation and targeting 

[Azu97]. 

 

Because of its potentially radical impact on everyday life, research on ubicomp 

has attracted many critics. A major common concern in critiques of ubicomp is that: 

 

• ubicomp is driven by technology 

• insufficient account is being taken of the human perspective on what is 

desirable in personal and social terms. 

 

We are acknowledging that ubicomp is not necessarily a good thing in every respect. 

However, EM is offering an approach that promotes high levels of human 

engagement in the design and use of technology. This can make it easier for 

designers and users to develop ubicomp applications in a sensitive way. 
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6.2   Assessing the visions 

 

Although the future development of ubicomp is difficult to predict, the approaches 

reviewed in the last section do reflect the same dominant emphasis in respect of four 

key issues: the roles to be played by automation, visibility, connectivity and 

adaptation. All the approaches discussed above aspire to full automation, hiding the 

technology from the users, indiscriminate interconnection of devices and systems that 

are self-adaptive. This thesis emphasises a complementary perspective: the need to 

keep humans in the loop; to encourage user engagement; to promote understanding 

and control over the interactions amongst devices; and to allow user customisation of 

the ubicomp environment. 

 

6.2.1 Automation  
 

One of the common but inadequate visions of ubicomp is having ubicomp systems 

that require nearly no human intervention. Negroponte advocates the use of 

“intelligent agents” as digital butlers that do all the work for you while you take it easy 

[Neg96]. Joseph describes this is as “the top of the IT agenda” [Jos02]. Tennenhouse, 

a vice president in the Intel Corp, advocates “getting the human out of the interactive 

loop” [Ten00]. This vision is only an industrial hype. Full automation is not plausible 

for ubicomp. The main reason is that the ubicomp environment is the environment we 

live in – where activities are situated and exceptions are the norm. Since we cannot 

prescribe the ubicomp environment, human intelligence has to be involved in solving 

ubicomp problems. Even the authors with visions for full automation seem to agree 

that there is a need for the involvement of intelligence. Joseph [Jos02] envisages that 

“computers will be intelligent enough to manage, configure, tune, repair, and adjust 

themselves to varying circumstances to handle the workload exposed to them 

efficiently”. Tennenhouse [Ten00] wants to automate the software creation process in 

ubicomp by generating software from specifications and constraints. Such visions 

presume that we can automate the management and specification tasks that seem to 

require human intelligence. 

 

Undeniably, many people dream of sitting back and relaxing and allowing 

machine servants to help them to do all their work. This dream has become one of the 

driving motivations of ubicomp development. However, we cannot desire automation 

blindly for every device and aspect of ubicomp. Automation introduces problems of 

predictability and accountability. Edwards [Edw01] asks: “how will the 
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occupant-users adapt to the idea that their home has suddenly reached a level of 

complexity at which it becomes unpredictable?” To paraphrase Langheinrich et al. 

[Lan02], “in order to lower the demands on human intervention in … a dynamic 

world … [we require] the concept of delegation of control, where we put automated 

processes in control of otherwise boring routines, yet provide accountability 

mechanisms that allow us to understand complicated control flows”.  

 

In the ubicomp environment, creating and supervising the automatic processes 

should be part of the users’ role. We need to have the human in the loop and aim not to 

replace but to enhance and complement human abilities. 

 

6.2.2 Visibility 
 

Most of the visions for a ubicomp environment explicitly mention that computers 

should be invisible in the future (e.g. [Wei91, Nor99, Dis02]). The idea is that if we 

could somehow make computers vanish into the background, the complexity and 

frustration of using computers nowadays would disappear. In Norman’s terms, to hide 

a technology is to hide the infrastructure of it [Nor99]. He envisages a world where 

information appliances with infrastructure hidden in the background largely replace 

conventional personal computers. This view has invited some criticism. Odlyzko 

[Odl99] believes that “[information appliances] will not lessen the perception of an 

exasperating electronic environment. The interaction of the coffee pot, the car, the 

smart fridge, and the networked camera will create a new layer of complexity”, in 

which it creates new frustration. Langheinrich et al. warn that invisibility may lead to 

unpredictability: “… the ideal of the invisible, altogether unostentatious computer 

that silently hides in the background, might complicate or even impede the 

predictability of the system” [Lan02]. 

 

Visibility poses a dilemma. On one hand, it is desirable to hide the infrastructure 

of computer technology from its users, because that might just make the system easier 

to use and comprehend. A common view is that most users seem to have no interest in 

how a technology works so long as it does work. On the other hand, when things go 

wrong, as they often will in the case of computer technology, hidden infrastructure 

might hinder the possibility of fixing the problem promptly and safely. 

 

In fact, sometimes the idea that “infrastructure should be invisible” is the 

fundamental cause of frustrations. For example, the latest versions of the Microsoft 

Windows operating system (e.g. Windows XP) hide file extensions from the user by 
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default. There is an increasing number of people who do not know what file 

extensions are for, which might be a good thing because often it is the applications 

that mostly care about them. However, some of the file extensions can be shared by 

more than one application. For example, a “.txt” file can be used by Notepad, 

Wordpad, and MS Word. Frustration arises when a user wants to open a “.txt” file 

using MS Word – on double-clicking the “.txt” file, Notepad pops up every time but 

not MS Word! The problem then becomes: what should be visible and what should not? 

Unfortunately, the answer will depend on the individual user and situation. 

 

Hjelm sees some analogy between the development of radio and development of 

computer technology [Hje01]. The development of radio went through three design 

phases: the archaic, the suppressed and the utopian. In the archaic phase, the radio was 

a new invention that was intrusive in a home environment and required an expert to 

use it. In the suppressed phase (because the product was not widely accepted), 

commercial applications that involved hiding the unfamiliar radio in big bulky but 

familiar objects such as grandfather clocks were explored. In the utopian phase, the 

radio was transformed into the compact, usable, and portable forms now in wide use. 

The development of computer technology might now be viewed as entering the 

suppressed phase, where people are embedding computers into every imaginable 

everyday object. 

 

Streitz [Sto01] argues that causing the computer to disappear is only the first step 

towards achieving the final goal of “coherent experiences”. He adds “… coherent 

experience is the result of the combination of macro affordances (e.g. physical shape 

and form factor) and certain micro affordances (e.g. tactile characteristics of the 

artefact’s interface) in combination with the software providing appropriate 

interaction affordances”. We believe that this shift of emphasis to coherent experience 

is very important to the development of ubicomp. After all, it is users’ engagement 

with the ubicomp environment that governs its success. To appreciate the true 

meaning of invisibility we should ask questions about users’ engagement in addition 

to the more commonly asked questions about ways to hide infrastructure. Therefore, 

on the basis that exposing and understanding a technology is the first step towards 

making it conceptually invisible, it might be good for users to know and understand 

more about the infrastructure of the ubicomp environment. This thinking has an 

important implication: it leads us to place a conscious emphasis on the design of 

infrastructures with conceptual integrity that the user can understand easily. 
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6.2.3 Connectivity 
 

High connectivity is another feature of ubicomp. Norman describes “a distinguishing 

feature of information appliances is the ability to share information among 

themselves” [Nor99]. In ubicomp, each person is surrounded by hundreds of 

wirelessly interconnected computers [Wei93]. Through connectivity, a collection of 

artefacts can act together and produce “new behaviour and new functionality” [Dis02]. 

Current technology is certainly capable of making this vision come true. Technologies 

like Bluetooth [Blu02], a short-range, low-power radio frequency technology, already 

promise to standardise wireless communications.  

 

Connectivity has become part of the common language of ubicomp – so common 

that people often forget to justify or even think about reasons for the connections. 

What “new behaviour and new functionality” that connectivity supports is yet to be 

discovered. In fact, sometimes connecting everything to everything else is not a good 

thing. Connectivity can cause new complexity and frustration for ubicomp [Old99]. In 

[Luc99], Lucky amplifies on the potential frustrations: “My refrigerator… would 

refuse to open at certain hours of the day, having talked to my bathroom scales”; “My 

car is no longer the friend I once knew. If I exceed the speed limit, it reports me, and if 

I try to park illegally, it refuses to turn off or to let me open the door”. 

 

In this context, the key issue for the user is knowing the purpose of the 

connections, and being able to understand and control them at will at any time. 

Edwards et al. [Edw01] point out that we need new models of connectivity for users to 

control, use, and debug the devices that are interacting with one another in the 

environment. Questions like “How can I tell how my devices are interacting? What 

are my devices interacting with, and how do they choose?” [Edw01] should be easy to 

answer in the future ubicomp environment.  

 

6.2.4 Adaptation 
 

In the ubicomp environment, requirements are unsettled. Users’ needs change over 

time, so that a ubicomp system should facilitate dynamic adaptation to various 

situations. Research on ubicomp usually associates adaptation with 

context-awareness of applications (e.g. [Abo00, Dey01, Lae01]). Abowd et al. 

[Abo00] point out that “ubicomp applications need to be context-aware, adapting their 

behaviour based on information sensed from the physical and computational 

environment”. The definitions of the term ‘context’ given in the literature vary but a 
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generic definition can be found in [Dey01a]:  

 

“Context is any information that can be used to characterise the 

situation of an entity. An entity is a person, place, or object that is 

considered relevant to the interaction between a user and an 

application, including the user and applications themselves.” 

 

Because of the aspiration to develop fully automated systems discussed earlier, 

the typical research focus is on capturing context by using sensor technologies. 

Capturing context through sensors only works when we can define the set of possible 

contexts needed in advance. However, in a ubicomp environment what is relevant to 

the interaction between a user and an application cannot be fully specified, and 

usually relevance changes over time. Sometimes, what is relevant is very subjective to 

the user. Inferences made through the preset sensors may not be accurate. As Edwards 

et al. [Edw01] observe “… [simple sensing] may report that I am present in a room 

when, instead, I have simply left my active badge on the desk”. 

 

A complementary way of trying to fulfil the adaptation requirement of ubicomp 

is through ‘user modelling’. Traditionally, user modelling is about constructing an 

explicit profile of properties and preferences of the user in the system. The profile is 

used as the basis for adaptation and personalisation of the system. There are two 

approaches to user modelling: adaptive and adaptable [Fis00, Kul00]. In the adaptive 

approach, the system dynamically adapts itself to the current task and the current user. 

In the adaptable approach, the system gives substantial support to allow the user to 

change the functionality of the system.  

 

Systems like GUIDE (a tourist guide system [Che01]) and PDS (a personal daily 

system [Byu01]) use both context-aware and user modelling approaches. Combining 

user modelling with context-awareness in an application improves the system’s 

adaptation capability to some extent. However, there is no way for a system to take 

full account of all the preferences of the user by just maintaining an explicit 

representation of the properties of the user. In fact, even the user might not know his 

or her preferences in respect of a system. Consider one of the scenarios described in 

[Byu01] for PDS is “When a user passes by a theatre, the PDS can notify the user that 

the theatre is playing the user’s favourite movie.” In this case, the location together 

with a film preference of the user triggers the notification. The question is: who is to 

specify this behaviour of the system? If it is to be the system, we have the issue of 

properly predicting the user’s state of mind; if it is to be the user, we have the issue of 
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adequately supporting the user’s need to specify the behaviour. Whichever is the 

answer, however, it is clear that context-awareness and user model maintenance alone 

are not sufficient for system adaptation. Even in this simple situation, we need 

mechanisms to customise the system to suit individual needs. The system should be 

able to understand the user’s preference and have some reflective capability 

concerning the way in which these preferences are expressed within itself. The user 

should likewise be able to understand his or her preferences and relevant functionality 

of the system. Evolvability of the system comes from mutual understanding, which in 

turn comes from openness to interaction and customisation.  

 

Figure 6.1 summarises the ideas of this section. 

 

 
Figure 6.1: Topics, issues and recommendations relating to common ubicomp visions 

 

6.3   A new conceptual framework (SICOD) 

 

In this section, we shall discuss the potential application of EM principles to ubicomp 

and propose a new conceptual framework in which the issues mentioned in the last 

section can be more effectively addressed. The potential contribution of EM research 

to ubicomp becomes apparent when we consider the properties of a ubicomp 

environment. These include:  

 

 The concurrent nature of a ubicomp environment – EM principles are based 

on a commonsense way of construing phenomena (chapter 2). 

 The importance of context – In contrast to classical approaches to 

programming, EM gives prominent emphasis to modelling state and 

situation (chapter 2). Treating contexts as states is identified as a key issue 

in the ubicomp literature (e.g. [Dey01a, Rah01]). 

 Unforeseeable user requirements – EM principles can be used as a heuristic 

way towards human problem solving (chapter 4).  
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 Dynamic and unpredictable integration of different devices – EM principles 

assist integration (cf. [Bey00a]) and help to maintain conceptual integrity 

(chapter 5). 

 

The EM conceptual framework for ubicomp can be described as a framework for 

“controlling devices through building EM models”. We call these special-purpose 

models Interactive Control Models (ICMs). In contrast to other conceptual 

frameworks (which will be described in section 6.5 below), the EM conceptual 

framework aims to: 

 

 make the infrastructure of ubicomp more visible to the users  

 provide principles to help users to maintain the conceptual integrity of their 

views of ubicomp systems.  

 

We shall describe the EM conceptual framework – to be called ‘soft interfaces 

for the control of devices (SICOD)’ – in detail, and illustrate its potential use with a 

ubicomp example. An ICM typically consists of a set of Interactive Device Models 

(IDMs) and an Interactive Situation Model (ISM). The use of EM principles in the 

construction of IDMs has been discussed in some detail in previous papers (e.g. 

[Bey01b, chapter 5 in Run02]). The development and use of ISMs has been a common 

theme in recent EM research (cf. [Sun99a, Bey99, Bey00c, Bey01b]). In developing 

ISMs for a ubicomp environment, we propose novel methods for constructing ISMs 

from IDMs that are aimed at the end-user.  

 

The left of Figure 6.2 shows an ICM with three IDMs (depicted by pentagons) 

linked to an ISM (depicted by a circle) by dependencies. The whole ubicomp 

environment can contain a network of ICMs (see the right of Figure 6.2). Notice that 

an IDM can be shared by more than one ISM. This reflects the fact that many devices 

are shared resources in a ubicomp environment. 
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Figure 6.2: An Interactive Control Model (left) and ubicomp environment with many interacting 

ICMs (right) 

 

Both IDMs and ISMs are built using EM principles but the differences between 

them are summarised as follows: 

 

IDM ISM 

Built by designers. Built and maintained by users. 

Corresponds to a particular device for 

generic application. 

Corresponds to a particular situation for 

individual use. 

Assists users to gain a conceptual 

understanding of the device.  

Assists users to configure devices 

through creating definitions to establish 

dependencies between the states of IDMs 

and users’ situated observation.  

 

IDMs are relatively stable models which are built by the device designers. Each 

device has an IDM. ISMs are models created by users of devices. An ISM links a set 

of IDMs through dependencies.  

 

To illustrate our conceptual framework, we consider a ubicomp scenario similar 

to that introduced by Huang et al. in [Hua99]. The scenario is as follows: 

 

A user sets up a model to control the stock of a particular drink in her 

fridge, in this case, canned cola. Four computer-based devices are 

involved: a fridge, a personal Global Positioning System (GPS), a 

retail store information device, and a clock. The fridge maintains a 

count of how many cans of cola there are in it (possibly through some 
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kind of object tagging and detection technology); the personal GPS 

gives the current location of the user; the store information device 

gives information about the location and opening hours (possibly 

through a web enabled device connected to the store’s homepage); the 

clock gives the current time and date. The user is holding a party on 

Friday and has to make sure that there is enough cola in the fridge. 

She wants the system to remind her to buy the drinks when she is near 

the store. If she does not go near the store before Friday, the system 

will remind her to buy the drinks on Friday. 

 

One possible realisation of this scenario within the SICOD framework is depicted in 

Figure 6.3a. The definitions involved are displayed in Figure 6.3b. These two Figures 

are complementary representations. Figure 6.3a depicts the interface for the end-user 

to specify the definitions in Figure 6.3b. A prototype implementation of such an 

interface will be described in chapter 8. 

   

 
Figure 6.3a: An ICM of a particular drink stock control 

 



6 Beyond Systems: Ubiquitous Computing 

138 

 
Figure 6.3b: Definitions of ICM of the drink stock control 

 

The 13 definitions in this ICM can be divided into two groups: fixed and 

changeable definitions3. Fixed definitions are definitions provided by IDMs, for 

example, the user cannot change the definition of storeOpen (store opening time) 

because this definition is determined by the store. In this case, each IDM corresponds 

to an agent. The changeable definitions are the definitions in the ISM that express the 

user’s special requirements of the drink stock control system. The meanings of the 

definitions are quite obvious when we look at the definitions in detail in the Figure 

6.3b. Without going into detail about each definition, we draw attention to two 

important definitions: buyCola and urgentBuy. The buyCola definition 

specifies that if the stock of cola in the fridge is below the minimum amount and the 

user is near the store within store open hours, the system can remind her to buy the 

drinks. The urgentBuy is especially for the party schedule on Friday – so that if 

there is not enough cola in the fridge on the day of the party, the system will issue a 

warning. 

 

Note that all the definitions contained in the IDMs in Figure 6.3a are fixed and so 

for reference only. These IDMs can be thought of as models of sensors linked to the 

real world. However, an IDM can also contain definitions for actuators that act on the 

real world. One example is depicted in Figure 6.3c below. Figure 6.3c extends Figure 

6.3a by adding an alarm device. This device’s IDM contains only one definition, 

alarmOn, where the right-hand-side of the definition can be changed by the user. 

The simple behaviour of the alarm device is that it generates a tone whenever the 

                                                 
3 Note that in an ICM variable assignments are represented as constant definitions. For example, we 

write “fridgeCola is 2” instead of “fridgeCola = 2”. 
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value of alarmOn is set to be True. We can define alarmOn as buyCola to 

specify that the system should remind the user to buy the drinks by generating a tone. 

This example shows how a device can be configured through its IDM by redefining an 

observable in the ISM. 

 

 

Figure 6.3c: An alarm device extension  

 

By looking at the above application, we can identify the following advantages of the 

SICOD framework: 

 

 An IDM assists the understanding of how a device works by representing the 

characteristic and persistent dependencies between its observables. This allows 

more effective communication of the designer’s conceptual model of how a 

device works to the user. 

 

 ICMs help users to maintain conceptual integrity of the system. For example, it is 

easy to find the answers to ‘why’ questions – cause and effect is clear and 

accessible through navigation of the dependency graph of an ICM (e.g. if the 

value of buyCola is True, the user can investigate why this is so by following 

the dependency links). Since conceptual integrity is a subjective matter, it is 

doubtful whether the designer of the system can effectively prescribe a view with 

conceptual integrity for the user. For this reason, we instead need a conceptual 

framework that helps the user to maintain conceptual integrity. Unlike a 

traditional window-based GUI, the SICOD framework enables users to have a 

global conception of system state. 

 

 Uses of the system are highly customisable. In a typical ubicomp environment, 

there are no fixed boundaries for the system. The system emerges when we build 

an ICM to link devices together. In fact, the system is created by the user and 

therefore, high flexibility is guaranteed. 

 

 The sharing of devices is mediated naturally by the framework. The values of the 
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observables in an IDM can be used by many users concurrently. Particular 

definitions in an IDM may be changeable and may also be restricted to reflect the 

fact that they can be changed by only one user at a time. For example, this applies 

to the definition of alarmOn in Figure 6.3c. 

 

 Contexts in the ubicomp environment are explicitly represented as states within 

the SICOD framework. This is in line with the practice of representing contexts 

as states to be found in much ubicomp literature. For examples, Dey writes that 

“… a collection of states can be described as a situation.” [Dey01a]; Rahlff et al. 

defines personal context as “a snapshot of the state of the most important 

situational parameters: personal identification, time, location, task at hand, 

nearby objects, nearby people, etc.” [Rah01]. Furthermore, by using definitions, 

we can explicitly specify the relationship between states.  

 

 The framework supports rapid prototyping of a particular use situation. As new 

requirements come from the users, the best people to prototype the system are 

the users themselves through the building of ISMs. The designer’s 

responsibilities are to build the functions to support the definitive notation and 

the sensing technology to support the automatic update of observables. 

 

 The user can use an ISM for a system to adapt the reliable behaviours of IDMs so 

that they reflect the current situation. For instance, in the context of the drink 

stock control, a user can configure the ISM so that the notification that the supply 

of cola is exhausted is suspended during the night. 

 

Apart from the advantages listed above, the SICOD framework also addresses 

the four important issues discussed in connection with visions for ubicomp in the last 

section. We shall now discuss these in turn. 

 

6.3.1 Human in the loop 
 

As we discussed in section 6.2.1, full automation is over-hyped in the visions of 

ubicomp and we need to put the human in the loop. This point can be illustrated by 

considering the difficulties in obtaining contextual states automatically. The states of 

digital devices are the easiest to obtain automatically. States of the environment, such 

as room temperature, illumination intensity and noise level are harder to obtain 

because they depend on sensor technology. What can be reliably sensed by current 

technology is limited to very primitive contextual state. States such as the orientation 
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of an arbitrary physical object, the meaning of a sign and the topic of a conversation 

are very difficult for devices to detect automatically. It is doubtful whether all such 

states, which involve human perception and interpretation, can be reliably sensed by 

computers automatically. The ICM of the cola stock control scenario is a good 

example – most of the behaviour of the system is determined by the ISM, not by the 

IDMs.  

 

Most activities in our everyday life are situated. Situated activities mostly 

contain actions that involve conscious reference to the context and the choice of 

course of action [Sun99a]. For this reason, ISMs in the SICOD framework play an 

important role in capturing context-awareness. An ISM maintained by the user of the 

system represents a particular use case of a system of devices that cannot be 

prescribed and therefore, the ISM itself cannot be automatically built by the system 

(cf. circumscription of use cases in UML). 

 

The SICOD framework supports problem-solving in a ubicomp environment 

that is based on intelligence captured through practical experience – a precept that 

human agents tacitly use to solve problems encountered in the real world [Bey94a, 

Sun99a]. It supports experimentation, discovery and exploration of an environment 

prior to the identification of desired reliable behaviour. Automation comes later when 

patterns of interaction become reliable and a system emerges. However, familiar and 

reliable patterns cannot take account of dynamical changes in the ubicomp 

environment. Humans should be involved in constant revising of the ICM to adapt to 

new requirements and new contexts. 

 

 

6.3.2 User engagement 
 

We argued in section 6.2.2 that true invisibility comes not hiding infrastructure but 

from the user’s engagement in the primary activities of interest. Sometimes, it is 

appropriate to make infrastructure visible to the user. 

 

The SICOD framework provides a direct way of modelling the observation of 

the system and its environment by the user. In particular, just like cells in a 

spreadsheet, observables associated with an ICM are all task-oriented (the term used 

by Nardi in [Nar93]) – they represent states that can be perceived and observed by the 

user; they represent entities that are of interest to the user for the particular task or 

situation. The user can engage with the task at hand more easily using a spreadsheet 
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than another conventional programming paradigm [Nar93]. An ICM inherits this 

advantage of the spreadsheet. 

 

The modelling of observation provided by the SICOD framework is very useful 

in a ubicomp environment. Since the designer cannot prescribe all the observables in a 

user’s mind in advance, it is left to the user to describe the observables using an ISM. 

After a period of time, the management of some of these observables might follow 

such commonplace patterns that the designer can prescribe them in systems for other 

users.  

 

In the SICOD framework, states are represented explicitly, and interactions are 

direct. This allows users to define what is to be observed, and allows users to engage 

in setting up the devices based on their subjective experience (cf. the computer as 

instrument discussion in [Bey01a]).  

 

6.3.3 Understanding and controlling the connectivity 
 

Where connectivity is concerned, we have emphasised user understanding and control 

of the interconnections between devices. In the SICOD framework, this is addressed 

by the notions of agency and dependency. 

 

Within the framework, what to connect to what is entirely up to the user. With 

dependency graphs, a user is able to get a visual understanding of the interconnections. 

This helps the user to maintain a clear conceptual model of the communications and 

devices involved. The explicit representation of dependency helps to make the system 

traceable, so that, for instance, communication between two devices exists only if 

there is a dependency link. This helps to ensure that the user can tell why and how the 

devices are interacting each other. 

 

The notion of agency supports a user’s natural commonsense attribution of state 

change. For example, with reference to the cola stock scenario, a user can refer to the 

store location definition but cannot change the definition; the fridge agent is 

responsible for counting the colas. This is a natural application of LSD analysis 

introduced in chapter 2.  

 

6.3.4 User customisation 
 

We argued in section 6.2.4 that conventional context-awareness and user modelling 
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techniques are not sufficient to meet the system adaptation requirement for a ubicomp 

environment. We also need ways for the user to customise the system. Ideally, these 

should be flexible and easy to use. Usually there are trade-offs between flexibility and 

ease of use so that if a way is flexible it is usually not easy to use and vice versa (cf. 

[Odl99]). However, the SICOD framework can arguably provide ways to customise 

the system that are both flexible and easy to use. 

 

To illustrate this point consider a central heating controller, called Balmoral, 

based on a real-life model described by Green [Gre99]. Figure 6.4 shows the control 

panel and a summary of instructions on how to use the controls. 

 

 

Figure 6.4: A layout of a central heating control panel and its instructions adapted from [Gre99]. 

On this control panel, there is an LCD on the left and there are buttons on the right. 

