
 

   125 
 

6 Beyond Systems: Ubiquitous Computing  

 

 

 

 

 

In this chapter, we discuss how EM principles can potentially be applied to everyday 

practical computing as it may be in the future, where some systems can never be 

formalised by developers. The system concept is formed upon its use in a situation.  

Following Weiser [Wei91] we adopt the term ‘Ubiquitous Computing’ or in short 

‘ubicomp’ to refer to an era where people will use a variety of computer-based devices 

to support everyday life activities. We firstly identify a variety of researches related to 

ubicomp. We discuss and summarise their shared visions. We argue that these visions 

are hindered by the lack of a conceptual framework to encapsulate the complexity and 

new requirements of ubicomp. In particular, little research has so far been conducted 

to develop a conceptual framework that explicitly supports both design and use of 

ubicomp devices. We argue that having a coherent conceptual framework is very 

significant for the conceptual integrity of ubicomp systems, and that this is 

fundamental to the success of ubicomp. We introduce a new conceptual framework 

based on EM principles and tools and illustrate this with examples. We shall discuss 

challenges involved in realising the framework. Finally, we shall describe some 

related research work and make comparisons with our proposed framework. 

 

6.1   Visions of the future computing environment 

 

Vannevar Bush, in his 1945 article “As We May Think”, envisaged a device that can 

manage and disseminate results of research [Bus45]. Baecker et al. [Bae95, p35] view 

Bush as the first person to see beyond the scientific use of the computer to its use as a 

“fundamental tool for transforming human thought and human creative activity”. 

Now, nearly 60 years later, the development of computer technologies has led to the 

realisation of Bush’s dream. A new vision of the role of computers has evolved. 

Computers are getting more and more pervasive. In his 2000 article “As We May 

Live”, Gibbs reports on research into ubicomp that applies computer technologies in 

our everyday life, such as a Georgia Tech’s four-bedroom house where there are more 

than 60 computers, 25 video cameras and 40 cabinet sensors [Gib00]. The vision has 
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shifted from mainly concerning the way computers support us to think to a broader 

concern for the way computers can support us in living (cf. [Dau00, Gor97]). Devices 

with computing power are moving off the desktop into everyday items (cf. [Sch00a]). 

 

Since Weiser’s seminal paper [Wei91], research interests in ubicomp have grown 

tremendously. Amongst these, the most representative research titles include 

ubiquitous computing, invisible computing, disappearing computing, sentient 

computing and augmented reality computing. We shall briefly review these five 

research areas. This review will be the basis for our discussion of how EM principles 

can be applied to ubicomp in the rest of this chapter. All five research areas share 

prominent common themes, but each has its own distinctive emphasis. 

 

Ubiquitous computing. Ubiquitous computing is also sometimes referred to as 

pervasive computing (e.g. [Ark99, Old99]). The term ubiquitous computing or 

ubicomp was coined with Weiser and colleagues at Xerox PARC in the late 1980s. 

Weiser promotes a new way of thinking about computer: “one that takes into account 

the natural human environment and allows the computer themselves to vanish into the 

background” [Wei91]. The motivating idea in ubicomp is to make computing power 

available through the physical environment invisibly. It has been viewed as the Third 

Wave of computing [Fol02]. The First Wave was many people per computer 

(mainframe). The Second Wave was one person per computer (personal computer). 

The Third Ware is characterised by many computers per person. The initial research 

areas identified by Weiser included new interaction devices, power consumption and 

wireless connectivity [Wei93]. More recent areas of interest include natural interfaces, 

context-aware applications, and automated capture and access [Abo00]. The goal of 

developing natural interfaces is to “support common forms of human expression and 

leverage more of our implicit actions in the world”. Context-aware applications need 

to sense the environment and adapt the computation according to the use situation. 

These applications also need to provide facilities for users to capture and access live 

experiences. 

 

Invisible computing. The concept of invisible computing, introduced by 

Norman [Nor99], is primarily concerned with how ubicomp technologies can be best 

integrated into everyday life. The idea of information appliances is central to invisible 

computing. Norman argues that general-purpose personal computers are difficult to 

use because they are technology-centred products that are inherently complex. The 

solution is to develop information appliances that are small, task-focused devices in 

place of big, complex, general-purpose personal computers. This is to design an 
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information appliance to fit the task so well that the device “becomes a part of the task, 

feeling like a natural extension of the work, a natural extension of the person” [Nor99]. 

One distinctive feature of information appliances is their ability to ‘communicate’ 

among themselves and share relevant information. Norman suggests human-centred 

product development with a cross-disciplinary team of experts in marketing, 

engineering, and user experience. He promotes Contextual Design that includes six 

tasks: talk to specific customers while they work, interpret the data in a 

cross-functional team; consolidate data across multiple customers; invent solutions 

grounded in user work practice; structure the system to support this new work practice; 

iterate with customers through paper mock-ups; and design the implementation object 

model or code structure.  

 

Disappearing computing. Disappearing computing is a European initiative on 

research and development of future computing. Its mission is “to see how information 

technology can be diffused into everyday objects and settings, and to see how this can 

lead to new ways of supporting