 

By pressing buttons on this control panel, a user can set up three periods of 

heating for each weekday. The operation of the control panel is highly dependent on 

the mode switching button called ‘ADVANCE’. Mode switching buttons like this also 

exist in most programmable VCRs, washing machines, digital watches and desk 

clocks. They are also popular in conventional windows-based GUIs. Mode switching 

makes a system difficult to comprehend because it demands users to switch the 

perception of the system accordingly. With a conventional ‘press-button’ interface, 

however, it is usually unavoidable because of the physical constraints on the number 

of buttons that we can put on a control panel. For example, it would be inconvenient to 
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have a separate pair of ‘PLUS’ and ‘MINUS’ buttons for every weekday and every 

heating period. We shall refer to this kind of interface as a ‘hard interface’. 

 

In designing a hard interface, we not only have to prescribe the functionality of 

the system but also the possible observables and their interpretation by the user in the 

situations of use. This is a potential barrier to providing a system view that has 

conceptual integrity for the user (e.g. consider the different roles that the ‘PLUS’ and 

‘MINUS’ play according to the current mode of operation). It also affects the 

flexibility of the resulting system. For example, the central heating interface only 

allows the user to enter 3 heating periods for every weekday – a rather arbitrary 

prescription imposed by the designers. 

 

The SICOD framework provides a different way to configure the system. We can 

regard an ICM as a ‘soft interface’ to a system of ubicomp devices. Applying the 

SICOD framework, an ICM of central heating control would be like the one shown in 

the Figure 6.5a. The corresponding definitions are shown in the Figure 6.5b. 

 

 
Figure 6.5a: An ICM for central heating control 
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Figure 6.5b: Definitions of ICM of the central heating control 

 

The observables sunday, saturday and weekday specify the user’s configuration 

of the heating period. The observables sundayOn, saturdayOn and weekdayOn 

evaluate to True only if they can match their own day and heating period with the 

current time and day information provided by the Clock agent. The central heating 

will be turned on only if heaterOn evaluates to True. 

 

With the ICM, extension of the system becomes very easy. For example, suppose 

that the user has bought sensors to detect if there is any person in the house. The 

central heating ICM can make use of this information to allow more efficient use of 

central heating – the user can change the heaterOn definition to:  

 
heaterOn is (sundayOn or saturdayOn or weekdayOn) and houseNotEmpty 

 

A conventional central heating interface will surely have difficulty in embracing 

this requirement without replacing the whole control panel and developing 

mechanisms to link to the sensors. 

 

The SICOD framework improves both flexibility and ease of use of the resulting 

system: 

 

 the system becomes more flexible as its ICM is open to change and 

extension; 

. 

 the system becomes easier to use as the SICOD framework provides a 

simple interface through which to customise devices. The user needs only to 

learn the underlying definitive notation to be able to control a variety of 
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different devices. 

 

The idea of allowing the user to customise most parts of the ubicomp system is 

an alternative approach to the adaptation through auto-learning described in [Byu01]. 

Byun et al. propose several scenarios in which a ubicomp system can learn patterns of 

use. One of them is “If a user participates in a meeting at 10 am every fourth Monday, 

the PDS [their proposed system] might learn this behaviour and suggest that the user 

might have to go to a meeting today (the fourth Monday) at 10 am. However, a more 

sophisticated level of learning would enable the system to realize when such a 

notification is inappropriate, for example when the user is on holiday.” [Scenario D in 

Byu01]. Simple problems of user customisation become complex problems of 

artificial intelligence. Even if we do eventually have systems which are smart enough 

to act on behalf of users, system predictability will become an issue.   

 

In discussing possible extension to Context Toolkit (see [Dey01a] and section 

6.5), Dey describes the struggle involved in negotiating the tradeoff between 

supporting a complex situation and providing a simple method for describing a 

situation. He adds that “while designers who have domain-specific expertise can 

determine part of the solution [to a ubicomp problem], they will obviously not think of 

everything that is needed to support individual users. It is the end user who is in the 

best position to further specialize context-aware application to meet their individual 

needs.” [Dey01a]. The application of the SICOD framework is potentially a simple 

way to allow users to represent situations by building ISMs. 

 

The SICOD framework transforms the role of the designer from ‘prescribing use 

situations’ to ‘developing reusable functionalities that allow users to specify use 

situations by themselves’. An analogy can be made here with the spreadsheet 

framework, in which designers provide a library of domain-specific functions but the 

actual use of these functions is for spreadsheet users with their specific tasks to 

determine. 

 

With the SICOD framework, users can develop their understanding of use 

situations specific to them. This understanding can be animated and visualised by 

building ICMs. With current technologies, we can envisage users making use of 

Personal Data Assistants (PDAs) to build and maintain ICMs anytime and anywhere. 

The new tool introduced in Chapter 8, for example, can be used for this purpose. The 

result is a ubicomp system of devices without a fixed system boundary, capable of 

better adaptation to use situations and open to evolution. 
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6.4   Challenges for realising the SICOD framework 

 

In this section, we identify some of the challenges that will have to be met in realizing 

the SICOD framework. The aim of this section is to identify the key issues for further 

research rather than to provide or propose immediate solutions. 

 

Synchronisation of the external states with an ICM. There are two related 

questions. The first concerns keeping the virtual model up-to-date with the 

real-world situation. For instance, in the drink stock control example, how can the 

cola count information be updated in the ICM immediately after the action of buying? 

The second concerns the conversion of real-world analogue states into digital states. 

This conversion is handled by sensor technologies, but the choice of how frequently 

this conversion occurs (i.e. the update rate) can affect the responsiveness and 

integrity of the system (cf. precision, granularity and accuracy of sensor data 

discussed in [Hon01]). The key question is: how can a user comprehend and manage 

the conversion process? 

 

Interface for maintaining an ICM. We need simple means for users to create 

and modify ICMs. This issue is one of the themes of this thesis. The development of 

WING, EME and DMT (described in later chapters) is targeted towards simplifying 

the model building activities. The assumption in current EM tools development is 

that a flat screen-like display and a keyboard is available to the user. However, we 

could build interfaces of other kinds when new display technologies have evolved. 

For example, if we combine 3D hologram technology (e.g. [Fre02]) with precision 

location systems such as the one at AT&T Lab [Sen02], we can create an interface 

by generating 3D objects and interacting with them. In this way, it might be possible 

to build an ICM by physically moving virtual 3D objects.  

 

Scalability of ICMs. In some ubicomp scenarios, we are expecting hundreds of 

ICMs connecting thousands of devices. To implement the SICOD framework on 

such a big scale it would be necessary to solve problems of reliability and efficiency.  

 

Development of suitable terminology. Introducing the SICOD framework 

also introduces many terms that will be unfamiliar to end-users. While they are 

appropriate for academic discussions, terms such as IDM, ISM, ICM and LSD are 

not easily interpreted by users. We need to develop more user friendly terms that still 



6 Beyond Systems: Ubiquitous Computing 

148 

make the underlying concepts clear. 

 

Integrating with existing technology. So far, we have concentrated on applying 

the SICOD framework ‘through-and-through’, expecting every device to be designed 

with an IDM. In the real situation, we shall have to consider an environment which 

includes other devices that were not designed with the SICOD framework in mind. 

We surely cannot throw away all current devices and replace them with new devices 

designed for the SICOD framework. 

 

Safety of customisations. One good thing about traditional hard interfaces is 

that they prevent users from doing things that are dangerous. The open nature of ICMs 

might allow users to configure the system so that it exhibits dangerous behaviours. 

For example, imagine the consequences of connecting a car navigation system to the 

wrong map.  

 

Security of private observables. Sharing observables between ICMs might 

sometimes be desirable. However, ICMs might also contain personal information (e.g. 

credit card numbers) that we might not want to share with others. Methods for 

attaching scopes and privileges to observables are needed so that we can specify and 

distinguish these sensitive observables. 

 

Intangible interface. ICMs potentially offer a better conceptual model of the 

system than a traditional hard interface at the expense of sacrificing physical 

affordance. For example, in some contexts, the use of an ICM might be an inadequate 

replacement for the physical buttons on a device; it would be inappropriate to replace 

all the channel buttons on a TV remote controller with an ICM.  

 

Naming conventions for the observables. How can we make sure that we are 

referring to the central heating system in our house and not the one next door? We 

shall need to standardise the naming conventions for observables. One possible 

solution would be to use conventions similar to URLs for the Internet.  

 

Distributed dependency maintenance. It is relatively easy to implement a 

centralised model of dependency maintenance. Definitions are stored in one place. 

The proper order of evaluation of definitions can be determined by classical 
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proposed a client and server model of distributed dependency maintenance [Sun99a]. 

The result is a distributed prototype version of TkEden called DTkEden. DTkEden is 

a good tool for studying the issues involved in distributed dependency maintenance. 

 

6.5   Related work 

 

In this section, we describe other related work in the ubicomp research community. In 

the past five years, the lack of guiding principles for ubicomp development has been 

directly addressed by many research groups around the world. As a result, many 

‘toolkits’, ‘models’ and ‘APIs’ have been developed. Although researchers have used 

different terms and banners for their work, at some level of abstraction, each has 

introduced a set of guidelines on how a ubicomp environment should be implemented. 

We shall refer to each set of guidelines as ‘conceptual framework’ or simply a 

‘framework’ for ubicomp. In this section, we briefly review five such conceptual 

frameworks and compare then with the SICOD framework. 

 

 

6.5.1 Toolkit framework 
 

The framework introduced in the Context Toolkit [Dey01b] is based on generalising 

the idea of traditional GUI toolkits. Just as GUI toolkits separate interface concerns 

from program development, the Context Toolkit framework tries to separate concerns 

between context acquisition and the use of context in an application. There are five 

basic software components: context widgets, interpreters, aggregators, services and 

discoverers. Context widgets hide the specifics of the input devices being used from 

an application. Their role is similar to that of device drivers. Interpreters convert 

low-level context data into high-level context information. Aggregators combine 

context information. Services execute actions based on context information. 

Discoverers are responsible for maintaining a registry of other software components. 

Interaction between components is implemented through message callbacks. The 

main aim of the research is to provide “concepts that make context-aware computing 

easier to comprehend for application designers and developers” [Dey01b]. Little 

consideration has been given to users of ubicomp systems. The purpose of interpreters 

is to provide automatic interpretation of context data. This demands that the designer 

prescribes the interpretation of context, which is not easy in the dynamic environment 

of ubicomp.  
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6.5.2 Layer framework 
 

Tandler [Tan01] tries to separate the concerns of a ubicomp application into five 

layers. These layers share five data models: the interaction model, the physical model, 

the user-interface model, the tool model, and the document model. Each layer 

represents a level of programming abstraction – the module layer contains tailored 

functionality for specific applications; the generic layer contains common 

functionality across applications; the model layer contains definitions of the five data 

models; the core layer provides hybrid implementation of the underlying 

infrastructure for communications, event handling, device and sensor management, 

automatic dependency detection and update, etc. An interesting feature of this 

framework is the use of a declarative description to ensure that the dependency 

between visualisations and attributes of shared objects is automatically maintained. 

This framework is specific to OO programming. 

 

6.5.3 Middleware framework 
 

Hong and Landay [Hon01] advocate building middleware similar to the middleware 

of the Internet to provide communication services for ubicomp applications. In their 

framework, each application is responsible for implementing standardised 

communication data formats and protocols. Although this adds complexity, each 

application can be more independent. The advantages of this framework are the same 

as the advantages of the Internet infrastructure – it gives freedom in choosing 

hardware, operating system and programming language.  

 

6.5.4 Blackboard framework 
 

The Blackboard framework uses the blackboard metaphor [Win01]. A blackboard is a 

communication centre where all communication between applications takes place. 

Applications can post messages on the blackboard and subscribe to particular classes 

of message from the blackboard. A blackboard consists of two components: an event 

heap and a context memory. The event heap maintains short-term message storage. 

The context memory is a database that provides long-term message storage. The 

framework is data-centric rather that process-centric. Centralised communication 

provides opportunities for system integration [Win01].  
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6.5.5 Trigger-based framework 
 

Huang et al. [Hua99] introduced a framework for ubicomp based on extending the 

concept of triggers originating from databases. A trigger is a constraint-action pair. 

The action of a trigger will be executed when the constraint is satisfied. The 

framework provides automatic translation of a high-level task that is input by the user 

(e.g. buying a drink) into triggers that are maintained by the system. The main 

disadvantage of heavy reliance on triggers is that it may lead to state changes that are 

not easy to comprehend and anticipate. The system behaviour becomes unpredictable. 

 

6.5.6 Overall comparisons 
 

All five conceptual frameworks adopt an engineering approach to ubicomp 

application – engineers design and implement a ubicomp application; users buy the 

application and use it according to the user manual. However, as we have discussed 

throughout this chapter, because our real life environment is very dynamic and user 

requirements are always changing from situation to situation, the problems of design 

and use of ubicomp applications cannot be addressed separately. Sometimes, users 

can also find themselves in the designer’s role. It seems unlikely that an engineering 

approach can address the issues of automation, visibility, connectivity and adaptation 

discussed in section 6.2 satisfactorily. 

 

The five frameworks discussed in this section are technology-centred. The EM 

SICOD framework is human-centred. Our emphasis is on using concepts that make 

the resulting system comprehensible not only by the developers but also by the users. 

Most of the five frameworks only provide good concepts for the developer to develop 

ubicomp applications, limiting the scope for flexibility to the design phase of the 

development. The SICOD framework has the potential to extend system flexibility to 

users, allowing them to design and customise their own ubicomp environment. 

6.6   Summary 

 

In this chapter, we have discussed many visions for ubicomp and identified key issues 

associated with them. We have proposed a conceptual framework (SICOD) based on 

EM principles. The potential advantages of the SICOD framework have been 

illustrated using simple examples. Some of the challenges to be met in realising the 

framework have also been identified. Finally, we have compared the SICOD 

framework with other related ubicomp research. 
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7 Evaluations and Prospects for EM Tools 

 

 

 

 

 

In this chapter, we shall explore different techniques and tools that can be used to 

support the activities of EM. Our objectives are to evaluate possible implementations 

and to discuss the prospects for future development of EM tools. The chapter starts 

with a discussion of essential characteristics of an ideal EM tool. This is to set the 

context for evaluations described in later sections. Section 7.2 describes three existing 

technologies, Java, Excel and Forms/3, as possible EM tool implementations. Section 

7.3 evaluates the principal EM tool: TkEden. Section 7.4 describes a new graphical 

EM tool, WING, which aims to solve some of the issues of TkEden described in 

section 7.3. Section 7.5 introduces yet another new EM tool, EME, which aims to 

explore issues that have not been addressed by WING. In section 7.5, we will 

highlight some prospects based on research described in previous sections. 

 

7.1   The ideal EM tool 

 

One crucial prerequisite for the successful application of EM is the availability of 

specialised computer-based tools to build artefacts as EM models. From the 

discussions in the previous chapters, we know that EM can address issues relating to 

the whole spectrum from system development to use. Chapter 5 is concerned with the 

activities that are involved prior to or in the preliminary stages of system development. 

Chapter 3 overviews the application of EM to system development. Chapter 4 gives 

an account of the combination of system design and use that is characteristic of EM. 

Chapter 6 considers the possible role for EM in the use of ubicomp systems. Despite 

these various different emphases, their underlying EM activities can all be captured 

by the DMF described in chapter 2. The DMF can be viewed as an idealised 

framework for EM.  

 

It is useful here to summarise the essential characteristics of the DMF we 

discussed in chapter 2. They will be used as criteria for evaluating different tool 

implementations for conceptual support. The DMF has the following essential 
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characteristics: 

 

 State-based observation – In the DMF, observation of states is 

fundamental to experimentation and understanding of dependencies and 

agencies in the model. This is the basis for EM. 

 

 Indivisible stimulus-response patterns – Each definition in the definition 

sets represents an indivisible stimulus-response pattern. There is no 

interruption after a stimulus until a response is given. 

 

 Subjective agency analysis - Grouping of definitions and actions into 

agents is subjective to each agent. Therefore, each agent can have their own 

view of agencies in the model (cf. subject-oriented programming [Har95] ).  

 

 Universal agency – In the DMF, not only humans but anything can be 

viewed as an agent. Human and automatic agents are not necessarily 

distinguished in the framework. In the process of modelling, the modeller 

can play different roles in views of different agents in the model – a 

modeller can be an external observer whose interest is only to observe but 

not modify the model; a modeller can be an actor who sits within the model 

as one of the agents; a modeller can also be a director (super-agent) who 

directs the characteristics of other agents. 

 

 Concurrent agency – Typically, a model includes lots of different agents. 

Each agent can act at the same time as others do. Actions can be performed 

in parallel. 

 

 Openness of privileges – Privileges of agents towards definitions and 

actions of other agents are not circumscribed and can be changed easily and 

dynamically during the modelling process (cf. OO encapsulation of data). 

 

 Evolutionary construal – Construal of observation, dependency and 

agency is evolutionary. The modelling process typically starts with only 

observations without agency. Agencies emerge from experiences obtained 

in the modelling process. Therefore, a model should be constructed 

interactively. 

 

An ideal EM tool should implement all of these characteristics of the DMF. 
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However, we shall discuss in this chapter that, in practice there is still no satisfactory 

implementation of the DMF. 

 

In addition to the concerns of conceptual support, we shall also evaluate 

interfaces of the tools. We shall investigate interface techniques that make the process 

of EM easier to perform. Previous tool research in the EM research group has 

concentrated on the conceptual support where all efforts are on bringing the DMF 

close to implementation. Concerns about suitable interfaces for an EM tool are 

relatively unexplored. There are no fixed criteria for interface evaluation. Therefore, 

evaluations will be driven by our experience of using the tools. We shall conduct more 

detail evaluation to our principal tool TkEden at interface level in section 7.3 and 

discuss ideas explored in development of two new tools WING and EME in section 

7.4 and 7.5 respectively.  

 

An analogy can be made with the development of the personal computer. Where 

conceptual support is concerned, an operating system gives a faithful support for the 

Von Neumann machine framework. Where the interface is concerned, graphical user 

interfaces make an operating system easy to use. The success of the personal 

computer is not possible without a well-developed graphical user interface, and the 

success of the graphical user interface is not possible without a well-developed 

operating system. Therefore, we believe that both concerns are very important. We 

should address both concerns in order to enhance practical applications of EM. By 

doing so, our main aims are: 

 

 To explore possible options to improve applications of EM in practice (i.e. 

narrowing the gap between theory and practice). 

 To enhance user experience for the process of EM and make EM more 

suitable to novice users 

 To obtain insights on possible options of interfaces for improvement of 

current tools or development of new tools in the future.  

 

Throughout this chapter, we shall implement a simple DMF model (called 

Business Deal) by using different techniques and tools. We shall use these 

implementations as examples used by evaluation of different techniques and tools 

against the essential characteristics of the DMF. The DMF model of Business Deal is 

shown in Figure 7.1. 
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Seller’s definitions: 
asking_price is 150 
 
Buyer1’s definitions: 
budget is 100 
interested is Seller:asking_price<=budget 
 
Byer1’s latent actions: 
(interested = true) -> Seller:Buyer1Offer is true 
(interested = false) -> Seller:Buyer1Offer is false 
 
Buyer2’s definitions: 
budget is 1000 
interested is Seller:asking_price*0.2<=budget 
 
Buyer2’s latent actions: 
(interested = true) -> Seller:Buyer2Offer is true 
(interested = false) -> Seller:Buyer2Offer is false 
 

Figure 7.1: The Business Deal model in the DMF (note that this is only a conceptual 

representation) 

 

There are a Seller agent and two Buyers agents in the model. The Seller 

agent tries to sell his product for a specified asking price. Both Buyers have a budget 

and a criterion to determine if they are interested in making an offer (by actions) for 

the asking price. In this case, Buyer1 is interested in making an offer only if the 

asking price is below or equal to his budget. For Buyer2, only if the asking price is 

below or equal to twenty percent of this budget. Therefore, in the whole model, there 

is one definition for the Seller, and two definitions and two actions for each of the 

Buyers. 

 

There is no doubt that any of the techniques and tools discussed in this chapter 

can implement this scenario. However, our main evaluation aim is to investigate the 

directness of translation from the DMF model to particular implementations. By 

analogy, we can devise OO programs merely by using a procedural programming 

language (e.g. using C). However, it is far more effective if concepts of OO can be 

directly supported by the programming language. 

 

7.2   Existing technologies as possible EM tool 

implementation 

 

In this section, we shall explore three existing technologies as possible EM tool 

implementations. First, we shall experiment with model-building using a typical OO 

language: Java. Second, we shall experiment with a spreadsheet application: Excel. 

Finally, we shall experiment with a visual first-order functional language, Forms/3. 
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7.2.1 Model-building using Java 
 

Java is a language specially designed for OO programming. However, in this section 

we shall implement the Business Deal model using Java (JDK version 1.3.1). We 

represent agents as objects, observables as attributes and actions as methods. Since 

there is no direct representation for definitions, we have made use of Observable 

and Observer classes (from the standard Java library in java.util) to simulate 

the maintenance of dependencies. The mechanism is as follows. Any class that 

inherits from the Observable class maintains a list of objects that implements the 

Observer interface. An Observable object can notify Observer objects in the 

list whenever changes have occurred by calling its method notifyObservers. 

This method calls update methods of each Observer objects in the list as a 

notification for the change.  

 

As shown in Listing 7.1, Buyer1 (lines 1-14) and Buyer2 (lines 15-28) agents 

are represented by classes implementing the Observer interface. The major 

differences between Buyer1 and Buyer2 are their criteria of making an offer (lines 

9 and 23). 

 

 
 
1. class Buyer1 implements Observer{ 
 
2. private double budget; 
3. private boolean interested; 
 
4. Buyer1(){ 
5.   budget=100; 
6. } 
 
7. public void update(Observable o, 

Object arg){ 
8.   Seller s=(Seller)o; 
9.   interested=s.getPrice()<=budget; 
10.   if(interested){ 
11.   s.offer("Buyer1"); 
12.   } 
13. } 
14. } 

 
15. class Buyer2 implements Observer{ 
 
16. private double budget; 
17. private boolean interested; 
 
18. Buyer2(){ 
19.   budget=1000; 
20. } 
 
21. public void update(Observable o, 

Object arg){ 
22.   Seller s=(Seller)o; 
23. interested=s.getPrice()<=budget*.2; 
24.   if(interested){ 
25.   s.offer("Buyer2"); 
26.   } 
27. } 
28. } 
 

Listing 7.1: Two classes representing Buyer1 (left) and Buyer2 (right) agents. 

 

As shown in Listing 7.2, the Seller (lines 29-42) agent is represented by a 

class inheriting from the Observable class. The Deal class is a dummy class that 

contains a program entry point (i.e. the main). 

 



7 Evaluations and Prospects for EM Tools 

158 

 
 
29. class Seller extends Observable{ 
 
30. private double asking_price; 

 
31. public void setPrice(double price){
32.   asking_price=price; 
33.   setChanged(); 
34.   notifyObservers();      
35. } 
 
36. public double getPrice(){ 
37.   return asking_price; 
38. } 
 
39. public void offer(String sellerName){
40.   System.out.println(sellerName +" 

made offer."); 
41. } 
42. } 

 
43. class Deal{ 
 
44. public static void main(String 

arg[]){ 
45.    Seller seller=new Seller(); 
46.    Buyer1 buyer1=new Buyer1(); 
47.    Buyer2 buyer2=new Buyer2(); 

 
48.    seller.addObserver(buyer1); 
49.    seller.addObserver(buyer2); 
 
50.    System.out.println("Price set to: 

10"); 
51.    seller.setPrice(10); 
52.    System.out.println("Price set to: 

150"); 
53.    seller.setPrice(150); 
54.    System.out.println("Price set to: 

999"); 
55.    seller.setPrice(999); 
56. }   
57. } 
 

Listing 7.2: Seller agent (left) and the testing class (right). 

 

A typical scenario of running this program is as follows. The main loop 

instantiates Seller, Buyer1 and Buyer2 (lines 45-47). Then, dependencies between 

the Seller and Buyers are made by adding Buyers to the list of Observers in 

the Seller (lines 48-49). After that, we can then test the responses of Buyers by 

setting different prices in the Seller. For example, the program calls 

seller.setPrice(150); (line 53). This sets the price in the Seller to 150 and 

notifies Buyer1 and Buyer2 (lines 31-35). The update methods in Buyer1 (line 

7-14) and Buyer2 (line 21-28) are called. By their criteria, Buyer1 does not make 

offer but Buyer2 does. The output of running this programming is shown in Figure 

7.2 below. 

 
 
C:\>java Deal 
 
Price set to: 10 
Buyer1 made offer. 
Buyer2 made offer. 
Price set to: 150. 
Buyer2 made offer. 
Price set to: 999. 
 

Figure 7.2: Output of running the Business Deal model in Java 

 

Building an ‘EM model’ by using Java is difficult. The first very noticeable 

problem is we cannot build the model interactively – every time we change or add 

something to the model, we need to make a compilation and restart the test from the 

beginning. We cannot add or modify any definition or action during the execution of 

the Java model. This is not in keeping with the evolutionary characteristics of the 
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DMF where by modification of the model should be conducted interactively as one of 

the agents. 

 

User interaction with the model has to be circumscribed before executing the 

model. So the user cannot be an agent within the model (cf. universal agency in the 

DMF). In fact, interaction between other agents in the model also has to be 

circumscribed. 

 

We could represent observables by attributes which contain states of the agents. 

However, the dependencies between observables from different agents have to be 

maintained by message passing (cf. line 34 and line 9). In other words, indivisible 

stimulus-response patterns cannot be represented faithfully in a Java model. Besides, 

the focus on states is easily inhibited by paying too much attention to message passing 

between classes (cf. state-based observation in the DMF).   

 

The concurrency of actions of three agents in the Java model is replaced by 

sequential message passing (cf. actions in lines 11 and 25). We can implement 

concurrency explicitly in Java but this involves setting up the mechanism manually as 

part of the program. What we really need is the style of concurrency that exists in the 

DMF (cf. concurrent agency in the DMF). 

 

In OO philosophy, it is better to declare attributes of a class as private (i.e. 

data encapsulation). However, in the DMF every observable of an agent is accessible 

for other agents. This can be easily done by declaring all attributes of a class as 

public. It violates OO philosophy but facilitates the DMF philosophy (cf. openness 

of privileges in the DMF).  

 

All the above observations lead us to conclude that it is difficult to use Java to 

build an EM model. The representation of agents as objects, observables as attributes 

and actions as methods seem to be direct but in fact it is not. The translation from the 

DMF model to the Java model is neither direct nor complete. 

 

7.2.2 Model-building using Excel 
 

In this section, we describe building the Business Deal model by using the 

spreadsheet application Excel (version 2002). In Excel, spreadsheets are called 

‘worksheets’. Worksheets are grouped together as a ‘workbook’. We can represent 

observables as cells, dependencies as formulae, actions as macros (in Visual Basic), 
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agents as aggregations of worksheets and macros, and the entire model as a 

workbook. 

 

Figure 7.2 shows screen captures of the model. The Seller agent represented by a 

worksheet is at the bottom-right screen capture. The current asking price is in the cell 

B1. Two Buyers are two worksheets (in formulae view) at the top of the figure with 

their budget and criteria of making an offer. We can see in the figure how each 

worksheet can refer to cells in another worksheet by using the symbol ‘!’.  

 

 

Figure 7.2: The Business Deal model in Excel 

 

At the bottom-left screen capture of the figure shows an ‘event macro’ called 

Worksheet_Calculate attached to Buyer1 worksheet. Every worksheet in Excel 

has this macro by default. Any code specified in this macro is automatically executed 

whenever any cell value in the worksheet is updated. As shown in the figure, it 

contains actions of Buyer1 – that changes the value of Seller’s B2 cell to make an offer. 

A similar macro is also attached to Buyer2 which is not shown in the figure.  

 

The translation from the DMF model to a spreadsheet model is more direct than 

to the Java model. This is mainly for two reasons: dependencies specified by formulae 

are automatically maintained (cf. indivisible stimulus-response pattern in the DMF) 

and we can incrementally build the model on-the-fly (cf. evolutionary in the DMF). 
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By using the grid layout, a spreadsheet visualises all states corresponding to cells (cf. 

state-based observation in the DMF). By changing from one worksheet to another, the 

user can play different roles as different agents in the model (cf. universal agency in 

the DMF). 

 

Excel provides no support for specifying access privileges for the cells. Every 

worksheet is free to refer to cells in other worksheets (cf. openness of privileges in the 

DMF). We have also demonstrated by experiments that macros (actions) are executed 

sequentially in Excel. Therefore, agents cannot act concurrently (cf. concurrent 

agency in the DMF).  

 

To conclude, we can use Excel as an EM tool. The translation from the DMF 

model to the spreadsheet model is easy. There are direct correspondences in mapping 

agents as worksheets, cells as observables, definitions as formulae and actions as 

macros. However, we have also notice two discrepancies. First, the agents cannot 

behave concurrently. Second, observables are normally referenced by grid 

co-ordinates rather than by user-given names (we can give an alias to cells but this 

involves extra effort). In order to use Excel as an EM tool, we also need to extend its 

available cell data types; it would be especial helpful to introduce graphic data types. 

 

7.2.3 Model-building using Forms/3 
 

Forms/3 is a first-order functional visual programming language based on spreadsheet 

styles of cells and formulae [Bur01]. However, there are two main differences 

between Forms/3 and a conventional spreadsheet. First, in Forms/3, cells are 

represented as rectangles which are positioned manually without a conventional grid 

layout. The value of a cell is visualised within the cell. The name and a formula tag of 

the cell are located at the bottom of the cell. Clicking the formula tag brings up a 

dialogue in which a formula can be entered (see left-hand-side of Figure 7.3). Second, 

in conventional spreadsheet, we can change the value of a cell by using procedural 

macros. In Forms/3 the value of a cell is solely defined by its formula (this is termed 

the ‘value rule’). Hence, it does not support procedural macros. This is consistent with 

one of the main aims of Forms/3: to stay within the functional paradigm of 

programming. 
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Figure 7.3: The Business Deal model in Forms/3 

 

Figure 7.3 shows a Forms/3 implementation of the Business Deal model. We can 

represent agents as forms (similar to worksheets in Excel), observables as cells and 

dependencies as formulae. Because of the value rule, there is no way we can specify 

actions directly. Therefore, we cannot specify the ‘offer-making’ actions in two 

Buyers. The workaround was to translate actions into definitions. For example, 

instead of specifying the actions in Buyer1, we enter an observable in the Seller with 

the formula: if (Buyer1:interested) then “yes” else “no” 

(bottom-right region of Figure 7.3). However, by doing this we have changed the 

semantics of the model – in the DMF model offer is initiated by the Buyers but in 

the Forms/3 model offer is perceived by the Seller. 

 

By using Forms/3, we can perform state-based observation, specify indivisible 

stimulus-response patterns and construct models evolutionarily (just like Excel). Cells 

can also be grouped to reflect agencies as forms. However, the inability to specify 

actions makes translation from the DMF model to Forms/3 model difficult and 

sometimes impossible without changing the semantics of the model. This limitation 

of using Forms/3 as an EM tool highlights the difficulty in building an EM model in 

using pure functional constructs. 
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7.3   TkEden: the principal EM tool 

Our principal tool TkEden and its variants (e.g. ttyEden, Eden, DTkEden) have been 

used for EM for more than ten years. Over this period, the research interests of EM 

itself have broadened from originally being solely concerned with interactive graphics 

[Bey88b] to definitive programming [Yun93], and from definitive programming to 

system development. To justify our claims that EM is not only theoretical but also 

practical, the expansion in conceptual scope of EM needs to be accompanied and 

supported by developing practical tools. TkEden serves very well as a research 

prototype for trying and exploring different research ideas – several hundreds of 

models have been built and more than seven different definitive notations have been 

integrated into the tool. However, in this section, we shall take a critical view of 

TkEden in use, and identify its limitations as a tool for applying EM in practice. 

 

In a TkEden script, observables are represented by definitive variables. 

Dependencies are explicitly specified by formulae. Actions are represented by 

procedures. Agents can be represented by the grouping of definitions and actions in 

the script, suitability annotated with comments. This is illustrated in Listing 7.3, 

which shows the script of the Business Deal model. The primary input mechanism is 

to write a script of definitions in a text input window and then introduce the script into 

the model by clicking the ‘Accept’ button of the ‘input window’ (cf. Figure 2.7 in 

chapter 2). 

 
1. /*** seller ***/ 
2. seller_asking_price is 150; 
 
3. /*** buyer1 ***/ 
4. buyer1_budget is 100; 
5. buyer1_interested is  seller_asking_price <= buyer1_budget; 
 
6. proc buyer1_action1: buyer1_interested{ 
7.     if(buyer1_interested) seller_buyer1Offer is 1; 
8. } 
9. proc buyer1_action2: buyer1_interested{ 
10.     if(!buyer1_interested) seller_buyer1Offer is 0; 
11. } 
 
12. /*** buyer2 ***/ 
13. buyer2_budget is 1000; 
14. buyer2_interested is seller_asking_price <= buyer2_budget*0.2; 
 
15. proc buyer2_action1: buyer2_interested{ 
16.     if(buyer2_interested) seller_buyer2Offer is 1; 
17. } 
18. proc buyer2_action2: buyer2_interested{ 
19.     if(!buyer2_interested) seller_buyer2Offer is 0; 
20. } 
 
21. proc monitor:seller_buyer1Offer,seller_buyer2Offer{ 
22.     writeln("buyer1:",seller_buyer1Offer," buyer2:",seller_buyer2Offer); 
23. } 
 

Listing 7.3: TkEden script of the Business Deal model 
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We shall first evaluate the degree of conceptual support for EM provided by 

TkEden by investigating the directness of the translation from a DMF model to a 

TkEden model. After that, we shall evaluate its interface to investigate the ease-of-use 

aspects. 

 

7.3.1 Evaluation of conceptual support 
 

Conceptually, the TkEden interpreter provides a high degree of interactiveness, so 

that the modeller can gradually build the model on-the-fly (cf. evolutionary construal 

in the DMF). Any changes are immediately reflected in the model. The modeller can 

use a trial-and-error approach to experiment with the model. The states of observables 

can be queried at any time during the modelling process, primarily by using a 

“writeln();” statement (cf. state-based observation in the DMF). The 

dependencies specified by using formulae are automatically maintained (cf. 

indivisible stimulus-response patterns in the DMF). Every observable is in a global 

name space, and therefore can be accessed freely from anywhere in the model (cf. 

openness of privileges in the DMF).  

 

The only major discrepancy between the DMF model and the TkEden model is 

in the representation of agency. TkEden has no direct mechanism to represent agents. 

As shown in Listing 7.3, we can use comments to annotate the agents (e.g. “/*** 

buyer1 ***/” in line 3) and use naming conventions to specify the ownership of 

observables (e.g. buyer1_budget in line 4). However, these ways of representing 

agency can only be interpreted by human agents. We need some built-in agency 

representation mechanisms that are interpretable both by human and automatic 

agents. 

 

In addition, concurrent actions can only be executed one by one sequentially (cf. 

concurrent agency in the DMF). Modelling a real-time system which has agents 

acting concurrently becomes very difficult. This is illustrated in the Dishwasher 

model described in chapter 3. In the Dishwasher model, a clock agent is introduced to 

simulate concurrency. However, all actions are still executed sequentially. Efforts 

have been made in the distributed version of TkEden (DTkEden) to allow 

concurrency through actions [Sun99a]. However, there is still no mechanism to allow 

dependencies to be maintained concurrently.  

 

Another issue is that TkEden is a hybrid interpreter that allows both procedural 
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variables and definitive variables to be used. The modeller has to distinguish a 

procedural assignment from a definition. For example, “a = b+c;” and “a is 

b+c;” are very different. In the former, a is a procedural variable. Only the result of 

the calculation from b+c is assigned to a. This is a one-off calculation. Value changes 

to b or c do not cause the value of a to be changed. In the latter, a is a definitive 

variable. The value of a will be recalculated every time the value of b or c changes. In 

the DMF, we can have only definitive variables, and assignment such as “a = b + 

c;” is replaced by “a is eval(b+c);” where eval() returns the ‘current value’ 

of “b+c”. The use of procedural variables in TkEden is sometimes confusing, and it 

violates the characteristics of the DMF. 

 

 

7.3.2 Evaluation of the interface 
 

In this subsection, we evaluate TkEden for issues of ease of use. The result of the 

evaluation can give useful insights into how to build better interfaces for EM tools. 

With reference to the analogy with the development of the personal computer 

mentioned earlier, TkEden’s interface is like a command prompt interface to an 

operating system – it provides access to all functionalities of the system but it is not 

the best access method for end-users when compared to graphical interfaces. In 

addition, some characteristics of the DMF can be more easily realised at the interface. 

For example, the process of subjective agency analysis can be facilitated by allowing 

the modeller to organise definitions and actions visually. This also supports the 

conception of the model as an artefact. 

 

TkEden has two features that are related to ease of use. Firstly, it promotes 

high-level, task-specific programming style that allows the modeller to construct a 

model interactively by trial-and-error. This is a common feature in most end-user 

programming tools (cf. [Nar93]). Secondly, the Eden interpreter that is kernel of 

TkEden provides dynamic typing, so that definitive variables need not be declared 

before use. Apart from these two features, TkEden has many issues that need to be 

addressed in relation to ease of use. We shall discuss them one by one as follows: 

 

 The definitive script is not the interface – The use of definitive script in 

TkEden is limited to model representation. It is not the interactive model itself – 

we cannot change the state of the model by editing the script directly. A 

definitive script has to be fed into TkEden by using the input window. The actual 

model resides in the computer memory and can only be accessed through the 
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‘input window’. 

 

 Lack of default visualisation – TkEden enables the modeller to build 

customised visualisations by using Donald and Scout. However, there are 

typically many elements of a definitive script that are only accessible to the 

modeller in textual form and typically only as a result of action on the modeller’s 

part. For instance, such elements typically include the values and relationships 

associated with scalar variables that underlie a geometric model. By default the 

TkEden interpreter only presents the current values and definitions of such 

variables on request in response to queries of the form “writeln(x);” and 

“?x;”. This is unlike a spreadsheet, where all the current values are displayed all 

the time, and dependencies between cells can be displayed graphically on 

demand. EM advocates the idea of modelling by building of artefacts. Supplying 

a default visualisation for all the elements of a model could give the modeller a 

more concrete feeling of building a model as an artefact.  

 

 Lack of mechanism to organise definitions – There is no feature in TkEden to 

organise definitions and actions in accordance with user preferences. Definitions 

and actions can only be viewed in the predetermined ways that the interpreter 

allows (e.g. Eden, Scout and Donald variables can be listed in alphabetical 

order). 

 

 Difficulties in renaming observables – TkEden provides no feature for 

renaming an existing observable. This involves renaming all the occurrences of 

the observable in formulae of all definitions in the model. This makes 

observables ‘sticky’ because if the modeller wants to rename an observable, she 

has to redefine all other observables that depend on it. 

 

 Invisible progress of actions – In general, the modeller does not need to know 

the progress of actions. However, when it comes to understanding the behaviour 

of a model, it is useful if the modeller can inspect (for example) the order of 

action execution. This also makes debugging easier. 

 

 Difficulty in annotating definitions – Comments can be added to definitive 

scripts. However, when a script is interpreted, all the comments are discarded by 

the interpreter. Comments help to understand the model so it would be useful to 

be able to attach comments to definitions even after they have been interpreted. 

One of the difficulties encountered in annotating scripts is that a comment may 
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apply to a group of definitions, but there are in general many different useful 

ways of grouping definitions (cf. subjective agency analysis). 

 

 Notation syntax inconsistency – In TkEden, different definitive notations have 

different syntax. For example, every statement in Eden has to end with a 

semicolon but in Donald every statement has to be terminated with a 

carriage-return. Another example is that the user does not have to declare 

variables in Eden but does have to declare them in Donald and Scout. It is 

difficult and confusing for the novice to learn several different syntactic 

conventions. 

 

 Complex syntax for actions – The syntax for specifying actions is sometimes 

very complex. An example will be given in discussing the EME tool in 

subsection 7.5.2. 

 

The developments of WING and EME described in the next two sections aim to 

address some of these issues. 

 

7.4   WING: a graphical EM tool 

 

WING (a WINdowing and Graphics tool) was originally conceived as the 

implementation of a definitive notation for windowing and graphical objects. 

However, during its development, the focus of attention shifted to its capabilities as a 

full EM tool. WING provides 15 data types in four categories, namely basic, 

windowing, graphics and vector data types. The modeller can also define new data 

types and operators. In this section, we shall only discuss features of WING that 

address some of the issues for TkEden identified in the last section. For more details, 

the reader is directed to [Won98]. Appendix F contains a technical overview of 

WING. 

 

7.4.1 Organising definitions 
 

Figure 7.4 shows the main user interface of WING loaded with a model of a room. 

The interface resembles a file explorer – definitions are organised within containers in 

much the same way that files are organised within directories. Therefore, conceptually, 

agents can be represented by containers (cf. the lack of agency representation and 

mechanism to organise definitions in TkEden). We call this a directory-like 
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organisation of agents. Clicking a particular container at the left-hand-side of the 

interface makes all definitions in the container appear at the right-hand-side of the 

interface. Definitions are displayed as rows of spreadsheet-like cells and can be edited 

directly by double clicking the cells (cf. definitive script is not interactive in TkEden). 

The values of observables can be viewed by clicking the corresponding cells (cf. the 

lack of default visualisation in TkEden). Comments can be added to each definition 

and these are recorded is displayed by WING (cf. difficulty in annotating definitions 

in TkEden). This is illustrated in figure 7.4 below.  

 

 
Figure 7.4: WING (right) loaded with the Room model 

 

In addition, WING has a method of alleviating the syntactic obstacles to entering 

definitions. At the bottom-left area of the interface shown in Figure 7.4, there is a set 

of buttons for helping the user to enter definitions. Clicking a button brings up a 

definition wizard. Figure 7.5 shows a definition wizard for specifying a line definition. 

A definition wizard provides a reminder of the syntax for a definition and an 

explanation of the significance of each parameter. By filling the form, the definition 

will be automatically generated. This is particularly useful for the novice modeller 

because she does not have to remember the syntax of all the different types of 

construct within different definitive notations (cf. notation syntax inconsistency in 

TkEden). 
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Figure 7.5: A Definition Wizard of specifying a line definition 

 

7.4.2 Specifying actions 
 

Actions are specified by using Java. WING provides a code template as the skeleton 

of an action. The user is only required to fill in actions to manipulate definitions in the 

model as shown in Figure 7.6. Each action in WING has a priority number which can 

be changed to control the order of action execution. The actions can be compiled and 

dynamically linked to the model by clicking the ‘Validate’ button. Dynamic linking of 

actions to the model is important because it allows user to specify actions on-the-fly 

without sacrificing the interactiveness of the model. 

 

The execution of actions triggered by interaction with the model can be 

monitored by bringing up the action queue window as illustrated in the bottom-left 

window of Figure 7.6. In the figure, we can see four actions waiting in the action 

queue. The number at the right of each action name is the priority number. The 

modeller can step through the execution of actions by clicking the ‘step’ button at the 

bottom of the action queue window. This feature addresses the issue of invisible 

progress of actions in TkEden. 
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Figure 7.6: Action specification in Java (middle) and stepping for action queue (bottom-left 

window) 

 

7.4.3 Higher-order definitions 
 

WING also explored the possibility of introducing higher-order definitions to an EM 

model by providing a ‘like’ operator (cf. the ‘like’ operator in Excel). A higher-order 

definition is a definition whose formula depends on the formula of another definition. 

In TkEden, formulae in definitions can only depend on the values of other definitions. 

To illustrate the concept, we can refer to the model of a simple two-layer perceptron 

(in the context of neural network). In this case, we are interested in the shape of the 

three neurons. As shown in the left-hand-side of Figure 7.7, originally they are all oval 

in shape. The task is to change them into a rectangular shape. By using the ‘like’ 

operator, we can specify their shapes as follows: 

 
centreA is {130,90}  
centreB is {130,290} 
centreC is {330,190} 
neuronA is oval(0, color(0,0,0), centreA, size, panel) 
neuronB is like(neuronA,1, centreB, centreA) 
neuronC is like(neuronA,1, centreC, centreA) 
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Figure 7.7: Neurons in oval shape (left) are transformed to rectangular shape (right) by 

higher-order definitions 

 

The centre positions of the neurons are specified by centreA, centreB and 

centreA respectively. As we can see in the above definitions, the shape of neuron B 

and C is dependent on the shape of A. For example, in the definition of neuron B: 

“like(neuronA,1, centreB, centreA)” means that the formula of B is 

same as A except that the first occurrence of symbol centreA is replaced by 

centreB (because B is in a different position). To change all the shapes to rectangles, 

we only need to change formula of A from “oval (0, color(0,0,0), 

centreA, size, panel)” to “rect (0, color(0,0,0), centreA, 

size, panel)”. 

 

WING has illustrated that simple higher-order definition can increase the 

expressive power of definitions. However, we need to bear in mind that higher-order 

definitions are more difficult to understand than ordinary definitions. We need to find 

a balance between expressiveness and comprehensibility in the future development of 

higher-order definitions in EM tools. 

 

7.4.4 Evaluation 
 

The development of WING has provided possible solutions to most of the issues of 

TkEden at the interface level. In addition, it has also explored some new ideas such as 

definition wizards, dynamic compilation of Java code for extension, and higher-order 

definitions. However, the design and implementation of WING also raises a number 

of issues: 

 

Firstly, there is no concurrency of agents. We can represent agents as containers. 

Ideally, actions with the same priority need to be executed in parallel (cf. concurrent 

agency in the DMF) but in WING they are executed sequentially. A similar issue 
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arises in TkEden. 

 

Secondly, we cannot simulate a clock. In TkEden, we can simulate concurrency 

by time-sharing regulated by a clock agent (cf. the use of the todo construct 

Dishwasher model). The implementation of the dependency maintainer in WING 

does not allow a similar clock agent to be defined. One possible solution is 

introducing a built-in clock agent in a separate program thread.  

 

Finally, the use of Java language for action specification makes WING more 

extendable. However, it is difficult for novice modellers to specify functions and 

actions if they do not have experience in Java programming. We have found that it is 

more difficult to specify actions in WING than in TkEden. One of the aims for 

developing EME, to be described in the next section, is to explore the possibility of 

designing a simpler language for specifying actions. 

 

 

7.5   EME: a tool with expressive variable referencing 

 

The primary aim of building the Empirical Modelling Environment (EME) was to 

develop a more expressive language for variable referencing. This is motivated by the 

need for simpler methods of specifying complex definitive script in TkEden. The 

variable referencing techniques also lead to alternative techniques for organising 

definitions. Though EME only supports simple data types, it addresses potential 

solutions to problems of script construction and management that are relevant to all 

definitive notations. Appendix G contains a technical overview for the tool. 

 

7.5.1 Entering definitions 
 

Like TkEden, EME accepts textual definitive script from an input window. But unlike 

TkEden, procedural variables and assignments are not allowed. The typical example 

of “a is b plus c” can be specified as: 

 
a = b + c; 

 

The symbol ‘=’ here has the same semantics as the symbol ‘is’ in TkEden. The 

semicolon at the end marks the end of a definition. Figure 7.8 shows the interface with 

some definitions in the model. 
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Figure 7.8: EME interface (left) and model visualisation (right) 

 

As shown in the figure, the model is visualised as a hierarchical dependency 

graph. There are two views of the same graph. The smaller one (on the left in the 

figure) gives an overall visualisation of the entire model. The bigger one can be 

zoomed to display a particular part of the graph. The symbols in the graph are ordered 

in levels so that a variable is only dependent on the variables at levels on top of it. The 

integer value at the right of each symbol is the current value of that symbol. This 

feature of EME addresses the issue of lack of default visualisation of the model in 

TkEden. It gives the modeller a more concrete feeling of building an artefact. This 

feature has been further enhanced in the development of the DMT to be described in 

the next chapter. 

 

7.5.2 Variable referencing 
 

One of the unique features of EME is its variable referencing mechanism. This gives 

the modeller more control of how a variable reference in a definition will be evaluated. 

The format of a variable is shown in the following example: 

 
 table\lamp\bulb 

 

The backslashes in this variable are context separators. In EME, variables are 

specified by variable expressions. A variable expression may contain alpha-numeric 

characters, back slashes, and three kinds of operators designated by angle brackets, 

square brackets and curly brackets. 
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The angle brackets <> specify that the enclosed expression will be evaluated and 

translated into alpha-numeric characters and then substituted into the variable 

expression to form a variable reference. It is a one-off translation.  The square 

brackets [] specify that the enclosed expression will be evaluated and translated into 

alpha-numeric characters every time the definition is evaluated. Finally, the curly 

brackets {} specifies that we need the value of the enclosed expression only. To help 

understand the semantics of those brackets, here is an example. Suppose we already 

have the following definitions in the model: 
 
i = 10; 
x\10 = 99; 
x\i = 88; 

 

The examples in Figure 7.9 show that we can use different brackets to control 

exactly when a variable expression is evaluated.  

 
User input Definition stored 

in the symbol 
table 

Evaluation 
sequence 

y = x\10; y = x\10 x\10  99 

y = x<i>; y = x\10 x\10  99 

y = x[i]; y = x[i] x[i]  x\10  99

y = x\i; y = x\i x\i  88 

y = {x\10}; y = 99 99 

Figure 7.9: Examples of using different variable referencing techniques 

 

We can identify three different uses of this technique: 

 

1) Creating a virtual list – We can create a virtual list by using this technique. For 

example, the following definitions specify a list of three integers: 

 
a\2 = 20; 
a\3 = 30; 
x = a[i]; 
i = 1; 

 

After introducing these definitions, the value of x will be changed according to 

the value of the index i.  

 

2) Syntactical organisation of agents – We can specify the ownership of variables 

by integrating the agent name into the variable name (cf. the concept of ‘virtual agent’ 
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in DTkEden [Sun99a]). For example, the following three definitions specify the exam 

marks for three students: 

 
tommy\marks = 100; 
annie\marks = 40; 
jody\marks = 10; 

 

We can refer to each student’s marks by the variable expression 

<currentStudent>marks where currentStudent contains a name of a 

student.  

 

3) Simplifying syntax of action specification – This way of referencing definitive 

variables is neater than the way used in TkEden. For example, here is an action taken 

from the TkEden timetabling model. Its purpose is to link cell contents to a function 

f(x). 

 
proc linkCells{ 
  auto i; 
 for(i=1;i<=slotsperday*noofdays;i++){ 
   

execute( 
   "~slotsTable " // ~slotsTable myList[i] // " myCaption is ~f(" // str(i) // ");"); 
  } 
} 

 

The EME implementation of the same action would be: 
 
action linkCells{ 
i=1; 
repeat(i<=slotsperday*noofdays){ 
 
slotsTable<slotsTable myList<i>><"myCaption"> = f({i}); 

 
i={i+1}; 

  } 
} 
 

If the value of i is 1, the definition in the above loop is equal to: 

 
slotsTable\cell1\myCaption = f(1); 

 

This is arguably more understandable than the TkEden implementation. The use of 

keyword repeat will be explained in the following subsection. 

 

7.5.3 Procedural macro 
 

EME provides two procedural macros to automate the variable defining process. They 

are a conditional if macro and a looping macro. The syntax of the conditional if is: 

 

if (logical expression) {lines of definitions} else { lines of definitions} 
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The syntax of the looping macro is: 

 

repeat (logical expression){lines of definitions} 

 

The loop repeats until the logical expression evaluates to be false. To illustrate, we can 

define five windows by the following definitions. The result is shown in Figure 7.10. 
 
i=1; 
title="hello!"; 
repeat (i<=5) {  
x1<i> ={10+i*50}; 
y1<i> ={10+i*20}; 
x2<i> ={150+i*50}; 
y2<i> ={400+i*20}; 
w<i> = window(title,x1<i>,y1<i>,x2<i>,y2<i>); 
i = {i + 1}; 
} 

 

 

Figure 7.10: Specifying multiple windows 

 

The window at the bottom right of Figure 7.10 illustrates how a simple iteration in EM 

can generate a very dense set of dependencies. 

 

7.5.4 Complex interface widget 
 

As illustrated in Figure 7.10 and 7.11, EME, like WING, includes features for defining 

windows and buttons. However, in the development of EME, we have also 

experimented with the introduction of complex interface widgets. For example, the 

following two definitions define the a simple spreadsheet grid with 8 by 10 cells 

depicted in Figure 7.11 (other numbers in the definitions are for specifying the size of 

the display area).  
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wg = window("grid test",10,10,400,400); 
grid1 = grid(8,10, 10,10, 300,200, wg); 

 

 
Figure 7.11: A built-in spreadsheet widget 

 

The modeller can enter definitions into the cells of such a grid. For example, we 

have entered a definition a+b in the location of column 1 and row 1. The actual 

definition created is grid1\C1R1 = a+b;. The dependencies involved are shown 

in the model visualisation window at the bottom of the screen capture. 

 

The spreadsheet grid illustrated in Figure 7.11 is actually an ActiveX control 

object obtained from the Web. This has demonstrated that we can link interface 

widgets created by using other programming language to an EM tool to facilitate the 

modelling of software systems with graphical user interfaces (cf. the interactor 

widgets in Penguims [Hud94]). 

 

7.5.5 Evaluation 
 

Throughout the development of EME, we have experimented with several new ideas 

that relate to improving interfaces to EM tools. In this subsection we give a brief 

evaluation of each of the experimental features we have introduced into EME:  

 

• The graphical visualisation of an EM model can give an overview of all 

observables and dependencies within the model. This can help the modeller to 

comprehend the model. However, the visualisation supplied by EME is still 
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not satisfactory. For example, the layout of the symbols at each level of the 

hierarchy is random. When there are a lot of dependencies between two levels, 

edges cross each other so that it is very difficult to see which symbol is 

dependent on which symbol. There is no mechanism in EME to rearrange the 

symbols to reduce edge crossings. 

 

• The new technique of variable referencing has the potential to increase the 

expressiveness of the definitive script whilst at the same simplifying its syntax. 

However, more experiments need to be conducted to justify these claims.  

 

• Procedural macros provide a simple way to automate some repetitive 

interactions with the model. At this stage, there are only two types of macro. 

We need to design more macros to accommodate a variety of user interactions. 

Examples are copy and paste macros and file manipulation macros. 

 

• We have explored the possibility of introducing complex interface widgets 

into an EM tool. Further investigation is needed to justify whether this is a 

suitable method for extending the tool. It would be even more useful if we 

could design interface widgets using primitive drawing definitions (cf. the 

design of the Dishwasher interface in chapter 3). This gives the user much 

more definitive control over the functionality and appearance of an interface. 

 

7.6   Prospects 

 

The research described in this chapter suggests that it is difficult if not impossible to 

build an EM model by using OO languages or pure functional languages. Neither 

paradigm can fulfil the demands of supporting essential characteristics of the DMF. In 

particular, the concept of EM agents is neither supported by OO nor functional 

paradigms. In fact, the DMF has a very different philosophy from OO or functional 

paradigms – the OO paradigm advocates data encapsulation but the DMF advocates 

free access to data; the functional paradigm rejects procedural access to variables but 

the DMF includes procedural access (actions) to variables as essential to the 

representation of agents.  

 

We have found that the degree of conceptual and interface support for EM that 

Excel with macros supplies is similar to that supplied by TkEden. However, TkEden 

is still a better choice than Excel. The main reason is that it supports a variety of 
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different special-purpose definitive notations. Every definitive notation extends 

TkEden to support many new data types and different ways of specifying definitions. 

For example, by using Donald and Scout we can build definitive visualisations that 

cannot be easily built by using Excel. From a research perspective, since we can 

access the source code of TkEden, we can always incorporate and rebuild TkEden to 

reflect new ideas. 

 

Where conceptual support for EM is concerned, the main limitation of existing 

EM tools is the lack of a mechanism to specify truly concurrent agency. Although 

pseudo-concurrency is possible by including a clock agent in TkEden, we need to 

incorporate real concurrency in order to study the full potential of the DMF in 

practice. 

 

Where the interface for EM is concerned, we need more flexible ways to 

organise definitions and actions into agents. The development of WING and EME has 

helped us to explore two new ways to organise definitions and actions – namely 

directory-like organisation and syntactical organisation of agents. In the next chapter, 

we shall introduce another way to organise definitions that is arguably better than 

these two ways.  

 

Another possible enhancement to existing EM tools is to provide a mechanism to 

generate an LSD specification automatically from a model. This idea was inspired by 

our experience of extracting an LSD specification from the Dishwasher model, as 

described in chapter 3. This experience suggests the following general informal rules 

for building each part of an LSD specification for an agent from a simple definitive 

script with actions: 

 

 derivates – include all definitions in the agent as derivates. 

 states – include all definitive variables on the LHS of derivates in the agent as 

states. 

 handles – include all definitive variables on the LHS within the agent’s actions as 

handles. 

 oracles – include all definitive variables on the RHS of derivates as oracles. 

 protocols – search for if statements in the procedures. The logical expression 

used by an if statement is the LHS (guard) of a protocol, and the sequence of 

definitions within the if statement comprise the RHS of the protocol. Any 

sequences of definitions that are not guarded by if statements in a procedure 

belong to a protocol with a true guard. 
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One requirement for generating LSD automatically from a script is that TkEden 

should ‘know’ about (i.e. have an internal representation of) agents. However, this is 

not the case in the current implementation of TkEden. In the future, if TkEden can be 

enhanced to include information about agents, further research into the automatic 

generation of LSD specifications from TkEden models would be viable.  

 

7.7   Summary 

 

In this chapter, we have discussed the evaluation of EM tools from two perspectives. 

With reference to conceptual support for EM, we have considered the directness of the 

translation from DMF models to particular implementations. At the tools interface, 

we have explored techniques that make the process of EM easier to perform. We have 

investigated three existing technologies, Java, Excel and Forms/3, as possible EM tool 

implementations. From this we concluded that it is difficult to use OO or pure 

functional languages to perform the activities of EM. We have also found that 

model-building in a spreadsheet with event macros captures most of the essential 

characteristics of the DMF. Both spreadsheets and TkEden reflect a major limitation 

of current tools for EM: their lack of support for the representation of agents with 

concurrent actions. We have also described some interface issues for TkEden. The 

developments of WING and EME explore new ideas that address problematic issues 

of TkEden. Finally, we have highlighted some major prospects for tool development 

in the future. 
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8 The Dependency Modelling Tool 

 

 

 

 

 

In this chapter, we shall describe a new EM tool, the Dependency Modeling Tool 

(DMT). The motivation for developing the DMT is similar to that of developing 

WING and EME – they aim to enhance users’ experience in the process of EM. 

However, the emphasis in DMT is on the ways to visualise various structures that 

commonly exist in EM models.  

 

We start our discussions by identifying these structures in section 8.1. In section 

8.2, we describe some tools developed by others in relation to visualising structures 

that are similar to the ones that exist in EM models. The development of DMT is 

partly inspired by some features of these tools. In section 8.3, we introduce DMT’s 

user interface with a simple example. Two major considerations for the development 

of DMT are model comprehension and reuse. In section 8.4, we discuss how DMT 

facilitates model comprehension. In section 8.5 we shall discuss how DMT facilitates 

model reuse. The final section highlights various issues related further research and 

development DMT.  

 

8.1   Structures in an EM model 

 

The term ‘structure’ is used in this chapter to refer to some recognised pattern 

associated with an EM model. These patterns are directly related to the 

understanding of the model with respect to its context which is gained from the 

modelling process. For example, the definition of “a is b+c;” has the structure of 

dependency: the value of observable a is dependent on the values of observables b 

and c. Dependency is not the only type of structure that exists in an EM model. In 

fact, there are three common structures that can be easily distinguished from a script: 

dependency structure, locational structure and contextual structure. Dependency 

structure is the pattern of which observables are related to each other; locational 

structure refers to the physical organisation and arrangement of definitions in a 

script; contextual structure to grouping of definitions according to different contexts 



8 The Dependency Modelling Tool 

182 

for observation and interpretation. In our experience, it is usually necessary for the 

modeller to keep all the structures in mind during the modelling process for 

purposes of model comprehension. 

 

In a TkEden script, the dependency structure is determined by formulae of 

definitions. Locational structure is determined by the organisation of definitions in 

this list (see left-hand-side of the Figure 8.1). There is no direct support for 

representing contextual structure.  

 

 
Figure 8.1: Linear locational structure and implicit dependency structure represented by a 

script of three definitions (left) and a dependency structure graph of the same definitions (right). 

 

Abstractly, we can represent a dependency structure by a directed acyclic graph4 

(showing all dependencies among observables in the model). In the graph, 

observables are represented as nodes, and dependencies as edges. We can lay out the 

graph hierarchically: the nodes at the higher levels are dependent on the nodes at the 

lower levels of the graph5. Therefore, nodes at the lowest level of the graph are 

constant observables or ‘undefined observables’ (see right-hand-side of the Figure 

8.1).  

 

The importance of contextual structure seems to have been largely overlooked in 

our previous work, although there have been some attempts to deal with them 

implicitly (e.g. via openshapes in Donald [Bey86] and virtual agents in DTkEden 

[Sun98]). In Donald, we can define an openshape whose shape is determined by a set 

of other shapes. For example, an openshape S with two lines L1 and L2 is defined as: 

                                                 
4 Similar to a spreadsheet, in an EM model cyclic dependencies are not explicitly represented. This is 

because cyclic dependencies cause an infinite loop of variable updates. 
5 This hierarchy is the basis for determining the order of variable updates. For example, a topological 

sort can be performed based on the hierarchy, which can minimise the number of evaluations 

required for variable updates. Synchronous updates are also possible while still maintaining the 

integrity of the model. 
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%donald 
openshape S 
within S { 
  line L1 
  line L2 
} 

 

Subsequently, we can refer to two lines individually by S/L1 and S/L2.The 

contextual structure in this case is accommodated by a syntactic construct of 

within-clause and a reference symbol ‘/’. In DTkEden, we can associate definitions 

with a virtual agent. The following is an example of virtual agent declaration: 

 
>>bird 
windspeed is 20; 
height is 1000; 
>> 

 

This defines a virtual agent bird with two observables. The symbol ‘>>’ at the 

beginning and the end of the declaration specifies contextual information – in this 

case windspeed and height belong to the bird agent. The actual definitions 

created by the above declarations are: 

 
bird_windspeed is 20; 
bird_height is 1000; 

 

Literally, a prefix ‘bird’ has been added to both definitions with a separator ‘_’.   

 

Representing dependency, locational and contextual structures by using textual 

syntax in TkEden and DTkEden has a major limitation: it is difficult for a modeller to 

understand these structures in isolation from other syntactic constructs. Two new tools 

introduced in the previous chapter had made attempts to address the limitations – 

WING provides direct support for organising the contextual structure by visualising 

using a tree explorer similar to the file explorer and locational structure by 

spreadsheet-like cells. EME visualises the dependency structure by drawing a 

dependency structure graph. But the results are still not satisfactory.  

 

The aim of the research described in this chapter is accordingly to find better 

ways of representing the structures that are common to all EM models. On this 

account, we have developed DMT to represent the structures graphically. We believe 

that by representing the structures graphically in a coherent way, the experience of 

building an EM model as an artefact can be significantly enhanced. At the same time, 

the research enhances the prospects of making EM tools more accessible and usable 

for general users. 
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8.2   Inspiration from other tools 

 

In this section, we discuss some existing tools that organise structures similar to the 

structures in EM models. Unlike TkEden script, these tools use graphical techniques 

to organise the structures. The development of DMT was partly inspired by our 

experience of using these tools. 

 

A common contextual structure can be found in modern operating systems. That 

is the organisation of files by a hierarchical structure of directories. Interfaces like the 

file explorer provide a graphical representation of the directory structure. Most PC 

users nowadays use them to manage their files instead of typing in command prompts. 

There are some limitations on using a hierarchical structure to represent contextual 

structure in EM model. We shall discuss them later in this chapter. However, the idea 

of organising files by an explicit representation of contextual structure is invaluable to 

the usability of modern computers. 

 

The importance of explicitly representing both locational and contextual 

structures is well attested by a popular note taking thinking skill called Mind Mapping 

[Buz95]. Figure 8.2 shows a Mind Map about the contents of this chapter. A Mind 

Map is a hierarchical graph with the highest level root located in the centre and 

branches radiating out in all directions. The root represents a central context of 

interest. The branches with keywords written on them represent concepts in the 

context of the keyword from a higher level branch. Relative locations between 

branches can also convey meanings. Empirical studies of Mind Map use indicate that 

identifying and managing the hierarchical structures associated with a concept helps 

people to organise and think about the concept more naturally and creatively [Buz95].   

 

 
Figure 8.2: A Mind Map about the contents of this chapter created by using MindManager. 
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The Mind Map in Figure 8.2 was created by using the MindManager tool 

[Min00]. One important feature of the tool is that it allows the user to move the nodes 

freely. This can be interpreted as allowing the user to change the locational structure 

of the Mind Map. It helps users to organise information according to their subjective 

preference and, therefore, has cognitive significance.  

 

The feature of explicitly representing dependency structure can also be found in 

connection with understanding a spreadsheet. The dependencies between cells in a 

spreadsheet are normally hidden from the user. This makes a spreadsheet difficult to 

understand [Gre98a]. Newer versions of spreadsheet applications contain a 

dependency tracing feature. For example, Excel can trace dependencies between cells 

by showing arrows, as shown in Figure 8.3. 

 

 

Figure 8.3: A spreadsheet in Excel (left) and its dependency traces (right). 

8.3   User interface 

 

The development of DMT is motivated by the need to enhance users’ experience of 

the process of EM. DMT provides features for users to build EM models as artefacts 

that are visually as well as physically more tangible than a definitive script – it uses 

acyclic graphs to visualise three common structures (dependency, locational and 

contextual structures) that exist in an EM model, and provides means to manipulate 

them directly by using a pointing device. In addition, a user can extract definitions 

created by DMT as Eden definitions, or conversely import Eden definitions from a 

definitive script. The current version of DMT is implemented in Java with standard 

Java libraries, so it is platform independent. Figure 8.4 shows the user interface of 

DMT with an empty model. 
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Figure 8.4: User interface of DMT 

 

The interface provides a large empty white area for drawing the dependency 

graph structure of an EM model. The major functionalities of DMT are reflected by 

the primary menu options – Model provides save, load, print and combine models 

functions; Script provides translation functions to and from definitive scripts; Layout 

provides functions to automatically arrange graphical positions of the nodes; Zoom 

provides functions to scale the entire graph; Help provides online help for using the 

interface (see Appendix H for menu reference). 

 

The basic means of entering a definition can be explained by creating a simple 

definition: a is b+c;. Figure 8.5 shows a sequence of steps to create a graph of this 

definition and the mechanism to move around the nodes of the graph. The figure 

illustrates the following basic features of DMT: 

 

 A node can be created by clicking the right mouse button. 

 The definition of a node can be edited by double-clicking the node with the left 

mouse button. 

 Any undefined observables will be automatically created as new nodes. 

 The details of a node can be checked by pointing at it with the mouse. The 

details are shown at the top-left region of the graph. 

 A group of nodes can be selected by drawing a rectangular selection box 

around them. 

 The selected group of nodes can be moved by drag and drop manipulation of 

the rectangular selection box (individual node can also be moved by drag and 

drop without a selection box). 
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Figure 8.5: A sequence of steps to enter a definition and to move nodes around. 

 

DMT uses a colour coding for different graphical elements of the graph. 

Unfortunately, the figures here are printed in black and white. However, the colour 

coding has significance in understanding the graph. Examples of the colour coding are: 

nodes with definitions are coloured in grey; nodes with no definitions are coloured in 

green; the selection box is in light blue. 

 

The semantics of a DMT model, when interpreted as an EM model, can be 

summarised as follows: 

 

 Observables are nodes. 

 Dependency structure is represented by directed-edges joining the nodes. For 

example, if node a depends on node b, there is a directed-edge pointing from b 

to a. 
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 Locational structure is represented by arrangement of nodes in a 

two-dimensional space. 

 Contextual structure is represented by abstractions (which will be introduced in 

another section). 

 

By providing features to graphically represent the structures in an EM and means 

of directly manipulate them, DMT improves the comprehensibility of the model. In 

addition, it provides mechanisms to allow easy reuse of existing models. We shall 

discuss model comprehension and reuse in more detail in the following two sections.  

 

8.4   Model comprehension 

 

DMT provides various features to help the user gain and maintain understanding of 

the developing model in the process of EM. We shall discuss these features under 

three headings: automatic dependency highlighting, understanding scripts and 

abstraction. 

 

 

8.4.1 Automatic dependency highlighting  
 

As mentioned before DMT uses colour coding to help the user understand the model. 

For instance, the dependencies related to a particular node are highlighted 

automatically. By way of illustration, the left-hand-side of Figure 8.6 shows a graph 

associated with the script of five definitions: 

 
a is b+c; 
b is 10; 
d is a; 
c is 10; 
e is a; 
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Figure 8.6: Automatic dependency highlighting 

 

Initially all the nodes and edges are in grey colour. When the user moves the cursor 

over node a, DMT immediately highlights the nodes and edges associated with its 

determinants in blue and its dependents in pink (see right-hand-side of Figure 8.6). 

This automatic visual feedback feature is very useful especially when studying a 

model with a large number of nodes and edges. 

 

8.4.2 Understanding scripts 
 

We can use DMT as a tool for understanding existing models represented by 

definitive scripts. DMT can import a definitive script, interpret it and find out all the 

observables and dependencies represented in it. Since the only positional 

information explicit in the script is the linear order of the definitions, we need some 

methods to lay out the graph. There has been much research on algorithms for the 

automatic arrangement of directed graphs (e.g. [Sug81, Tol96, Pur00]). A typical 

criterion used for arranging the nodes is minimizing edge crossings. Ordering a 

directed graph hierarchically is also common. We found that such strategies are of 

limited use for arranging the layout of an EM model. 

 

The geometric location of nodes in a DMT graph conveys information about a 

modeller’s understanding of the model. A modeller’s subjective perspective on the 

model, as reflected by the location of nodes, is difficult to capture in automatic layout 

algorithms. Our experience shows that one of the most effective ways to use the DMT 

is to allow the modeller to arrange the position of the nodes manually. For example, 

Listing 9.1 shows a definitive script of an ATM model. This script is imported into 

DMT by choosing the Script and Direct Import menu options.  
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1. %eden 

2. userInput is [PINentered,required]; 

3. currtime is 71; 

4. required is 0; 

5. overLimitToday is accLimitPerDay < 
(accDrawnToday+required); 

6. accLimitPerDay is 200; 

7. transpossible is cardInMachine && 
cardValid &&  bankValid  && PINvalid 
&& !overLimitToday && idValid && 
accStatus && !accOverLimit && 
moneyReady; 

8. accDrawnToday is 0; 

9. ATMbank is ['A', 'B', 'C']; 

10. accStatus is 1; 

11. environment is 
[currtime,cardInMachine]; 

12. cardInMachine is 0; 

13. cardExpiryDate is 320; 

14. r10 is (required - 20*actual20) / 10;

15. card is [cardBank, cardID, cardPIN, 
cardStartDate, cardExpiryDate, 
cardStatus]; 

16. ATMtens is 100; 

17. r20 is required / 20; 

18. accOverDraftLimit is 10; 

19. moneyOut is 
[transpossible,actual5,actual10,actua
l20]; 

20. actual10 is 
(ATMtens>=r10)?r10:r10-ATMtens; 

21. cardStartDate is 1; 

 

22. cardValid is (cardStatus==1) && 
(currtime >= cardStartDate) && 
(currtime <= cardExpiryDate); 

23. cardBank is 'A'; 

24. actual20 is 
(ATMtwenties>=r20)?r20:r20-ATMtwe
nties; 

25. cardID is 123; 

26. ATMtwenties is 100; 

27. ATMfives is 100; 

28. PINvalid is cardPIN == PINentered; 

29. actual5 is 
(ATMfives>=r5)?r5:r5-ATMfives; 

30. accOverLimit is required > 
(accTotal+accOverDraftLimit); 

31. cardPIN is 999; 

32. accTotal is 10000; 

33. ATMcardIDlist is [123, 321]; 

34. r5 is (required - 20*actual20 - 
10*actual10) / 5; 

35. moneyReady is 
(actual5*5+actual10*10+actual20*2
0)==required; 

36. PINentered is 999; 

37. cardStatus is 1; 

38. ATMbalance is ATMfives *5 + 
ATMtens*10 + ATMtwenties*20; 

39. idValid is isin(cardID, 
ATMcardIDlist); 

40. accDetails is [accStatus, 
accLimitPerDay, accTotal, 
accDrawnToday,accOverDraftLimit]; 

41. bankValid is isin(cardBank, 
ATMbank); 

 

Listing 9.1: A definitive script of an ATM model 

 

After importing the script, DMT randomly positions all the nodes representing 

observables in the script. The result is usually a graph with a messy arrangement of 

nodes where many edges cross over, and it is difficult to understand (see Figure 8.7). 

However, the modeller can get more understanding of the model by moving around 

the nodes interactively using a pointing device. Moving a node around immediately 

contributes to the understanding of the determinants and dependents of the observable 

that the node represents (because of the feature of automatic dependency 

highlighting). Further grouping of the nodes assists in gaining a better understanding 

of the model. Eventually, as shown in Figure 8.8, a well-organised layout that reflects 

the semantics of the model will typically emerge. 
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Figure 8.7: Random layout of the ATM dependency graph 

 

 

Figure 8.8: Organised representation of the ATM dependency graph 

 

For a small model, a modeller can rapidly understand the model. However, when 

the model is larger, and consists of say 100 nodes and 300 dependencies, moving the 
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nodes around becomes tiresome. The exploration of the model becomes difficult. This 

can be solved if we have knowledge of some observables that are more important than 

the others. If a modeller knows the key observables, nodes can be more easily 

arranged by firstly locating the nodes corresponding to the key observables, then the 

observables that are directly connected to the key observable and so on. In the ATM 

case, if we know that transpossible is the most important observable, the 

arrangement of nodes can be based on it. 

 

For any one particular definitive script, there is a virtually infinite number of 

ways to layout its dependency graph. Different modellers end up with different 

layouts even if they all start from the same random layout. This in part reflects the fact 

that we all understand a particular concept differently. Building a model by arranging 

the nodes can contribute directly to our construal of the model. The geometric 

positions of the observables embody part of our understanding of the model. 

 

Apart from understanding an existing model, geometric positioning of nodes can 

also help in building new models. In this case, the modeller positions an observable 

(node) each time he or she introduces a definition. Grouping observables and moving 

groups of observables in conjunction with the model-building activity can contribute 

visual support for model understanding as it evolves. 

  

8.4.3 Abstraction 
 

This subsection explains the concept of ‘abstraction’ in DMT. The contextual 

structure of the script can be represented in a way that is similar to the directory 

navigation of files in a modern operating system. Johnson et al. [Joh99] discuss 

different ways of representing a directory structure such as outline views, tree 

diagrams, Venn diagrams and tree-maps (see Figure 8.9). 

 

 
Figure 8.9: Different representations of directory structure 
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The design of the WING interface attempts to mimic outline view navigation 

(see Figure 8.10). A user can create new containers that contain sets of definitions just 

as directories contain sets of files. A dependency is implicitly defined in the sense that 

a container is dependent on the aggregation of definitions that it contains. 

 

 
Figure 8.10: Outline view of containers in WING 

 

An outline view, however, cannot represent a node with two parent nodes. A 

typical topological tree of an EM model has nodes with one or more parents. For 

example, consider the status of the variable c in following definitions: 

 
a is b+c; 
e is c; 
b is 10; 
c is 10; 

 

There is no direct way of representing the dependency using an outline view. Only 

the other two kinds of directory representation can be used, as shown in Figure 8. 

 

 
Figure 8.11: Diagram with a node with 2 parents and the Venn diagram. 

 

Abstraction in DMT combines the merits of the tree and Venn diagram. We can 

understand abstraction by firstly consider two example definitions: 
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By examining the formulae in these two definitions, it is obvious that they are both 

dependent on observables a and b or more precisely on the expression a+b. This 

knowledge of pattern can be captured by replacing the two definitions by the 

following three ‘equivalent’ definitions: 

 

 

 

The third definition here is an abstraction of what we observed. Observable X is at a 

higher level of abstraction than the other observables. To represent the fact that X 

has an abstraction level different from the others, DMT allows a modeller to visual 

X differently by directly specifying it is an abstraction. If X is an Abstraction, the 

colour of it becomes orange and there is a round-cornered orange rectangle that 

embraces X and all its determinants. Figure 8.12 shows a sequence of steps to 

specify X as an abstraction. This figure also shows that the edges from a and b are 

hidden as a result of declaring X as an abstraction. 
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Figure 8.12: A sequence of steps to set up an abstraction. 

 

Defining an abstraction can also be viewed as a way of hiding excessive 

complexity. For a large model, hiding edges directed from the determinants can make 

the graph less messy. For example, Figure 8.13 shows an observable Z that depends 

on another 20 observables. Specifying Z as an abstraction hides all the edges directed 

towards it. 

 

 

Figure 8.13: Two different representations of the same model – normal representation (left) and 

‘Z’ as an abstraction (right). 

 

 Defining an abstraction is also a way to explore agency. In the ATM model, we 

can specify the observables card and cardValid as agents. As shown in Figure 

8.14, their abstractions overlap each other. This might give a clue to the modeller 

that two separate sets of card and cardValid observables are needed. 
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Figure 8.14: Overlapping of two abstractions. 

 

Abstraction can be a unified way of representing agents, directories in Jam2 

[Car99], structures in Modd [Geh98] and containers in WING. To summarise, 

abstraction can be used for: 

 

 Hiding excessive information 

 Deriving agency 

 Representing agency 

 

By experiencing this way of identifying agents, we notice that an LSD specification 

can be viewed as a result of the modelling process but does not have the generality of 

an arbitrary script-based EM model. This is because an LSD specification is more 

suitable for representing settled agents. It does not have the degree of openness that a 

DMT model has.  

 

Other kinds of abstraction may also be usefully introduced into the DMT. A 

counterpart of Harel’s hierarchical organisation of states in a statechart [Har88] is one 

possible candidate. As will be illustrated later in connection with modelling a 

draughts game, it would be useful in some contexts to be able to abstract groups of 

observables that exhibit a generic dependency pattern (cf. the observables relating to a 

single square of the draughts board, as displayed in Figure 8.21.).  

8.5   Model reuse 

 

Apart from model comprehension, the other main contribution of DMT is new ways 

of reusing an EM model. In subsection 8.5.1, we shall describe a mechanism to 

extract Eden definitions from part of a DMT model. This mechanism is very useful 

for selecting reusable parts of a model. Model reuse in DMT is based on 
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well-defined strategies of combining two EM models. We shall discuss the strategies 

in the subsection 8.5.2 and give a simple example of model reuse in subsection 

8.5.3.   

 

8.5.1 Extracting part of a model 
 

It is common for some part of an EM model to be generic enough to be reused in 

building a new model. DMT allows a modeller to extract part of a model and save it 

for later reuse. Figure 8.15 shows how to extract part of an existing model into a 

definitive script. DMT automatically appends %eden at the beginning of the 

extracted script. The modeller can save the extracted script to a file for later reuse. 

 

 

Figure 8.15: Extracting script definitions from a DMT model. 

 

8.5.2 Strategies for combining two models 
 

A definition has three ingredients: the definitive variable (or ‘observable’) at the 

left-hand-side of the definition, the formula at the right-hand-side and the current 

value of the variable. What does it mean to say that the definition of a variable is 

well-defined? Does it mean that all three ingredients of the definition are defined? – 

or that some ingredients are defined and some are not? We have to take a closer look 

at each individual ingredient of a definition before answering these questions. 

 

A definitive variable is a metaphorical representation of some external 

observable. This means in effect that a variable is ‘defined’ as soon as it is referenced 

by any definition. That is to say, a particular variable should be treated as defined not 
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only when it is given a defining formula, but when other definitions refer to it in their 

formulae. Only when a variable is defined in this sense can other ingredients of its 

definition become meaningful. If a variable has a defining formula, its value can be 

determined by attempting to evaluate the formula, and if the evaluation is successful, 

we have a defined value for the variable. On the other hand, if the evaluation fails, the 

value for the variable will be undefined. 

 

In modelling a situation, the modeller may initially have only a vague idea of 

what defining formula is appropriate when he or she decides to introduce a variable. 

In that case, although the variable is defined, its formula is not yet defined and neither 

is its value. The following table (see Figure 8.16) illustrates all the possibilities that 

can arise when a variable has been first defined.  

 

 Formula defined Formula undefined 

Value defined A defined definition Impossible case 

Value undefined An evaluation exhibits an 

error. 

The dependency of the 

variable is still subject to 

investigation. 

Figure 8.16: Cases when an observable is defined 

 

DMT’s strategies for combining existing models are based on the above notions 

of defined and undefined ingredients. Here is an example. Suppose we have two 

models X and Y. We want to combine them to form a model Z. This can be written as: 

 
Z = X union Y 

 

The general rule for combining two models is to preserve as much knowledge about 

observables within the two models as possible, subject to avoiding conflict. For 

example, if the first model has observable v defined and the second has not, the 

resulting model will have an observable v defined as it is in the first model. Figure 

8.17 shows possible cases relating to the definition of v in combining X and Y to 

form Z. 

 
model case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 
X @ @ @ v is 20 v is 20 v is 20 v is @ v is @ v is @ 
Y @ v is 10 v is @ @ v is 10 v is @ @ v is 10 v is @ 
Z @ v is 10 v is @ v is 20 conflict v is 20 v is @ v is 10 v is @ 

Figure 8.17: An example of possible cases for combining models X and Y to form Z (‘@’ means 

‘undefined’). 

 

The problematic case is case 5, where definitions of v exist in both X and Y with 
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different formulae. This conflict cannot in general be resolved by applying rules 

automatically. For example, if we are currently building a model X and we want to 

reuse model Y as a building block in X, we should choose which definition we 

actually want manually. 

 

8.5.3 Reusing a model 
 

Reusing a model can be interpreted as combining the model with the new model 

which we are currently building. Therefore, DMT uses the strategies discussed in the 

previous subsection to facilitate model reuse. It is convenient to explain and 

illustrate the idea by an example. The following script defines a generic triangle 

comprising three lines: 

 
x1 is @; 
y1 is @; 
x2 is @; 
y2 is @; 
x3 is @; 
y3 is @; 
L1 is line(x1, y1, x2, y2); 
L2 is line(x1, y1, x3, y3); 
L3 is line(x2, y2, x3, y3); 

 

Its DMT equivalent is shown on the left of the left-hand-side screen capture in 

Figure 8.18. Suppose our task is to define a generic pattern of two triangles sharing 

one vertex. In this case the shared vertex is (x3, y3). The steps are as follows: 

 

1. Save the generic triangle model into a file. 

2. With the generic triangle still on screen, choose Combine to load the file. This 

brings up a window that contains a second generic triangle (left-hand-side of 

the Figure 8.18). 

3. Rename the nodes in the newly loaded generic triangle to avoid name clashes 

with the existing ones except in the case of the vertex (x3, y3). 

4. Choose Accept to combine the two generic triangles into one figure. The result 

is shown in right-hand-side of Figure 8.18. 
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Figure 8.18: The Model Combine dialog with nodes renamed (left) and the result of combining 

two triangles (right). 

 

As the example shows, when we want to reuse a model, we often need to rename 

the observables. The renaming of observables in a script is sometimes tedious. This is 

because the references to an observable may be scattered around everywhere in a long 

script. For example, we need to find and rename each of coordinates in the generic 

triangle script 3 times. With the graph representation, DMT centralises all references 

into one place. Therefore, in DMT, we need only carry out the renaming once for each 

coordinate to achieve the same result. 

 

8.6   Some remarks 

 

In this section, we discuss various issues related to further research and development 

of DMT. 

 

 

8.6.1 Scalability issue 
 

To test the scalability of DMT, we have tried to import many existing EM models in 

the form of definitive scripts. With a fair amount of time, we can generally rearrange 

the locations of nodes in each imported model from the initial random layout to a 

more comprehensible form. However, DMT has encountered problems when we try 

to visualise models with a large amount of dependencies. For example, the script for 

the board of an OXO game model contains 209 definitions and 814 dependencies 

(see Appendix I). After importing this model to DMT, we found that there is no way 

to rearrange the nodes to get a better layout out of the random layout (see Figure 

8.19). In this case, DMT does give the user a hint about the complexity of the model. 
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However, it is difficult to go a step further in terms of understanding the model out 

of the random graph. With reference to Appendix I, we can see that the actual script 

is easier to understand! This illustrates a common scalability problem in visual 

language for modelling or programming that relates to the limited size of the screen 

display. 

 

 

Figure 8.19: Visualisation of a definitive script with a large amount of dependencies 

 

One possible solution is to allow user to select and visualise just parts of the 

whole complex model, and hide the remaining parts. A simple technique for 

extracting suitable subscripts for this purpose is to use a text editor to identify all 

definitive variables with a common pattern or feature. A more sophisticated technique, 

currently under development by EM research group involves storing the symbol table 

of a script in a relational database. All the definitions can be stored in a relational 

database implemented within TkEden using the Eddi definitive notation mentioned in 

section 2.3.1. The user can then use relational queries to select parts of the model as 

views. DMT can be developed to allow the user to link these views with their 

graphical representations. This technique has been used in studying a bug in an EM 

model described in the following subsection. 

 

8.6.2 Potential for model debugging 
 

One possible use of the DMT is to help the process of debugging EM models. By way 

of a practical example, we here study a bug in a draughts game model written using a 

TkEden script (see Figure 8.20). The draughts model contains an 8 by 8 board and 

some circular pieces. Each square on the board has a circle on it. The fill colour of the 

circle is as follows: if there is no piece occupying the square its colour should be the 
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same as the background colour of the square, otherwise, its colour should be black or 

white depending on the colour of the occupying piece. When the background colour 

of the squares was changed by assigning a new value to the observable bgcol the 

following problem resulted: if a piece was placed on a square and then removed, the 

fill colour of the circle no longer matched the background colour. 

 

 
Figure 8.20: The draughts board (bottom) and the study of square 68 (top) 

 

With the help of relation database queries such as we described in the last 

subsection, we are able to study the problem by selecting and extracting all the 

definitions relating to a particular square. In this case, we have extracted all the 

definitions relating to the square and circle on column 6 and row 8 of the board, as 

shown at the top of Figure 8.20 above. We then study the extracted definitions by 

using the DMT. Figure 8.21 shows the DMT of the definitions. After rearranging the 

nodes, we find that the DMT model divides into two sub-graphs: one for the 

definitions of the circle 68 and the other for the square 68 (see the top screen capture 

in the Figure 8.21). The fact that the fill colour of the circle (bgcolor) and the 

background colour of the square (bgcol) should be the same when no piece is on the 

square indicates that there should be a dependency between two colours. However, 

the DMT analysis tells us that there is no dependency between the circle and the 

square. The bug is removed by adding a new observable (bckgrncol) to represent 

their common colour and defining both bgcol and bgcolor to be equal to 

bckgrncol. In this way, we make a ‘link’ between the two separate dependency 

graphs, as shown at the bottom of Figure 8.21. By using the DMT, we found it easier 
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to understand the complex dependencies involved in the EM model. This illustrates 

one way in which the DMT can lead to more effective debugging of EM models. 

 

 
Figure 8.21: The DMT model for a single square of the draughts board (top) and the missing 

dependencies (bottom) 
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8.6.3 Other types of dependency 
 

The development of DMT prompts us to ask a question: can we visualise all the 

dependencies that possibly exist in an EM model? This question leads us to identify 

different types of dependencies in EM models. In general, we can identify three 

types of dependencies: definitive dependency, procedural dependency and dynamic 

dependency. Definitive dependencies are specified explicitly by formula definitions. 

For example, the definition a is b+c; specifies a definitive dependency between 

observable a and its determinants b and c. As we have seen, DMT visualises this 

type of dependency by a directed graph. However, DMT does not visualise the other 

two types of dependency.  

 

Procedural dependencies are implicitly established by actions. For example, the 

following action contains a procedural dependency: 

 
proc add: b, c { 
    a = b + c; 
} 

 

This action monitors changes of b and c and assigns the sum of them to a. 

However, by just looking at this action, we cannot be sure a is merely dependent on b 

and c. This is because there may be other actions that also change the value of a. Only 

if we are sure that there is no other action that changes the value of a can we replace 

the action with a definition: a is b+c;. In this case, the procedural dependency is 

transformed to a definitive dependency. The transformation cannot be automatically 

established. This is because the fact that there is no other action that can change the 

value of a cannot be generated without intelligent intervention from the modeller. 

 

Dynamic dependencies are also implicitly established by actions. But unlike a 

procedural dependency, a dynamic dependency involves actions making definitions. 

For example, the following actions establish a dynamic dependency for a: 

 
proc x: v1{ 
    a is b+c; 
}  
 
proc y: v2{ 
    a is y; 
} 

 

In this case, the definition (not value!) of a depends on the changes of some other 
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external observables v1 and v2. If v1 changes, a will depend on b and c. On the 

other hand, if v2 changes, a will depend on y.   

 

In our experience, both procedural and dynamic dependencies are difficult to 

detect automatically. Detecting these dependencies may involve extensive analysis of 

the semantics of agents and actions in the model. On the other hand, to some extent 

they can also be seen as reflect the limitations of our current understanding of the 

scope for definitive dependency.  

 

8.6.4 Further research 
 

Apart from addressing the scalability issue and visualising other types of 

dependencies, there are many other possible interesting research topics and 

developments that can be conducted in relation to DMT in the future. Here we list 

some of them. 

 

 Research on end-user interface – As we have mentioned in chapter 6, we can 

use an EM model to control a ubicomp system (as soft-interface). Techniques 

developed in DMT to visualise and manipulate an EM model are more user 

friendly than entering definitions using the input window of TkEden where 

small scripts are involved. Small scripts are arguably easier to build and 

understand by using the DMT approach than by direct use of TkEden.  

 

 Developing other script translators – Currently, DMT allows only Eden 

definitions to be imported from a definitive script. Therefore, if we want to use 

DMT as a comprehension tool for definitive script, we also need to implement 

other translators for other definitive notations like Donald and Scout. 

 

 Enhancing the dependency maintainer – The latest version of DMT has a 

simple dependency maintainer that can evaluate definitions with simple 

arithmetic and conditional operators. Further enhancements of the dependency 

maintainer include implementing a wider range of data types and operators 

such as are provided in WING.. 

 

 Integrating DMT and TkEden – DMT can be used as an alternative 

user-interface for inputting definitions into TkEden instead of using TkEden’s 

input window. Integrating DMT and TkEden involves technical research on 

how to establish two-way communication between Java-based DMT and 
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TkTcl-based TkEden. Alternatively, TkEden can be used as a platform for 

implementing DMT. 

 

 Development of a grid-free spreadsheet application – The main functionality of 

a spreadsheet application is not only calculation but also report generation. To 

our knowledge, all the commercial spreadsheet applications available at the 

time of writing this thesis are based on table layouts with grid reference. DMT 

provides an alternative grid-free layout. In this case, every node in the DMT 

graph represents a spreadsheet cell whose location can be arranged by the user 

freely. The user can arrange all the nodes into a report format for printing. For 

this purpose, the user can choose to print only current values of nodes without 

the drawing the nodes and edges. 

 

8.7   Summary 

 

In this chapter, we have discussed the research, development and use of DMT. DMT 

provides a means to visualise and manipulate dependency, locational and contextual 

structures that commonly exist in EM models. The main contributions of DMT are 

features to help model comprehension and reuse. In the case of model 

comprehension, we can trace the dependency of an observable easily by the feature 

of automatic dependency highlighting. We can import an existing definitive script 

and explore the dependency within the script interactively. In addition, we can use 

the concept of abstraction to represent contextual structure discovered in the model. 

In the case of model reuse, DMT provides interactive ways to extract and combine 

EM models based on well-defined strategies. We have also discussed the scalability 

issue of DMT and the limitations in visualising procedural and dynamic 

dependencies. We have also described some possible further researches and 

developments. 
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9 Conclusion 

 

 

 

 

 

In this concluding chapter, we shall summarise and reflect upon the key ideas that 

underlie the contents of each chapter. We shall also review the proposals for further 

research discussed in previous chapters.  

 

In the Empirical Modelling chapter (chapter 2), we have explained that the 

philosophical foundation of Empirical Modelling (EM) is based on a commonsense 

way of understanding phenomena in terms of concurrent agents, observables and 

dependencies. Based on this philosophy, we have proposed the Definitive Modelling 

Framework (DMF) as a conceptual framework for supporting the cognitive processes 

behind our commonsense way of understanding phenomena. The DMF is 

characterised by its distinctive definition-based agent representation, which supports 

the use of interactive computer-based artefacts (namely Interactive Situation Models 

or ISMs) for personal and interpersonal modelling activities. We have also described 

the practical tool TkEden and the LSD notation as the main means of using the DMF 

in practice. We can find three levels of abstraction within EM research: the philosophy, 

framework and practice as represented by current tools and modelling building 

activities. The philosophy is reinforced by the framework, and the framework is 

realised by the practice. This raises the question: to what extent are there conceptual 

gaps between the philosophy and the framework and the framework and its current 

practical realisation? Where the relationship between the philosophy and the 

framework is concerned, we believe (from our experience) that the gap is already 

quite narrow. There is a direct correspondence between the concepts in the philosophy 

and the framework. This is no surprise because the DMF is the result of unification of 

ideas specially designed for the philosophy as it has evolved from about 20 years of 

EM research. The justification of this claim is beyond the scope of this thesis. Where 

the practical realisation of the framework is concerned, we believe that there is still 

much to be done to narrow the gap. The discussions in chapter 7 and chapter 8 are 

especially directed towards this concern. In general, chapter 2 supplies a 

consolidation on EM concepts which not only serves well as an ‘EM in a nutshell’ 

style of introduction to EM but also serves as a foundation on which in principle any 
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EM research can be based. 

 

The System Development chapter (chapter 3) aims to give a ‘bird’s-eye’ view of 

system development from the EM perspective. The chapter starts with a brief 

overview of some of the principal strands of research that relate to system 

development. In particular, system development has been informed by two more or 

less separate research strands. One approaches system development from ‘thinking 

about systems’; the other from ‘thinking about development activities’. We identify 

the EM perspective on system development with a broader and more comprehensive 

view to which both research strands are relevant. This view leads to the identification 

of three intrinsic properties of systems (complexity, predictability and unity) and three 

aspects of development activities (cognitive, collaborative and methodological). 

Where complexity is concerned, EM aims to manage complexity by modelling 

construals from the simplest to the deepest levels of understanding. Where 

predictability is concerned, EM offers an alternative approach, based on the ‘what-if’ 

principle characteristic of the spreadsheet, to the conventional prototyping and testing 

of system behaviour. It also promises to address issues of system reliability beyond 

the scope of mathematical analysis and prediction of expected failures. Where unity is 

concerned, EM presumes that there is no fixed specification for a system (i.e. no fixed 

system boundary). The system boundary can always be negotiated and can evolve 

according to the situation. Where the cognitive aspect of development activities is 

concerned, the EM model facilitates the evolutionary processes of knowledge 

creation. Where the collaborative aspect of development activities is concerned, the 

DMF embraces the idea of a hierarchy of human agents in which the negotiation of 

meaning is facilitated by sharing EM models. Where the methodological aspect of 

development activities is concerned, the thesis points out that both the standardisation 

of process (as e.g. in formal methodologies), and of representation (as e.g. in fixed 

architectural views), have limited application in real world system development. In 

EM (as is suggested by a growing body of literature), both process and representation 

should be allowed to evolve according to the current situation. The chapter then turns 

to a case study that compares EM and an OO modelling with UML. This chapter 

serves as an introduction to the EM perspective on system development with 

reference to current state-of-the-art system development research. It is arguably the 

most comprehensive view of system development based on EM principles so far. In 

particular, previous doctoral theses that relate to system development using EM only 

concentrate on the discussion of certain aspects of the topic that are most relevant to 

their specific research focus.  
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The Human Problem Solving chapter (chapter 4) discusses what system 

development using EM essentially entails – computer-supported human problem 

solving. We have characterised human problem solving using a computer as 

comprising searches in multiple problem spaces at two levels of abstraction: concrete 

and abstract. Traditional computer programming primarily supports problem solving 

either at the concrete level (e.g. spreadsheet paradigms) or the abstract level (e.g. 

conventional programming paradigms). We believe that EM gives more 

comprehensive support for problem solving, by assisting the solver in searching 

problem spaces at both levels of abstraction simultaneously. We argue that building an 

EM model (namely a Construal of the Problem Solving Situation or CPSS) is an 

activity well-suited for heuristic problem solving. This is illustrated with reference to 

a Crossnumber problem and a real-life timetabling problem. As mentioned in the 

System Development chapter, EM prescribes no method for system development. 

This chapter elaborates this idea by showing that in EM system development can be 

guided by situated problem solving heuristics instead of by rational predefined steps. 

 

In the Before Systems: Conceptual Integrity chapter (chapter 5), we point out 

that conceptual integrity is an important concern before any system is conceived. We 

have discussed issues that are associated with obtaining conceptual integrity, and 

explained – and illustrated using the Railway model – how EM can help to address 

them. The key idea is that conceptual integrity is closely associated with 

sense-making from a sea of incoherent experiences. The principal concern in the EM 

perspective on system development is not modelling the functionality of a specific 

system but on developing a construal of the incoherent experience from which a 

coherent system conception may emerge. This chapter gives a comprehensive 

exposition of this idea. 

 

The Beyond Systems: Ubiquitous Computing chapter (chapter 6) is mainly 

concerned with systems that can never be formalised by developers. The trend 

towards ubiquitous computing (ubicomp) motivates us to consider systems that can 

only be formulated when they are used in particular situations. This chapter includes a 

critical discussion of issues common to many ubicomp research agendas (namely 

automation, visibility, connectivity and adaptation), and highlights the importance of 

human involvement in each of these (namely human in the loop, user engagement, 

understanding and controlling, and user customisation). We propose a new conceptual 

framework (SICOD) based on EM principles for the ‘development’ of ubicomp 

systems. We introduce the concept of a ‘soft interface’ as defined by a simple EM 

model – an Interactive Control Model or ICM – that facilitates the management and 
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customisation of agents (typically ubicomp devices) whose reliable behaviour has 

been identified. An ICM comprises an ISM that connects a set of Interactive Device 

Models (IDMs). We have used simple examples to illustrate how a ubicomp system 

can emerge from constructing a simple ICM. This chapter has explored the potential 

for applying EM in the modern trend toward everyday life computing. This chapter 

also discusses many challenges involved in realising the full potential of EM for 

ubicomp (section 6.4). These challenges motivate future research on this topic. 

 

In the Evaluations and Prospects for EM Tools chapter (chapter 7), we 

investigate different techniques and tools that can be used to support EM modelling 

activities. The main concern of this chapter is to minimise the conceptual gap between 

the concepts in the DMF and the tools. We explore the scope for using different 

existing technologies for building ISMs, and attempt to construct a simple ISM by 

using Java, Excel, Forms/3 and TkEden. The general conclusion is that the concepts 

of OO in Java and first-order functional programming in Forms/3 detract from many 

essential characteristics of the DMF. Where supporting EM is concerned, TkEden and 

Excel are the best choices. TkEden is still preferable to Excel because of its support 

for a variety of special-purpose definitive notations and data types. However, we have 

identified three major conceptual limitations of TkEden. Firstly, there is no direct 

mechanism to group definitions and actions into agents. The modeller can only 

address this limitation partially and indirectly by adding comments to TkEden scripts. 

Secondly, definitions and actions cannot be updated concurrently. Thirdly, the hybrid 

concept of procedural variable and definitive variable is confusing. There is no 

corresponding notion of procedural variable in the DMF. Furthermore, we have 

identified eight major interface limitations that obstruct the realisation of the DMF. 

The conceptual and interface limitations of TkEden motivate the development of 

WING and EME. We discuss features of WING and EME that aim to address most of 

the limitations. However, due to lack of time, one major limitation of EM tools has 

remained unexplored – definitions and actions cannot be updated concurrently. This is 

a significant topic for further research on EM tools. 

 

The Dependency Modelling Tool chapter (chapter 8) describes a new visual tool 

that aims to enhance the experience of performing modelling activities under the DMF. 

The motivation behind the Dependency Modelling Tool (DMT) is that there are 

structures in EM models (namely the dependency, locational and contextual structures) 

that can be visualised to facilitate model comprehension and reuse. The main 

characteristic of the DMT is that it allows the modeller to build an EM model as a 

directed acyclic graph in which observables are nodes, the dependency structure is 
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visualised using directed edges, the locational structure is visualised through the 

two-dimensional arrangement of nodes, and the contextual structure is visualised 

using ‘abstractions’. Our experience of using the DMT suggests that visualisation and 

its direct manipulation mechanisms can greatly help the cognitive process of 

performing modelling activities, especially where model comprehension and 

debugging are concerned. DMT models have already been used for understanding 

many TkEden models created in the past. The development of the DMT has opened 

up many new research directions. Details are discussed in section 8.6.3. The most 

significant contribution of the tool is its potential for supporting the kind of end-user 

modelling that is essential for example for the application of EM in ubiquitous 

computing. 

 

This thesis is the first comprehensive exploration of the potential of EM to 

support system development. It goes beyond the traditional conception and approach 

to system development, and promotes system development from interactive 

construction of computer-based artefacts. The idea of ‘emergence through use’ is very 

important in the modern context of systems where the distinction between developer 

and user is not so clear. With the practical tools developed during the preparation of 

the thesis, the gap between EM principles and implementations has been narrowed. 

This provides a solid foundation for future research on applying EM to meet the 

challenging demands of system development in different domains. 
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Appendix A: The Dishwasher EM model 

 

 
 
/* dishwasherModel3-3.s 
 
   The Dishwasher Model 
 
*/ 
 
 
/************************** 
     ROLE: A CLOCK 
***************************/ 
%eden 
stopCLK = 1; 
nextClock = iClock = 0; 
proc clocking : iClock, stopCLK { 
 if (!stopCLK) 
 { 
  nextClock++; 
  todo("iClock = nextClock;"); 
 } 
} 
 
proc stopClk{ 
     stopCLK = 1; 
} 
 
proc startClk{ 
     stopCLK = 0; 
} 
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proc resetClk{ 
     iClock = nextClock = 0; 
} 
 
/******************************** 
     ROLE: A MAINTENANCE ENGINEER 
********************************/ 
 
/*  unfinished */ 
 
/*********************** 
     ROLE: A USER 
************************/ 
%eden 
proc startJob{ 
   startProcess(); 
} 
 
proc changeMode{ 
   para char;  
   if(char=='Q'){ 
 
      mode is quick; 
   } else if(char=='N'){ 
      mode is normal; 
   } else if(char=='I'){ 
      mode is intensive; 
   } 
} 
 
proc openDoor{ 
    door is open; 
} 
 
proc closeDoor{ 
 
    door is closed; 
} 
 
/***********************  
   ROLE: AN ENGINEER 
************************/ 
%eden 
/* door */ 
open is 0; 
closed is 1; 
door is closed; 
 
/* wash mode */ 
quick is 1; 
normal is 2; 
intensive is 3; 
 
mode is normal; 
rinseTime is (mode == quick)?1:((mode == normal)?2:8); 
washTime is (mode == quick)?1:((mode == normal)?2:8); 
dryTime is (mode == quick)?1:((mode == normal)?2:8); 
 
/* washing progress */ 
ready is "ready"; 
go is "filling..."; 
filled  is "rinsing...";  
rinsed is "washing...";  
washed  is "draining..."; 
drained is "drying..."; 
dried   is "done"; 
 
progress is ready; 
 
proc startProcess{ 
    startClk(); 
    startTime is time(); 
    progress is go; 
} 
 
proc monitorDoor: door{ 
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    if(door==open){ 
         writeln("door opened."); 
         if(progress==dried) 
           progress is ready; 
    } 
    else{ 
         startTime is time(); 
         writeln("door closed."); 
    } 
} 
 
/* 
proc doneWash: iClock{ 
    if(progress==dried && door==closed){ 
        progress is done; 
        writeln("done.");   
    } 
} 
*/ 
 
/* tank */ 
tankEmpty is 0; 
tankFull is 1; 
tankSomewater is 2; 
valveClosed is 0; 
valveOpen is 1; 
 
tankCapacity is 20000; 
waterFlowPerSecond is 50; 
waterLevel is 1; 
waterPercent is float(waterLevel) / float(tankCapacity) * 100; 
waterLevelStatus is 
(waterLevel==0)?tankEmpty:((waterLevel>=tankCapacity)?tankFull:tankSomewater); 
drainValve is (progress==washed && door==closed && 
waterLevelStatus!=tankEmpty)?valveOpen:valveClosed; 
fillValve is (progress==go && door==closed && 
waterLevelStatus!=tankFull)?valveOpen:valveClosed; 
 
/* 
proc monitorTank: waterLevel, waterFlowPerSecond, drainValve, fillValve { 
 
     writeln("waterlevel:", waterLevel," waterFlowPerSecond:",waterFlowPerSecond," 
drainValve:",drainValve," fillValve:",fillValve); 
} 
*/ 
 
proc waterSimulation: iClock{ 
      
     if(fillValve==valveOpen){ 
         execute("waterLevel is eval(waterLevel+waterFlowPerSecond);"); 
     } 
 
 
     if(drainValve==valveOpen && waterLevelStatus!=tankEmpty){ 
         execute("waterLevel is eval(waterLevel-waterFlowPerSecond);"); 
         if(waterLevel<0) 
             waterLevel is 0; 
     } 
 
 
} 
 
 
 
proc fillTank: iClock{ 
    if(progress==go && door==closed && waterLevelStatus==tankFull){ 
        progress is filled; 
        writeln("filled."); 
    } 
} 
 
proc drainTank: iClock{ 
    if(progress==washed && door==closed && waterLevelStatus==tankEmpty){ 
        progress is drained; 
 writeln("drained."); 
    } 
} 
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/* jet */ 
 
jetRinseWaterPerSecond is 2; 
jetWashWaterPerSecond is 4; 
jetSecondPerPulse is 1; 
 
jetSpraying is 0; 
jetPulsing is 1; 
jetOff is 2; 
 
jetLeft is -1; 
jetRight is 1; 
jetMiddle is 0; 
 
jetStatus is (progress==filled)?jetSpraying:((progress==rinsed)?jetPulsing:jetOff); 
jetDirection is (jetStatus==jetSpraying 
||jetStatus==jetOff)?jetMiddle:((jetStatus==jetPulsing && 
(iClock/jetSecondPerPulse)%2==1)?jetRight:jetLeft); 
 
/* 
proc monitorJetDirect: jetDirection{ 
   write(jetDirection); 
} 
*/ 
 
proc rinseDish: iClock{ 
    if(progress==filled && door==closed){ 
        
       execute("waterLevel is eval(waterLevel-jetRinseWaterPerSecond);"); 
       if(waterLevel<0)waterLevel is 0; 
         
 
       if(time()-startTime>rinseTime){ 
         progress is rinsed; 
         startTime is time(); 
         writeln("rinsed."); 
       } 
    } 
} 
 
proc washDish: iClock{ 
 
    if(progress==rinsed &&  door==closed){ 
                 
       execute("waterLevel is eval(waterLevel-jetWashWaterPerSecond);"); 
       if(waterLevel<0)waterLevel is 0; 
 
       if(time()-startTime>washTime){ 
 progress is washed; 
        startTime is time(); 
        writeln("washed."); 
       } 
    } 
} 
 
/* heater */ 
 
proc dryDish: iClock{ 
 
    if(progress==drained && time()-startTime>washTime && door==closed){ 
 progress is dried; 
        startTime is time(); 
        writeln("dried."); 
    } 
} 
 
/****************************************** 
      DISHWASHER COMPONENTS VISUALISATIONS 
******************************************/ 
%donald  
viewport visualisation  
 
# tank visualisation 
rectangle theTank 
theTank = rectangle({100,50},{200,50+waterPercent!}) 
?A_theTank = "color=blue,fill=solid"; 
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line theTankTop, theTankLeft, theTankRight, theFillValve, theDrainValve 
theTankTop = [{100,180},{200,180}] 
theTankLeft = [{100,70},{100,180}] 
theTankRight = [{200,50},{200,160}] 
?theFillValveX is (fillValve==valveOpen)?180:200; 
?theDrainValveX is (drainValve==valveOpen)?80:100; 
theFillValve = [{theFillValveX!,160},{200,180}] 
?A_theFillValve = "color=red,linewidth=2"; 
theDrainValve = [{theDrainValveX!,50},{100,70}] 
?A_theDrainValve = "color=red,linewidth=2"; 
 
label theTankLabel 
theTankLabel = label("water tank", {150,200}) 
 
# heater visualisation 
int bargap, barx,bary 
line bar1,bar2,bar3,bar4,bar5,bar6,bar7,bar8,bar9 
bargap = 5 
barx = 50 
bary = 350 
 
bar1 = [{barx,bary },{barx,bary-70}] 
bar2 = [{barx+bargap,bary },{barx+bargap,bary-70}] 
bar3 = [{barx+bargap*2,bary },{barx+bargap*2,bary-70}] 
bar4 = [{barx+bargap*3,bary },{barx+bargap*3,bary-70}] 
bar5 = [{barx+bargap*4,bary },{barx+bargap*4,bary-70}] 
bar6 = [{barx+bargap*5,bary },{barx+bargap*5,bary-70}] 
bar7 = [{barx+bargap*6,bary },{barx+bargap*6,bary-70}] 
bar8 = [{barx+bargap*7,bary },{barx+bargap*7,bary-70}] 
bar9 = [{barx+bargap*8,bary },{barx+bargap*8,bary-70}] 
 
?A_bar1 is (progress==drained)?"linewidth=3,color=red":""; 
?A_bar2 is A_bar1; 
?A_bar3 is A_bar1; 
?A_bar4 is A_bar1; 
?A_bar5 is A_bar1; 
?A_bar6 is A_bar1; 
?A_bar7 is A_bar1; 
?A_bar8 is A_bar1; 
?A_bar9 is A_bar1; 
 
label theHeaterLabel 
theHeaterLabel = label("heater", {barx+20,bary+20}) 
 
#jet visualisation 
int jetx, jety 
 
jetx = 200 
jety = 300 
 
rectangle theJet, theJetHead 
theJet = rectangle({jetx,jety+10},{jetx+50,jety-10}) 
theJetHead = rectangle({jetx-5,jety+5},{jetx,jety-5}) 
 
line water0, water1, water2, water3, water4, water5, water6 
 
water0 = [{jetx-5,jety}, {jetx-50,jety+45} ] 
water1 = [{jetx-5,jety}, {jetx-50,jety+30} ] 
water2 = [{jetx-5,jety}, {jetx-50,jety+15} ] 
water3 = [{jetx-5,jety}, {jetx-50,jety} ] 
water4 = [{jetx-5,jety}, {jetx-50,jety-15} ] 
water5 = [{jetx-5,jety}, {jetx-50,jety-30} ] 
water6 = [{jetx-5,jety}, {jetx-50,jety-45} ] 
 
?A_water0 is (progress==rinsed && door==closed && 
jetDirection==jetLeft)?"linewidth=2,color=blue":"color=grey"; 
?A_water1 is A_water0; 
?A_water5 is (progress==rinsed && door==closed && 
jetDirection==jetRight)?"linewidth=2,color=blue":"color=grey"; 
?A_water6 is A_water5; 
 
 
?A_water2 is ((progress==filled || progress==rinsed) && door==closed && 
jetStatus==jetSpraying)?"linewidth=2,color=blue":"color=grey"; 
?A_water3 is A_water2; 
?A_water4 is A_water2; 
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label theJetLabel 
theJetLabel = label("water jet", {jetx+35,jety+25}) 
 
 
%scout 
window visualisationWindow; 
 
visualisationWindow = { 
 box: [{370,0}, {730,400}], 
 pict: "visualisation", 
 type: DONALD, 
 xmin: 0, 
 ymin: 0, 
 xmax: 360, 
 ymax: 400, 
 border: 1, 
 sensitive: ON 
}; 
 
%eden 
 
/****************************************** 
      STATECHART VISUALISATIONS 
******************************************/ 
%donald  
viewport statechart  
 
rectangle stateReady, stateFilling, stateRinsing, stateWashing, stateDraining, 
stateDrying, stateDone 
label fillingLabel,rinsingLabel,washingLabel,drainingLabel,dryingLabel, readyLabel, 
doneLabel 
 
int startx, starty, height, width, gap 
point readyin,readyout, 
fillin,fillout,rinsein,rinseout,washin,washout,drainin,drainout,dryin,dryout,donein,
doneout 
line readytofill, filltorinse, rinsetowash, washtodrain, draintodry, drytodone 
 
startx = 120 
starty = 370 
gap = 20 
height = 30 
width = 90 
 
 
stateReady = rectangle({startx,starty},{startx+width, starty-height}) 
?A_stateReady is (progress==ready)?"outlinecolor=red,linewidth=3":""; 
readyLabel = label(ready!, {startx + width div 2, starty - height div 2}) 
readyin = {startx + width div 2, starty} 
readyout = {startx + width div 2, starty-height} 
 
stateFilling = rectangle({startx,starty-(height+gap)},{startx+width, 
starty-(height+gap)-height}) 
?A_stateFilling is (progress==go)?"outlinecolor=red,linewidth=3":""; 
fillingLabel = label(go!, {startx + width div 2, starty-(height+gap) - height div 2}) 
fillin = {startx + width div 2, starty-(height+gap)} 
fillout = {startx + width div 2, starty-(height+gap)-height} 
 
stateRinsing = rectangle({startx,starty-(height+gap)*2},{startx+width, 
starty-(height+gap)*2-height}) 
?A_stateRinsing is (progress==filled)?"outlinecolor=red,linewidth=3":""; 
rinsingLabel = label(filled!, {startx + width div 2, starty-(height+gap)*2 - height div 
2}) 
rinsein = {startx + width div 2, starty-(height+gap)*2} 
rinseout = {startx + width div 2, starty-(height+gap)*2-height} 
 
stateWashing = rectangle({startx,starty-(height+gap)*3},{startx+width, 
starty-(height+gap)*3-height}) 
?A_stateWashing is (progress==rinsed)?"outlinecolor=red,linewidth=3":""; 
washingLabel = label(rinsed!, {startx + width div 2, starty-(height+gap)*3 - height div 
2}) 
washin = {startx + width div 2, starty-(height+gap)*3} 
washout = {startx + width div 2, starty-(height+gap)*3-height} 
 
stateDraining = rectangle({startx,starty-(height+gap)*4},{startx+width, 
starty-(height+gap)*4-height}) 
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?A_stateDraining is (progress==washed)?"outlinecolor=red,linewidth=3":""; 
drainingLabel = label(washed!, {startx + width div 2, starty-(height+gap)*4 - height div 
2}) 
drainin = {startx + width div 2, starty-(height+gap)*4} 
drainout = {startx + width div 2, starty-(height+gap)*4-height} 
 
stateDrying = rectangle({startx,starty-(height+gap)*5},{startx+width, 
starty-(height+gap)*5-height}) 
?A_stateDrying is (progress==drained)?"outlinecolor=red,linewidth=3":""; 
dryingLabel = label(drained!, {startx + width div 2, starty-(height+gap)*5 - height div 
2}) 
dryin = {startx + width div 2, starty-(height+gap)*5} 
dryout = {startx + width div 2, starty-(height+gap)*5-height} 
 
stateDone = rectangle({startx,starty-(height+gap)*6},{startx+width, 
starty-(height+gap)*6-height}) 
?A_stateDone is (progress==dried)?"outlinecolor=red,linewidth=3":""; 
doneLabel = label(dried!, {startx + width div 2, starty-(height+gap)*6 - height div 2}) 
donein = {startx + width div 2, starty-(height+gap)*6} 
doneout = {startx + width div 2, starty-(height+gap)*6-height} 
 
readytofill = [readyout, fillin] 
?A_readytofill ="arrow=last"; 
 
filltorinse = [fillout, rinsein] 
?A_filltorinse ="arrow=last"; 
 
rinsetowash = [rinseout, washin] 
?A_rinsetowash ="arrow=last"; 
 
washtodrain = [washout, drainin] 
?A_washtodrain ="arrow=last"; 
 
draintodry = [drainout, dryin] 
?A_draintodry ="arrow=last"; 
 
drytodone = [dryout, donein] 
?A_drytodone ="arrow=last"; 
 
# the init dot and arrow 
point stateInit 
stateInit = {readyin.1,readyin.2+20} 
 
circle initCircle 
initCircle = circle(stateInit, 4) 
?A_initCircle="fill=solid"; 
 
line initLine 
initLine = [stateInit,readyin] 
?A_initLine ="arrow=last"; 
 
#the return routine 
line l1,l2,l3 
 
l1 = [{startx, starty-(height+gap)*6 - height div 2}, {startx-40, starty-(height+gap)*6 
- height div 2}] 
l2 = [{startx-40, starty-(height+gap)*6 - height div 2}, {startx-40,starty-height div 
2}] 
l3 = [{startx, starty- height div 2}, {startx-40, starty- height div 2}] 
?A_l3 ="arrow=first"; 
 
%scout 
window statechartWindow; 
 
statechartWindow = { 
 box: [{0,410}, {360,810}], 
 pict: "statechart", 
 type: DONALD, 
 xmin: 0, 
 ymin: 0, 
 xmax: 360, 
 ymax: 400, 
 border: 1, 
 sensitive: OFF 
}; 
 
%eden 
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/******************************* 
  ROLE: AN INTERFACE DESIGNER 
********************************/ 
 
%donald 
viewport interface 
 
#interface title(not part of the interface) 
label titleLabel 
titleLabel=label("Acme Dishwasher", {173,380}) 
 
#shape of the machine 
rectangle machineShape 
machineShape=rectangle({50,50},{300,350}) 
?A_machineShape = "color=white,fill=solid"; 
 
#the start button 
ellipse startButton 
startButton=ellipse({90,320},{90,330},{120,320}) 
?A_startButton = "outlinecolor=black,color=blue,fill=solid"; 
 
label startLabel 
startLabel=label("start", {90,320}) 
?A_startLabel = "color=white"; 
 
#the door 
rectangle theInside 
theInside=rectangle({100,70},{280,270}) 
?A_theInside = "color=grey50,fill=solid"; 
 
rectangle theDoor 
?theDoorX is (door==closed)?100:270; 
theDoor=rectangle({theDoorX!,70},{280,270}) 
?A_theDoor = "color=white,fill=solid"; 
 
rectangle theHandle 
theHandle=rectangle({70,150},{80,190}) 
 
 
#the progress bar 
 
%eden 
func convertProgressNum{ 
     auto result; 
     result = 0; 
      
     if($1==filled)result=1; 
     else if($1==rinsed)result=2; 
     else if($1==washed)result=3; 
     else if($1==drained)result=4; 
     else if($1==dried)result=5; 
     
     return result; 
} 
progressNum is convertProgressNum(progress); 
 
%donald 
rectangle theBarBackground 
theBarBackground=rectangle({160,300},{260,310}) 
 
rectangle theBar 
theBar=rectangle({160,300},{160+20*progressNum!,310}) 
?A_theBar = "color=green,fill=solid"; 
 
#the progress label 
label progressLabel 
progressLabel=label(progress!, {200,320}) 
?A_progressLabel = "color=black"; 
 
#mode buttons 
circle quickButton 
quickButton = circle({80,290},5) 
?A_quickButton is (mode==quick)?"color=yellow,fill=solid":""; 
 
label qLabel 
qLabel = label("Q",{80,300}) 
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circle normalButton 
normalButton = circle({100,290},5) 
?A_normalButton is (mode==normal)?"color=yellow,fill=solid":""; 
 
label nLabel 
nLabel = label("N",{100,300}) 
 
circle intensiveButton 
intensiveButton = circle({120,290},5) 
?A_intensiveButton is (mode==intensive)?"color=yellow,fill=solid":""; 
 
label iLabel 
iLabel = label("I",{120,300}) 
 
%eden 
 
proc mouseMonitor:interfaceWindow_mouse{ 
    auto x,y; 
    if(interfaceWindow_mouse[2]==4){ 
         x=interfaceWindow_mouse[4]; 
         y=interfaceWindow_mouse[5]; 
         if(x>=60 && x<=120 && y>=310 && y<=330) 
  startJob(); 
         /* door handle*/ 
         else if(x>=70 && x<=80 && y>=150 && y<=190){ 
  if(door==closed) door is open; 
                else door is closed; 
              } 
         /*quick button*/    
         else if(x>=75 && x<=85 && y>=285 && y<=295){ 
              mode is quick; 
              } 
         /*normal button*/    
         else if(x>=95 && x<=105 && y>=285 && y<=295){ 
              mode is normal; 
              } 
         /*intensive button*/    
         else if(x>=115 && x<=125 && y>=285 && y<=295){ 
              mode is intensive; 
              } 
         else 
            write("mouse x:",int(x)," y:",int(y),"\n"); 
         
    } 
} 
 
%scout 
window interfaceWindow; 
 
interfaceWindow = { 
 box: [{0,0}, {360,400}], 
 pict: "interface", 
 type: DONALD, 
 xmin: 0, 
 ymin: 0, 
 xmax: 360, 
 ymax: 400, 
 border: 1, 
 sensitive: ON 
}; 
 
%eden 
/***************************** 
   COMBINE DONALD VIEWPORTS 
*****************************/ 
%scout 
 
display d; 
d=<interfaceWindow/visualisationWindow/statechartWindow>; 
screen= d; 
 
%eden 
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Appendix B: The Dishwasher UML model 

 

 

 

 
Rhapsody interface with the dishwasher Use Case 

 

 

Class Diagram 
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Class Diagram 

 

 

Sequence Diagram 

 



Appendix B: The Dishwasher UML model 

223 

 

 

State Chart Diagram for the Dishwasher Class 

 

 

State Chart Diagram for the Tank Class 
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State Chart Diagram for the Heater class 

 

 
State Chart Diagram for the Jet class 
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Appendix C: An LSD account for the 

Dishwasher model 

 
/******************************************* 
    An LSD account for the dishwasher model 
********************************************/ 
 
Types: 
 
 modeType : enum(quick,normal,intensive) 
 doorStatusType : enum(open,closed) 
 progressType : enum(go,filled,rinsed,washed,drained,dried,finished) 
 tankStatusType : enum(tankEmpty,tankFull,tankSomewater) 
 valveType : enum(valveClosed,valveOpen) 
 jetStatusType : enum(jetSpraying,jetPulsing,jetOff) 
 jetDirectionType: enum(jetLeft,jetRight,jetMiddle) 
 
agent Clock{ 
  state: 
 (second) time 
 (bool)  pause 
  protocol: 
 pause == false -> time = time + 1 
} 
 
agent Dishwasher{ 
  state: 
 (modeType) mode 
 (progressType) progress = go 
 (second) rinseTime 
 (second) washTime 
 (second) dryTime 
 (second) startTime = time 
  oracle: 
 time, door, waterLevelStatus, waterLevel, progress, mode 
  derivate: 
 rinseTime = (mode == quick)?1:((mode == normal)?2:8) 
 washTime = (mode == quick)?1:((mode == normal)?2:8) 
 dryTime = (mode == quick)?1:((mode == normal)?2:8) 
 LIVE = progress != finished 
  protocol: 
 door == open && progress == dried -> progress = finished 
 door == closed -> startTime = time    
 progress==go && door==closed && waterLevelStatus==tankFull -> progress  
 
= filled 
 progress==washed && door==closed && waterLevelStatus==tankEmpty ->  
 
progress = drained 
 progress==filled && door==closed && (time-startTime) > rinseTime ->  
 
progress = rinsed; startTime = time 
 progress==rinsed && door==closed && (time-startTime) > rinseTime ->  
 
progress = washed; startTime = time 
 progress==drained && door==closed && (time-startTime) > rinseTime ->  
 
progress = dried; startTime = time 
} 
 
agent Tank{ 
  state: 
 (real) tankCapacity 
 (real) waterFlowPerSecond  
 (real) waterLevel 
 (real) waterPercent 
  oracle: 
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 progress, door, time 
  derivate: 
 waterPercent = waterLevel / tankCapacity * 100 
 waterLevelStatus = (waterLevel==0)?tankEmpty:((waterLevel>= 
 
tankCapacity)?tankFull:tankSomewater) 
 drainValve = (progress==washed && door==closed && waterLevelStatus!= 
 
tankEmpty)?valveOpen:valveClosed 
 fillValve = (progress==go && door==closed && waterLevelStatus!= 
 
tankFull)?valveOpen:valveClosed 
  protocol: 
 fillValve == valveOpen -> waterLevel = waterLevel + waterFlowPerSecond 
 drainValve == valveClose && waterLevel > 0 -> waterLevel = waterLevel  
 
- waterFlowPerSecond 
 
} 
 
 
agent Jet{ 
  state: 
 (real) jetRinseWaterPerSecond 
 (real) jetWashWaterPerSecond  
 (real) jetSecondPerPulse  
 (jetStatusType)  jetStatus  
 (jetDirectionType) jetDirection 
 
  oracle: 
 progress, time, door 
  derivate: 
 jetStatus = (progress==filled)?jetSpraying:((progress==rinsed)? 
 
jetPulsing:jetOff) 
 jetDirection = (jetStatus==jetSpraying ||jetStatus==jetOff)?jetMiddle 
 
:((jetStatus==jetPulsing && (time/jetSecondPerPulse)%2==1)?jetRight:jetLeft) 
  protocol: 
 progress==filled && door==closed -> waterLevel-jetRinseWaterPerSecond 
 progress==rinsed && door==closed -> waterLevel-jetWashWaterPerSecond 
} 
 
agent Heater{ 
  state: 
 (bool) heaterOn 
  oracle: 
 progress 
  derivate: 
 heaterOn = progress == drained 
} 
 
agent Door{ 
  state: 
 (doorStatusType) door 
  handle: 
 pause 
  protocol: 
 door == open -> pause = true 
 door == closed -> pause = false 
} 
 
agent User{ 
  oracle: 
 Dishwasher.LIVE 
  handle: 
 mode, door 
  protocol: 
 !Dishwasher.LIVE -> Dishwasher() 
 true -> mode = quick 
 true -> mode = normal 
 true -> mode = intensive 
 true -> door = open 
 true -> door = closed  
} 
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Appendix D: The CPPS for a Crossnumber 

problem 
 
 
/* CPPS for the Crossnumber problem */ 
 
grid =  [['x',' ',' ',' ',' '], 
         [' ',' ',' ','x',' '], 
         [' ','x',' ','x',' '], 
         [' ','x',' ',' ',' '], 
         [' ',' ',' ',' ','x'] 
       ]; 
 
numbers is ["1234","2125","26242","3992","4998","356","478","15","75"]; 
 
a1 is grid[1][1]; a2 is grid[1][2]; a3 is grid[1][3]; a4 is grid[1][4]; a5 is grid[1][5]; 
b1 is grid[2][1]; b2 is grid[2][2]; b3 is grid[2][3]; b4 is grid[2][4]; b5 is grid[2][5]; 
c1 is grid[3][1]; c2 is grid[3][2]; c3 is grid[3][3]; c4 is grid[3][4]; c5 is grid[3][5]; 
d1 is grid[4][1]; d2 is grid[4][2]; d3 is grid[4][3]; d4 is grid[4][4]; d5 is grid[4][5]; 
e1 is grid[5][1]; e2 is grid[5][2]; e3 is grid[5][3]; e4 is grid[5][4]; e5 is grid[5][5]; 
 
blocks  is [a1,b4,c2,c4,d2,e5]; 
 
position1 is [a2,a3,a4,a5]; 
position2 is [b1,b2,b3]; 
position3 is [d3,d4,d5]; 
position4 is [e1,e2,e3,e4]; 
position5 is [b1,c1,d1,e1]; 
position6 is [a2,b2]; 
position7 is [a3,b3,c3,d3,e3]; 
position8 is [d4,e4]; 
position9 is [a5,b5,c5,d5]; 
 
ok1 is containsString(numbers, digitsToString(position1)); 
ok2 is containsString(numbers, digitsToString(position2)); 
ok3 is containsString(numbers, digitsToString(position3)); 
ok4 is containsString(numbers, digitsToString(position4)); 
ok5 is containsString(numbers, digitsToString(position5)); 
ok6 is containsString(numbers, digitsToString(position6)); 
ok7 is containsString(numbers, digitsToString(position7)); 
ok8 is containsString(numbers, digitsToString(position8)); 
ok9 is containsString(numbers, digitsToString(position9)); 
 
 
set1 is findNumberWithConstraints(numbers, digitsToString(position1)); 
set2 is findNumberWithConstraints(numbers, digitsToString(position2)); 
set3 is findNumberWithConstraints(numbers, digitsToString(position3)); 
set4 is findNumberWithConstraints(numbers, digitsToString(position4)); 
set5 is findNumberWithConstraints(numbers, digitsToString(position5)); 
set6 is findNumberWithConstraints(numbers, digitsToString(position6)); 
set7 is findNumberWithConstraints(numbers, digitsToString(position7)); 
set8 is findNumberWithConstraints(numbers, digitsToString(position8)); 
set9 is findNumberWithConstraints(numbers, digitsToString(position9)); 
 
 
stuck is set1#==0 || set2#==0 || set3#==0 || set4#==0 || set5#==0 || set6#==0 || set7#==0 
|| set8#==0 || set9#==0; 
solved is ok1 && ok2 && ok3 && ok4 && ok5 && ok6 && ok7 && ok8 && ok9; 
 
proc monitorOks: ok1, ok2, ok3, ok4, ok5, ok6, ok7,ok8,ok9 { 
     writeln("oks:",ok1,ok2,ok3,ok4,ok5,ok6,ok7,ok8,ok9); 
} 
 
proc monitorProgress:solved, stuck{ 
     writeln("stuck:", stuck); 
     writeln("solved:", solved); 
} 
 
proc monitorSets: set1,set2,set3,set4,set5,set6,set7,set8,set9{ 
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    writeln("ok:",ok1," set1:",set1); 
    writeln("ok:",ok2," set2:",set2); 
    writeln("ok:",ok3," set3:",set3); 
    writeln("ok:",ok4," set4:",set4); 
    writeln("ok:",ok5," set5:",set5); 
    writeln("ok:",ok6," set6:",set6); 
    writeln("ok:",ok7," set7:",set7); 
    writeln("ok:",ok8," set8:",set8); 
    writeln("ok:",ok9," set9:",set9); 
 
} 
 
proc monitorGrid: grid{ 
    writeln("--------"); 
    writeln(grid[1]); 
    writeln(grid[2]); 
    writeln(grid[3]); 
    writeln(grid[4]); 
    writeln(grid[5]); 
} 
 
proc monitorNumbers: numbers{ 
    writeln("numbers:",numbers); 
} 
 
func containsString{ 
    para numbers, thestring; 
    auto i; 
    for(i=1;i<=numbers#;i++){ 
      if(numbers[i]==thestring)return 1; 
    } 
    return 0; 
} 
 
func digitsToString{ 
     para digits; 
     auto result, i; 
 
     result=""; 
     for(i=1;i<=digits#;i++){ 
        result = result // digits[i];     
     } 
 
     return result; 
} 
 
 
proc assign{ 
    para row, column, direction, number; 
 
    auto i; 
    autocalc=0; 
    for(i=0;i<number#;i++){ 
       if(direction==0) grid[row][column+i] = number[i+1]; 
       else if(direction==1) grid[row+i][column] = number[i+1]; 
    } 
    autocalc=1; 
} 
 
/* observations of the given set of numbers */ 
lengthStatistics is extractLengthStatistics(numbers); 
 
func extractLengthStatistics{ 
     para numbers; 
     auto result,i; 
 
     result=[0,0,0,0,0]; 
     for(i=1;i<=numbers#;i++){ 
        result[numbers[i]#]++; 
     } 
     return result; 
} 
 
proc monitorLengthStatistics: lengthStatistics{ 
     writeln("lengthStatistics:", lengthStatistics); 
} 
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/* strategies */ 
 
func findNumberWithConstraints{ 
     para numbers, constraints; 
     auto result,i,j,statisfied; 
      
     result=[]; 
 
     for(i=1;i<=numbers#;i++){ 
        if(numbers[i]# == constraints#){ 
 
             statisfied=1; 
 
             for(j=1;j<=numbers[i]#;j++){ 
                if(constraints[j]!=' '){ 
                   if(numbers[i][j]!=constraints[j]){ 
                       statisfied=0;   
                       break; 
                   } 
                } 
             } 
             if(statisfied==1) 
                result = result // [numbers[i]]; 
        } 
     } 
     return result;      
} 
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Appendix E: Some useful information from the 

literature 

 

Table 1: Assumptions and ideals of methodical and 

amethodical texts 

 

[Tru00] Table 1: Assumptions and ideals of methodical and amethodical texts. 

 

Privileged methodical text Marginalized amethodical text 
1. Information systems development is a 

managed, controlled process 
 
idealizing 
  logical decomposition 
  reductionism 
 

2. information systems development is random, 
opportunistic process driven by accident 

 
idealizing 
  holism 
  creativity 

3. Information systems development is a linear, 
sequential process 

 
 
idealizing 
  temporal causal chain 

4. Information systems development processes 
are simultaneous, overlapping and there are 
gaps 

 
idealizing 
  fragmentation 
  parallelism 
  disconnectedness 
 

5. Information systems development is a 
replicable, universal process 

 
idealizing 
  generalization 
  consistency 
  formalisms 
 

6. Information systems development occurs in 
completely unique and idiographic forms 

 
idealizing 
  choice 
  change 
  adhocracy 

7. Information systems development is a 
rational, determined, and goal-driven process 

 
idealizing 
  goal predetermination 
  process predetermination 
  human cooperation 

8. Information systems development is 
negotiated, compromised and capricious 
 
idealizing 
  conflict 
  social constructivism 
  human independence 
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Table 2: The rational problem solving paradigm and 

the reflect-in-action paradigms summarized 

 

[Dor95] Figure 1: The rational problem solving paradigm and the reflect-in-action 

paradigms summarized. 

 

 Rational problem solving Reflection-in-action 

Designer information processor 

(in an objective reality) 

person constructing his/her reality 

Designer problem ill defined, unstructured essentially unique 

Design process a rational search process a reflective conversation 

Design knowledge knowledge of design 

procedures and ‘scientific’ laws 

artistry of design: when to apply 

which procedure/piece of knowledge 

Example/Model optimization theory, the natural 

sciences 

art/the social sciences 
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Appendix F: Technical overview of WING 

 

We use Java (JDK1.4) as the programming language to develop WING because of its 

cross-platform capability and richness of graphics and user-interface library. The 

interpreter is developed by using JavaCC 0.7. The windowing and graphics 

functionality is implemented by using Java Foundation Class 1.1. 

 

1. Overall architecture 

 

The diagram showed below is an abstract view of the overall architecture of WING. 

Each rectangle box represents an abstract functionality to its lower level down to the 

hierarchical structure. 

 

Wing

Gui
Definition
Manager

Evaluable
Manager

Definition Parser Modd

User-defined
Action

Management

User-defined
Operator

Management

Tree View Table View

Class Loader

Overall Architecture of Wing

 
 

From the above diagram, WING can be divided into three main components namely 

GUI, Definition Manager and Evaluable Manager. The GUI component provides a 

user-friendly graphic user interface for user to interact with the system. The most 

important parts of are: 

 

 Tree View – provides a directory tree-like view of definitions and containers, and 



Appendix F: Technical overview of WING 

  233 

allows the user to select a definition or a containers through navigating the tree 

structure by using mouse pointer. 

 Table View – visualises definitions in the current container as a table of cells like 

a spreadsheet. It allows interactive definition editing by just double-clicking the 

corresponding cell. 

 

The Evaluable Manager provides the following functions: 

 

 User-defined Action Management – allows user to add, change, delete, compile, 

load and save actions. 

 User-defined Operator Management – allows user to add, change, delete, 

compile, load and save user-defined operators. 

 Class Loader – allows user to compile and bind Java actions and operators 

dynamically to the system. 

 

The Definition Manager provides basic functions to manipulate the definitions. It 

contains the following important components: 

 

 Definition Parser – builds parse tree for each definition. A parse tree is the main 

communication entity between the system and Modd. 

 Modd (Maintainer of Dynamic Dependency) API – maintains dependencies 

between definitions (developed by Gehring in the EM research group [Geh98]) 

 

2. Adding a definition 

 

Referring to the architecture described in the last section, here is a scenario of adding 

a definition into the system: 
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As shown in the above diagram, The typical steps of adding a definition into the 

system are: 

 

1. GUI passes the definition to the Definition Manager. 

2. Definition Manager passes the definition to the Definition Parser 

3. Definition Parser builds a parse tree for the definition and returns it to Definition 

Manager. (Assuming that there is no parse error for this definition) 

4. Definition Manager adds the definition with its parse tree to the Script(the most 

import class in Modd) 

5. Script maintains the dependencies among all definitions by evaluating a set of 

definitions that should be updated (the algorithm determining which definition 

should be updated in Modd implemented by Gehring)  

6. Evaluating the definitions in Modd triggers some user-defined actions and 

operators that will be executed by Evaluable Manager. 

7. Evaluable Manager asks ClassLoader to load the actions and operators from 

files. 

8. ClassLoader returns the loaded actions and operators to Evaluable Manager. 

9. Evaluable Manager executes the actions and operators. Actions will be executed 
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according to their priorities. Some of the actions may request further 

modification of the script. The requests are passed to Definition Manager. 

10. GUI updates the screen in react to changes of the script. 

 

3. Using Modd for maintaining dependencies 

 

WING uses Modd to maintain the dependencies among definitions. The following 

diagram shows the main entities of Modd: 
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As shown in the above diagram, the Definition Parser uses a variety of parse tree 

nodes provided by Modd to build a parse tree for each definition. The tree nodes are 

implemented as Java classes. Functionalities of different kinds of node are:   

 

 Value node – stores the value of a certain data type. 

 Reference node – stores a reference to a definition. 

 Function node – stores a function implementation. In WING, it is either an action 
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or an operator. 

 Structure node – stores a list structure similar to EDEN. Since Structure node is 

still under development, WING implements its own list structure called vectors. 

 

All parse trees that built by using the nodes above are passed to Modd from 

Definition Manger at run-time. Modd uses the parse tree actions stored in Function 

node to update the definitions, i.e. to maintain dependencies of definitions.  

 

The parse tree actions stored in Function Node are implemented by using Java 

Function Interface. Therefore, the task that should be done before we could use Modd 

is to implement Function Interface for every operator of all data types. All Java files 

started with prefix “F_” in Appendix of code listing are for this purpose. 

 

A guide for how to use Modd written by the author of Modd could be found in 

[Geh98]. However, we summaries the steps to use Modd related to the 

implementation of WING are as follows: 

 

1. Identify data types and operators. 

2. Implement data types using Java. 

3. Implement operators by using Function Interface provided by Modd. 

4. Implement parse actions in Definition Parser to build parse trees using: 

 Data type implemented in step 2. 

 Function Interface implemented in step 3. 

 Tree nodes provide by Modd. 

 

At run-time, WING’s Definition Manager passes parse trees generated by Definition 

Parser to the Modd for maintaining the dependencies among definitions. 

 

4. Executing user-defined actions/operators 

 

One of the unique features of WING is its capability to allow the user to implement 

new actions and operators using Java. The following diagram shows procedures to 

execute an action or an operator: 
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We summarise the essential points in the diagram as follows (note that Script is a class 

in Modd that maintains dependencies between definitions): 

 

 When Script encounters a user-defined function name, it will pass the name and 

corresponding parameters to Evaluable Manager of WING for executing the 

function. 

 Evaluable Manager determines whether the function is an action or an operator. 

 If it is an operator, Evaluable Manager calls ClassLoader to load the operator, 

then execute the operator. The result is returned back to the Script. 

 If it is an action, Evaluable Manager adds the action name to the actions queue 

according to the priority of the action. The Evaluable Manager waits until all 

definitions are updated. Then, it calls ClassLoader to execute actions in the 

queue one by one. 

   

In the next two sections, two very useful Java programming techniques are 

documented. They are the methods used by WING for dynamic compiling and 

loading of actions/operators. They could be served as reference to implement similar 

functionality for other Java definitive systems in the future. 

 

5. Dynamic compiling of Java code 
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To compile Java code at run-time, a class needs to have the following line in its 

implementation:- 
 
import sun.tools.javac.Main; 
 

Then, given name of the Java file, we could compile it by using following codes:- 
 
boolean state; 
Main compiler=new Main(System.out, “javac “ +path); 
state = compiler.compile(filename); 

 

where path is the directory name where the Java file is located. After execution of 

above codes, the value of state indicates whether the compilation is successful or not. 

If the value of state is true, the compilation is successful. If the value of state is false, 

there is parser error. The error messages is displayed in the standard output. 

 

6. Dynamic loading of Java class 

 

Techniques for dynamic loading of Java class is difficult, however McManis, in 

[Mcm97], provides a template to implement a Java class loader. WING modifies the 

template to achieve dynamic loading of actions and operators. The implementation of 

WINGClassLoader could be found in the file WINGClassLoader.java. The main steps 

for implementing a class loader are summarised as below: 

 

1. extend the java.lang.ClassLoader. 

2. implement the abstract method loadClass(). The flow of this method is as 

follows: 

 check if the class name is valid or not 

 check if the class has already been loaded 

 check if the class is a “system class” 

 fetch the class from class loader’s repository if possible 

 define the class for the Virtual Machine 

 resolve the class 

 return the class to the caller 

 

For details, please refer to WINGClassLoader.java. 

 

7. BNF of the definition notation of WING 

 



Appendix F: Technical overview of WING 

  239 

The DefinitionParser of WING is generated by using JavaCC. The BNF of it is as 

follows: -  

 
one_line ::= logical <EOL> 
             |<EOL> 
             |<EOF> 
logical ::= relation ( ( <AND> | <OR> | <XOR> ) relation )* 
relation ::= sum ( ( <SMALLER> | <SMALLER_EQUAL> | <EQUAL> |    
 <GREATER>  
             | <GREATER_EQUAL> | <NOT_EQUAL> ) sum )* 
vector ::= "{" logical ( "," logical )* "}" 
string ::= <STRING> 
sum  ::= term ( ( <PLUS> | <MINUS> ) term )* 
term  ::= exp ( ( <MULTIPLY> | <DIVIDE> ) exp )* 
exp  ::= unary ( <EXP> exp )* 
unary  ::= <MINUS> select 
   |select 
select ::= element ( <SELECT> select )* 
element ::= <CONSTANT> 
   |<TRUE> 
   |<FALSE> 
   |function 
   |"(" logical ")" 
   |vector 
   |string 
function ::= <ID> "(" ( logical ( "," logical )* )? ")" 
   |<ID> 
 

The functionality of DefinitionParser is only to parse the left hand side of a definition 

and build parse tree by using nodes provided by Modd. Other parts of notation syntax 

such as for variable name is done by GUI of WING. 

 

8. Reference 

 

[Geh98] D. K. Gehring, Modd documentation, Online at:  

http://www.dcs.warwick.ac.uk/~gehring/modd, 1998. 

[Mcm97] C. McManis, The basics of Java class loaders, Java In Depth, Online at: 

http://www.javaworld.com, 1997. 
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Appendix G: Technical Overview of EME 

 

EME is a MS Windows application developed using Visual C++ 6.0. It uses the 

Microsoft Foundation Classes (MFC). Many classes in the implementation are 

derived from MFC.  

 

The core part of EME is an interpreter. The interpreter contains two parsers that 

are generated by using Parser Generator 1.11 from Bumble-bee Software Ltd. The 

Parser Generator generates C++ parser classes according to grammar specifications 

very similar to Lex and Yacc in Unix. For the visualisation of the model, EME makes 

use of the LEDA library. It is a library of the data types and algorithms of 

combinatorial computing. LEDA simplifies the process of implementing graph 

algorithms that are used for displaying the dependency graphs, checking cyclic 

dependencies and determine order of the evaluations. 

 

1. Overall architecture  

 

EME contains about 25 classes. They can be categorised into the following six 

groups: 

 

 The interface classes 

 Interpreter classes 

 Symbol table classes 

 Parse node classes 

 Windowing classes 

 Communication classes 

 

The interface classes implement a simple graphical user interface (as shown in 

the screen capture below) that a user can interact with the tool. The interface can be 

divided into two areas. The top area shows a model visualisation of data dependency 

graph with buttons of adjusting the size of the graph, and a popup button which is for 

opening a bigger window showing the graph in a more detail. The bottom area is for 

script input similar to the ‘input window’ of TkEden. 
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The interpreter classes implement one Lexer and two Yacc parsers. Two parsers 

use the same Lexer to get tokens from the input script but process the tokens in 

different ways that will be discussed in the following sections. The whole 

interpretation process of a script contains two passes, each pass uses a different parser. 

 

The symbol table classes implement how definitions are stored in the memory. 

It also contains evaluation algorithms and graph layout algorithms. The parse node 

classes implement all the data types and their operations. The interpreter creates parse 

trees by using these nodes. Windowing classes are classes derived from MFC 

windowing classes that help to manage the side effects triggered by using windowing 

components. For example, a button should introduce a “button-clicked” definition to 

the symbol table when it is clicked. Finally, the communication classes are 

responsible for the peer-to-peer communication among EME application instances 

when we build a distributed model. The figure below shows the overall architecture of 

EME with arrows denoting interaction between classes. 
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2. The interpreter 

 

The underlying interpreter contains one tokeniser and two parsers. All of them are 

generated by a C++ compiler compiler called Parser Generator. The whole 

interpreting process can be divided into two passes. Each parser is responsible for one 

pass of the process. 

 

In the 1st pass, the syntax of inputting script is checked. All the branching 

positions in script are also determined and saved for later use in the 2nd pass.  In the 

2nd pass, the parser builds parse trees for definitions and calls symbol table to 

evaluate and store the definitions. It uses the branching information saved from the 1st 

pass to jump over a block of script if needed. For example, the logical expression of an 

if statement is checked. If the expression turns out to be false, we need a jump to the 

end of the if statement without executing anything enclosed in the if brackets. To 

understand this, we could imagine there is a high level program counter in the 

tokeniser that scans input token by token and each token is consumed and executed by 

the parser. The position of the program counter is at the beginning of next token. The 

parser tells the tokeniser when a jump over a block of scripts is needed. The position 

where the program counter will be jumped to is determined in the 1st pass of the 

interpretation process. 

 

Here is the grammar used for both parsers: 

 
lines : lines line 
| /* empty */ 
 ; 
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line : statement     
 | error '\n'     
 | '\n'   
 ; 
 
statement : definition  
  | systemcommand   
 | control 
  | procedurespec 
  ; 
procedurespec : ACTION var '{' lines '}'  
  | FUNCTION var '{' lines '}' 
     ; 
 
definition : var '=' rhs ';'  
  ;  
  
systemcommand : '?' var ';'   
  | UNDEFINE var ';' 
 | LISTEN '(' NUMBER ')' ';' 
  | CONNECT '(' expr ',' expr ',' expr ',' NUMBER ')' ';' 
 | TESTSEND '(' expr ',' expr ')' ';' 
  ; 
  
control  : REPEAT '(' logicalexpr ')' '{' lines '}'  
  | IF '(' logicalexpr ')' '{' lines '}'  
  | IF '(' logicalexpr ')' '{' lines '}' else '{' lines '}' 
  ; 
  
var  : id 
  | var '@' id 
; 
 
id  : ID       
  | '<' expr '>'     
 | '[' expr ']' 
 | id '\\' NUMBER    
| id '\\' ID     
 | id '<' expr '>'   
 | id ID 
 | id '[' expr ']' 
  ; 
 
rhs  : expr       
  ; 
 
expr  : expr '+' expr     
  | expr '-' expr     
 | expr '*' expr     
  | expr '/' expr     
 | '(' expr ')' 
 | '{' expr '}'     
 | logicalexpr 
  | NUMBER      
 | USERTEXT      
 | var       
  | SIN '(' expr ')' 
 | var '(' parameterlist ')' 
 | var '(' ')'     
  ; 
  
parameterlist : expr  
  | parameterlist ',' expr 
  ; 
  
logicalexpr : expr EQUAL expr    
  | expr NOTEQUAL expr   
 | expr SMALLEREQUAL expr  
  | expr GREATEREQUAL expr  
 | expr SMALLER expr    
 | expr GREATER expr    
 | NOT expr      
  ; 
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The grammar above is provisional. For example, in the current implementation, 

only Sin function among all the common trigonometric functions that can be 

implemented. The grammar here is for testing the functionalities of EME. There will 

be a big enhancement of the grammars in the release version of EME. 

 

It is worth noting that, along the process of interpreting a definition, it is very 

important to know all the determinants that the definition is dependent on. The 

determinants are references to other definition variables. In a definitive system like 

EME, the set of determinants of a definition is dynamic. For example, in the definition 

x=a[i]; , the determinants of this definition is dependent on the current value of 

definition i. Therefore, in EME, the set of determinants of a definition will be 

determined not in interpreting time but every time when the definition is evaluated. 

 

3. Building parse trees 

 

The main purpose of the interpreter is to build parse trees that can be evaluated every 

time when the value of definitions need to be updated. A parse tree consists of links of 

parse nodes of many different types. In the current version of EME, there are about 25 

types of parse nodes. They can be grouped into terminal nodes and non-terminal 

nodes. Typically, terminal nodes are nodes that contain primitive values of EME data 

types; non-terminal nodes contain operation instructions on the primitive nodes. Here 

gives an example of a parse tree of the definition: 

 

x = a + 10 * sin(b); 
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In the above example, the terminal nodes are a,10 and b, whereas non-terminal 

nodes as +, * and sin function. 

 

The advantage of building parse trees and storing them with the definition is that 

a script needs to be scanned once only. There is no need to interpret a definition every 

time when the value of it needs to be updated. The disadvantage is parse nodes are 

objects that are created dynamically and stored in memory. Therefore, memory usage 

in a large model will be an issue. 

 

The evaluation of parse trees is implemented in the parse tree classes. The type of 

a parse node is represented as a unique integer number. Evaluation of a parse tree, 

typically consist of a sequence of recursive calls to evaluation operation implemented 

in parse node class. Along with the evaluation process, all the variable expressions are 

evaluated and variable references are obtained. The variables referenced in this 

process are recorded and stored as determinants of the definitions. 

 

Implementation of most of the data types and their operations, like number and 

its arithmetic operations, is straightforward. However, when it comes to implementing 

data types with side effects, extra care should be made. Examples are the windowing 

types. A windowing type, such as a push button on the screen, creates two kinds of 

side effect – the side effect of displaying it on the screen and the side effect of event 

handling. To deal with these side effects, a wrapper class is created for each 

windowing type. The wrapper classes contain codes of putting and removing the 

windowing component on the screen and generating definitions when a user triggers a 

window event. 

 

 

4. The symbol table 

 

The symbol table contains a MFC implementation of hash table of symbols. Each of 

these symbols contains the following information: 

 

 Name – variable name of the definition. 

 A parse tree – parse tree of the definition created by the interpreter. 

 Up-to-date flag – indicates whether the value of this symbol is up-to-date or 

not. 

 Value – stores a parse node representing the value returned by evaluation of 
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its parse tree. 

 String representation – a string representation of the definitions 

 Dependents – array of variable names that are dependent on this definition. 

 Determinants – array of variable names that this definition refers to. 

 

Therefore, each symbol encapsulates detailed information about a definition, 

which is needed in the whole process of definition evaluation. The symbol table also 

owns: 

 

 A dependency graph object – a LEDA graph object that stores the data 

dependency graph for visualisation. 

 A communication sever object – responsible for network communication 

among instances of EME application. 

 An action queue – stores a queue of actions generated in the process of 

evaluation. Actions in this queue will be executed one by one after all the 

values of definitions are up-to-date. 

 

To help understand how the symbol table works, we list out briefly steps 

involved in defining a definition: 

 

1. A definition is entered as a string to the Standard input. 

2. The 1st pass of the interpreter makes sure there is no syntax error. 

3. The 2nd pass of the interpreter builds parse tree while scanning the 

definition string. 

4. The interpreter passes the variable name and its parse tree to the symbol 

table. 

5. The symbol table evaluates the parse tree to determine all the determinants 

of this definition. 

6. The symbol table does a topological sort on the dependency graph with the 

newly created determinant information. This checks cyclic dependency and 

also obtains a topological order of variables according to their dependencies. 

If there is cyclic dependency, the process stops and an error message will be 

generated. 

7. The symbol table registers this definition as dependents of the determinants 

that are obtained in step 5. 

8. The symbol table evaluates, in topological order, all the definitions that are 

registered at dependents of the definition. 

9. During the evaluation process, actions are added to the action queue. 
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10. After all values of definitions are updated, actions in the action queue are 

executed one by one. 

 

The symbol table also updates visualisation of the data dependency graph during 

the above process. 

 

 

5. Algorithms applied 

 

In this section, we will describe three algorithms applied in different stages of 

execution in EME. They are topological sort algorithm, one-way constrain 

satisfaction algorithm and graph layout algorithm. 

a) Topological sort algorithm 

We have used a modified version of topological sort algorithm from [Näh99] This 

algorithm is for checking cyclic dependency and determining evaluation order. The 

algorithm is listed in form of LEDA C++ code: 

 
bool CSymboltable::TopologicalSort(GRAPH<string,int>* G, CMap<CString,LPCSTR,int,int> 
&toporder) 
{ 
 
 /* initialization: 
 determine the indegree of all nodes and initialize a queue  
 of nodes of indegree zero*/ 
 node_array<int> INDEG(*G);  
 queue<node> ZEROINDEG;  
 node v;  
 forall_nodes(v,*G)  
 if ( (INDEG[v] = (*G).indeg(v)) == 0 ) ZEROINDEG.append(v);  
 
 /* removing nodes of indegree zero: 
 consider the nodes of indegree zero in turn. When  
 a vertex v is considered we number it and we decrease  
 the indegrees of all adjacent nodes by one. Nodes whose  
 indegree becomes zero are added to the rear of ZEROINDEG*/ 
 node w; 
 edge e; 
 int count = 0;  
 
 while (!ZEROINDEG.empty())  
 {  
  v = ZEROINDEG.pop();  
  toporder[(*G)[v]]=++count;  
  forall_out_edges(e,v)  
   { w = (*G).target(e);  
    if ( --INDEG[w] == 0 ) ZEROINDEG.append(w);  
   }  
 }  
 return (count == (*G).number_of_nodes());  
} 

This operation returns false if a cyclic dependency is detected. If it returns true, 

the toporder map variable containing a mapping from variable name to an integer 
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stores the topological order of the variable. 

 

b) Evaluation algorithm 

 

During the evaluation process, we have applied a modified version of one-way 

constrain satisfaction algorithm shown below. The algorithm updates values of the 

definitions in topological order. More detail explanation of this algorithm can be 

found in [Zan01]. 

 
 
BOOL CSymboltable::UpdateAllinTopologicalOrder(CSymbol* start) 
{ 
 CMap<CString,LPCSTR,int,int> toporder; 
 
 p_queue<int,CSymbol*> Q; // a priority queue 
 int order,n,i; 
 CSymbol *s, *d; 
 pq_item item; 
  
 Q.insert(1,start); 
  
 while(!Q.empty()){  
  item=Q.find_min(); 
  s=Q.inf(item); 
  
  if(!Update(s,toporder)) return FALSE;   
  n=s->m_dependents.GetSize(); 
  for(i=0;i<n;i++){ 
   d=Lookup(s->m_dependents[i]); 
   ASSERT(d!=NULL); 
   if(d->m_uptodate==true)d->m_uptodate=false; 
   toporder.Lookup(d->m_name,order); 
   Q.insert(order,d); 
    
  } 
   
  Q.del_item(item); 
 
 } 
 
 return TRUE; 
} 

 

c) drawing of dependency graph 

 

The difficulty of drawing a dependency graphs is how to reduce crossings of edges 

and arrange the position of the nodes so that the graph drawn is more comprehensible. 

There are many graph layout research on drawing acyclic graphs. One of the famous 

algorithms is called Sugiyama Algorithm [Sug81]. We list out the step on performing 

the algorithm as below.  
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 Step 1: Convert the graph in into a “proper” hierarchy. If the hierarchy has 

long span edges, it is converted into a proper hierarchy by adding dummy 

nodes and edges. 

 Step 2: The number of crossings of edges in the proper hierarchy is reduced 

by permuting orders of nodes in each level. 

 Step 3: Horizontal positions of nodes are determined according to a given 

set of rules. 

 Step 4: The graph is drawn with the dummy nodes removed. 

 

The above steps are very brief description of what the algorithm does. For details 

of this algorithm, please refer to Sugiyama’s paper [Sug81]. The progress of 

implementing the algorithm, at the time of writing this report, is still on the first step. 

At the moment, the data dependency graph drawn by EME is without edge crossing 

minimisations. Therefore, the data dependency graph drawn is only comprehensible 

for defining a small set of definitions. 

 

6. Network communication 

 

The implementation of network communication contains two classes. One 

implements a server and the other implements a client. They are all derived from 

CSocket in MFC. CSocket provides basic primitives for synchronise communication 

in TCP/IP network. EME is designed to use peer-to-peer communication model where 

a centralised server is not necessary. Each EME application instance is both a server 

and a client.  

 

The sequences of making a connection between two EME application instances 

are shown below. Suppose we have two instances of EME running on two different 

machines connected in a computer network. We call them A and B. Just like telephone 

a call, one of these instances should be the caller and the other should be the receiver. 

However, after the connection is made, there is no difference between the caller and 

receiver - both can communicate freely through the connection, and if one of them 

closes the connection, the whole communication session will be closed. 

 

If A calls B to make a connection, these steps of setting up the connection will 

start: 

 

1. Initialise B’s server to listen a port – it can be done by the command 
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listen(4000);. This initialises B to listen the port number 4000. 

2. A client of A calls the server at B by the connect command – for example 

connect(“apple”,”banana”,”gem.dcs.warwick.ac.uk”,4000); where the first 

two arguments are logical names of A and B for this connection, i.e. A 

recognises this connection is made to “banana” and B recognises the 

connection is made to “apple”. 

3. The server at B receives the connection request from a client from A. 

4. The server at B creates a new client object that serves the client from A. 

5. When the connection is made, both A and B are using a client to 

communicate with each other. 

 

After the connection is made, A and B can send messages to each other. The 

types of these messages are ranging from simple string messages to symbol objects 

that store information on definitions. For example, when the determinants of a 

definition are obtained during the evaluation of the definitions, and one of the 

determinants is a remote variable that contains a @ character, the system will send an 

add-dependent message to the remote system. This add-dependent message registers 

the variable as a dependent of the remote variable so that when the remote variable’s 

changed, this variable will be informed. This mechanism forms part of procedures in 

dependency maintenance of a distributed model. 

 

8. Saving a model 

 

In EME, we save a model into a persistent storage as states of objects from the 

memory. Instead of saving scripts, the system saves the whole symbol table that 

contains all the states and dependencies of the model. This includes saving of the 

names, up-to-date statuses, parse trees, string representation of the definitions in the 

model. Therefore, loading the model does not involve reinterpreting everything again. 

EME uses the Serialisation facilities in MFC library to archive this. 
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Appendix H: DMT interface menu reference 

 

Model (all menu options relate to DMT models)  

 New - Closes the existing model and creates a new one. 

 Load - Loads a model file. 

 Save As - Saves a model file. Suggested extension of the file is ".dmt". 

 Statistics - Displays some statistics of the current model. 

 Print - Outputs the model to a printer. Currently, it can only print one page. 

You are encouraged to use zoom functions to reduce the size of a large 

model before printing. 

 Exit - Exits the program 

 

Script (all options refer to Eden scripts) 

 Input window - Allows user to type in Eden scripts. 

 Direct import - Imports an Eden script directly into the current model. 

 Export selection - Exports the selected definitions to a text window. 

 

Layout 

 Hierarchical-up - Layouts the model in natural evaluation order. Leaves are 

at the bottom of the layout. 

 Hierarchical-down - Layouts the model in natural evaluation order. Leaves 

are at the top of the layout. 

 Random - Randomly places the definitions. 

 

Zoom 

 Enlarge 10% - Enlarges 10% of the current graph size. 

 Reduce 10% - Reduces 10% of the current graph size. 

 Normal 100% - Sets back the graph size to original size. 

 Fit to window - Zoom the current graph to fit the window. 

 

Help 

 Help - Displays this page. 

 About - Displays version information and support details. 
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Appendix I: Definitions for lines in an OXO 

model 

 
 
allsquares is 
[s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19
,s20,s21,s22,s23,s24,s25,s26,s27,s28,s29,s30,s31,s32,s33,s34,s35,s3
6,s37,s38,s39,s40,s41,s42,s43,s44,s45,s46,s47,s48,s49,s50,s51,s52,s
53,s54,s55,s56,s57,s58,s59,s60,s61,s62,s63,s64]; 
nofsquares is allsquares#; 
lin1 is [s1,s2,s3,s4]; 
lin2 is [s1,s5,s9,s13]; 
lin3 is [s1,s6,s11,s16]; 
lin4 is [s2,s6,s10,s14]; 
lin5 is [s3,s7,s11,s15]; 
lin6 is [s4,s7,s10,s13]; 
lin7 is [s4,s8,s12,s16]; 
lin8 is [s5,s6,s7,s8]; 
lin9 is [s9,s10,s11,s12]; 
lin10 is [s13,s14,s15,s16]; 
lin11 is [s1,s17,s33,s49]; 
lin12 is [s1,s18,s35,s52]; 
lin13 is [s2,s18,s34,s50]; 
lin14 is [s3,s19,s35,s51]; 
lin15 is [s4,s19,s34,s49]; 
lin16 is [s4,s20,s36,s52]; 
lin17 is [s1,s21,s41,s61]; 
lin18 is [s1,s22,s43,s64]; 
lin19 is [s2,s22,s42,s62]; 
lin20 is [s3,s23,s43,s63]; 
lin21 is [s4,s23,s42,s61]; 
lin22 is [s4,s24,s44,s64]; 
lin23 is [s5,s21,s37,s53]; 
lin24 is [s5,s22,s39,s56]; 
lin25 is [s6,s22,s38,s54]; 
lin26 is [s7,s23,s39,s55]; 
lin27 is [s8,s23,s38,s53]; 
lin28 is [s8,s24,s40,s56]; 
lin29 is [s9,s25,s41,s57]; 
lin30 is [s9,s26,s43,s60]; 
lin31 is [s10,s26,s42,s58]; 
lin32 is [s11,s27,s43,s59]; 
lin33 is [s12,s27,s42,s57]; 
lin34 is [s12,s28,s44,s60]; 
lin35 is [s13,s25,s37,s49]; 
lin36 is [s13,s26,s39,s52]; 
lin37 is [s14,s26,s38,s50]; 
lin38 is [s15,s27,s39,s51]; 
lin39 is [s16,s27,s38,s49]; 
lin40 is [s16,s28,s40,s52]; 
lin41 is [s13,s29,s45,s61]; 
lin42 is [s13,s30,s47,s64]; 
lin43 is [s14,s30,s46,s62]; 
lin44 is [s15,s31,s47,s63]; 
lin45 is [s16,s31,s46,s61]; 
lin46 is [s16,s32,s48,s64]; 
lin47 is [s17,s18,s19,s20]; 
lin48 is [s17,s21,s25,s29]; 
lin49 is [s17,s22,s27,s32]; 
lin50 is [s18,s22,s26,s30]; 
lin51 is [s19,s23,s27,s31]; 
lin52 is [s20,s23,s26,s29]; 
lin53 is [s20,s24,s28,s32]; 
lin54 is [s21,s22,s23,s24]; 
lin55 is [s25,s26,s27,s28]; 
lin56 is [s29,s30,s31,s32]; 
lin57 is [s33,s34,s35,s36]; 
lin58 is [s33,s37,s41,s45]; 
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lin59 is [s33,s38,s43,s48]; 
lin60 is [s34,s38,s42,s46]; 
lin61 is [s35,s39,s43,s47]; 
lin62 is [s36,s39,s42,s45]; 
lin63 is [s36,s40,s44,s48]; 
lin64 is [s37,s38,s39,s40]; 
lin65 is [s41,s42,s43,s44]; 
lin66 is [s45,s46,s47,s48]; 
lin67 is [s49,s50,s51,s52]; 
lin68 is [s49,s53,s57,s61]; 
lin69 is [s49,s54,s59,s64]; 
lin70 is [s50,s54,s58,s62]; 
lin71 is [s51,s55,s59,s63]; 
lin72 is [s52,s55,s58,s61]; 
lin73 is [s52,s56,s60,s64]; 
lin74 is [s53,s54,s55,s56]; 
lin75 is [s57,s58,s59,s60]; 
lin76 is [s61,s62,s63,s64]; 
alllines is 
[lin1,lin2,lin3,lin4,lin5,lin6,lin7,lin8,lin9,lin10,lin11,lin12,lin
13,lin14,lin15,lin16,lin17,lin18,lin19,lin20,lin21,lin22,lin23,lin2
4,lin25,lin26,lin27,lin28,lin29,lin30,lin31,lin32,lin33,lin34,lin35
,lin36,lin37,lin38,lin39,lin40,lin41,lin42,lin43,lin44,lin45,lin46,
lin47,lin48,lin49,lin50,lin51,lin52,lin53,lin54,lin55,lin56,lin57,l
in58,lin59,lin60,lin61,lin62,lin63,lin64,lin65,lin66,lin67,lin68,li
n69,lin70,lin71,lin72,lin73,lin74,lin75,lin76]; 
noflines is alllines#; 
linesthru1 is [lin1,lin2,lin3,lin11,lin12,lin17,lin18]; 
linesthru2 is [lin1,lin4,lin13,lin19]; 
linesthru3 is [lin1,lin5,lin14,lin20]; 
linesthru4 is [lin1,lin6,lin7,lin15,lin16,lin21,lin22]; 
linesthru5 is [lin2,lin8,lin23,lin24]; 
linesthru6 is [lin3,lin4,lin8,lin25]; 
linesthru7 is [lin5,lin6,lin8,lin26]; 
linesthru8 is [lin7,lin8,lin27,lin28]; 
linesthru9 is [lin2,lin9,lin29,lin30]; 
linesthru10 is [lin4,lin6,lin9,lin31]; 
linesthru11 is [lin3,lin5,lin9,lin32]; 
linesthru12 is [lin7,lin9,lin33,lin34]; 
linesthru13 is [lin2,lin6,lin10,lin35,lin36,lin41,lin42]; 
linesthru14 is [lin4,lin10,lin37,lin43]; 
linesthru15 is [lin5,lin10,lin38,lin44]; 
linesthru16 is [lin3,lin7,lin10,lin39,lin40,lin45,lin46]; 
linesthru17 is [lin11,lin47,lin48,lin49]; 
linesthru18 is [lin12,lin13,lin47,lin50]; 
linesthru19 is [lin14,lin15,lin47,lin51]; 
linesthru20 is [lin16,lin47,lin52,lin53]; 
linesthru21 is [lin17,lin23,lin48,lin54]; 
linesthru22 is [lin18,lin19,lin24,lin25,lin49,lin50,lin54]; 
linesthru23 is [lin20,lin21,lin26,lin27,lin51,lin52,lin54]; 
linesthru24 is [lin22,lin28,lin53,lin54]; 
linesthru25 is [lin29,lin35,lin48,lin55]; 
linesthru26 is [lin30,lin31,lin36,lin37,lin50,lin52,lin55]; 
linesthru27 is [lin32,lin33,lin38,lin39,lin49,lin51,lin55]; 
linesthru28 is [lin34,lin40,lin53,lin55]; 
linesthru29 is [lin41,lin48,lin52,lin56]; 
linesthru30 is [lin42,lin43,lin50,lin56]; 
linesthru31 is [lin44,lin45,lin51,lin56]; 
linesthru32 is [lin46,lin49,lin53,lin56]; 
linesthru33 is [lin11,lin57,lin58,lin59]; 
linesthru34 is [lin13,lin15,lin57,lin60]; 
linesthru35 is [lin12,lin14,lin57,lin61]; 
linesthru36 is [lin16,lin57,lin62,lin63]; 
linesthru37 is [lin23,lin35,lin58,lin64]; 
linesthru38 is [lin25,lin27,lin37,lin39,lin59,lin60,lin64]; 
linesthru39 is [lin24,lin26,lin36,lin38,lin61,lin62,lin64]; 
linesthru40 is [lin28,lin40,lin63,lin64]; 
linesthru41 is [lin17,lin29,lin58,lin65]; 
linesthru42 is [lin19,lin21,lin31,lin33,lin60,lin62,lin65]; 
linesthru43 is [lin18,lin20,lin30,lin32,lin59,lin61,lin65]; 
linesthru44 is [lin22,lin34,lin63,lin65]; 
linesthru45 is [lin41,lin58,lin62,lin66]; 
linesthru46 is [lin43,lin45,lin60,lin66]; 
linesthru47 is [lin42,lin44,lin61,lin66]; 
linesthru48 is [lin46,lin59,lin63,lin66]; 
linesthru49 is [lin11,lin15,lin35,lin39,lin67,lin68,lin69]; 
linesthru50 is [lin13,lin37,lin67,lin70]; 
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linesthru51 is [lin14,lin38,lin67,lin71]; 
linesthru52 is [lin12,lin16,lin36,lin40,lin67,lin72,lin73]; 
linesthru53 is [lin23,lin27,lin68,lin74]; 
linesthru54 is [lin25,lin69,lin70,lin74]; 
linesthru55 is [lin26,lin71,lin72,lin74]; 
linesthru56 is [lin24,lin28,lin73,lin74]; 
linesthru57 is [lin29,lin33,lin68,lin75]; 
linesthru58 is [lin31,lin70,lin72,lin75]; 
linesthru59 is [lin32,lin69,lin71,lin75]; 
linesthru60 is [lin30,lin34,lin73,lin75]; 
linesthru61 is [lin17,lin21,lin41,lin45,lin68,lin72,lin76]; 
linesthru62 is [lin19,lin43,lin70,lin76]; 
linesthru63 is [lin20,lin44,lin71,lin76]; 
linesthru64 is [lin18,lin22,lin42,lin46,lin69,lin73,lin76]; 
linesthru is 
[linesthru1,linesthru2,linesthru3,linesthru4,linesthru5,linesthru6,
linesthru7,linesthru8,linesthru9,linesthru10,linesthru11,linesthru1
2,linesthru13,linesthru14,linesthru15,linesthru16,linesthru17,lines
thru18,linesthru19,linesthru20,linesthru21,linesthru22,linesthru23,
linesthru24,linesthru25,linesthru26,linesthru27,linesthru28,linesth
ru29,linesthru30,linesthru31,linesthru32,linesthru33,linesthru34,li
nesthru35,linesthru36,linesthru37,linesthru38,linesthru39,linesthru
40,linesthru41,linesthru42,linesthru43,linesthru44,linesthru45,line
sthru46,linesthru47,linesthru48,linesthru49,linesthru50,linesthru51
,linesthru52,linesthru53,linesthru54,linesthru55,linesthru56,linest
hru57,linesthru58,linesthru59,linesthru60,linesthru61,linesthru62,l
inesthru63,linesthru64]; 
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Appendix J: An LSD account for a train arrival 

and departure protocols 

 

This is an LSD account for a train arrival and departure protocols developed by Y. P. 

Yung in the EM research group. The involved agents are a stationmaster, a guard, a 

driver, a train, passengers and doors. 

 
agent sm() { 
 
oracle (time) Limit, Time,  // knowledge of time to elapse before departure due 
 (bool) guard_raised_flag, // knowledge of whether the guard has raised his flag 
 (bool) driver_ready,  // knowledge of whether the driver is ready 
 (bool) around[d],   // knowledge of whether there's anybody around doorway 
 (bool) door_open[d];   // the open/close status of door d (for d = 1 .. 
number_of_doors) 
  
state (time) tarrive = |time|, // the S-M registers time of arrival 
 (bool) can_move,   // the signal observed by driver for starting engine 
 (bool) whistle = false,  // the whistle is not blowing 
 (bool) whistled = false,  // the whistle has not blown 
 (bool) sm_flag = false,  // S-M lowers flag 
 (bool) sm_raised_flag = false;// S-M has not raised flag 
  
handle (bool) can_move, 
 (bool) whistle, 
 (bool) whistled, 
 (bool) sm_flag, 
 (bool) sm_raised_flag; 
 (bool) door_open[d];  // the open/close status of door d (for d = 1 .. 
number_of_doors) 
 
derivate 
   number_of_doors 
 (bool) ready =     /\ (!door_open[d]); // are all doors shut? 
     d = 1 
 (bool) timeout = (Time - tarrive) > Limit; // departure due 
 
protocol 
 door_open[d] ^ !around[d] -> door_open[d] = false; (d = 1 .. number_of_doors) 
 ready ^ timeout ^ !whistled -> whistle = true; whistled = true; guard(); whistle = 
false; 
 ready ^ whistled ^ !sm_raised_flag -> sm_flag = true; sm_raised_flag = true; 
 sm_flag ^ guard_raised_flag -> sm_flag = false; 
 ready ^ guard_raised_flag ^ driver_ready ^ engaged ^ !can_move -> can_move = true; 
 
} 
 
 
 
 
agent guard() { 
 
oracle (bool) whistled, sm_raised_flag, brake; 
 
state (bool) guard_raised_flag = false, 
 (bool) guard_flag = false, 
 (bool) brake; 
 
handle (bool) guard_raised_flag, guard_flag; 
 
derivate LIVE = engaging || whistled; 
 
protocol 
 engaging -> brake = true; running = false; 
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 sm_raised_flag ̂  brake -> brake = false; guard_flag = true; guard_raised_flag = true; 
 guard_flag ^ !sm_flag -> guard_flag = false; 
 
} 
 
 
 
 
 
agent driver() { 
 
oracle (bool) can_move, engaged, whistled; 
 (position) at, from; 
 
handle (position) to, from, 
 (bool) running, 
 (bool) driver_ready = false; 
 
state (bool) driver_ready = false, 
 (position) from; 
 
protocol 
 whistled ^ !driver_ready -> driver_ready = true; 
 engaged ^ from <> at -> from = at; to = next_station_after(at); 
 can_move ^ engaged -> driver_ready = false; running = true; 
 
} 
 
 
 
 
agent train() { 
 
state (bool) running = true, 
 (bool) brake = false, 
 (bool) door_open[d] = false, (d = 1 .. number_of_doors) 
 (position) from = station1, 
 (position) to = station2, 
 (position) at = some_position, 
 (bool) engaging, engaged, leaving, alert; 
  
handle (bool) alert; 
 
derivate 
 (bool) engaging = running ^ to == at, 
 (bool) leaving = running ^ from == at, 
 (bool) engaged = !running; 
 
protocol 
 engaging ^ !alert -> alert = true; guard(); sm(); 
 leaving ^ alert -> alert = false; delete guard(), sm(); 
 
} 
 
 
 
 
agent passenger((int) p, (int) d, (position) _from, (position) _to) { 
// passenger p intending to travel from station _from to station _to 
// and he will access through door d of the train 
oracle (position) at, 
 (bool) door_open[d]; 
 
state (bool) pos[p] = OUT_DOOR, alighting[p], boarding[p], join_queue[p,d]; 
  
handle (position) from[p] = _from; 
 (position) to[p] = _to; 
 (int) door[p] = d; 
 (bool) pos[p], 
 (bool) door_open[d]; 
 
derivate 
 alighting[p] = at == to[p] ^ pos[p] != OUT_DOOR && engaged; 
 boarding[p] = at == from[p] ^ pos[p] != IN_DOOR && engaged; 
 join_queue[p,d] = (alighting[p] ^ door_open[d] ^ pos[p] == IN_DOOR) || 
  (boarding[p] ^ door_open[d] ^ pos[p] == OUT_DOOR); 
 LIVE = !(at == to[p] ^ pos[p] == ON_PLATFORM); 
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protocol 
 at == to[p] ^ pos[p] == AT_SEAT -> pos[p] = IN_DOOR; 
 alighting[p] ^ !door_open[d] -> door_open[d] = true; 
 alighting[p] ^ pos[p] == AT_DOOR ^ door_open[d] ^ !queuing[d] 
  -> pos[p] == OUT_DOOR; door_open[d] = false; pos[p] = ON_PLATFORM; 
 alighting[p] ^ pos[p] == AT_DOOR ^ door_open[d] ^ queuing[d] 
  -> pos[p] == OUT_DOOR; pos[p] = ON_PLATFORM; 
 boarding[p] ^ !door_open[d] -> door_open[d] = true; 
 boarding[p] ^ pos[p] == AT_DOOR ^ door_open[d] ^ !queuing[d] 
  -> pos[p] = IN_DOOR; door_open[d] = false; pos[p] = AT_SEAT; 
 boarding[p] ^ pos[p] == AT_DOOR ^ door_open[d] ^ queuing[d] 
  -> pos[p] = IN_DOOR; pos[p] = AT_SEAT; 
 
} 
 
 
 
 
agent door((int) d) { 
 
oracle (int) pos[p], door[p]; (p = 1 .. number_of_passengers) 
 
state (bool) queuing[d], occupied[d], around[d];  
 
derivate 
 queuing[d] = there exists p such that join_queue[p,d] == true; 
 occupied[d] = there exists p such that (pos[p] == AT_DOOR ^ door[p] == d) 
 around[d] = there exists p such that (door[p] == d ^ 
  (pos[p] == IN_DOOR || pos[p] == AT_DOOR || pos[p] == OUT_DOOR)) 
 
protocol queuing[d] ^ !occupied[d] ^ join_queue[p,d] == true 
  -> pos[p] = AT_DOOR; (p = 1 .. number_of_passengers) 
} 
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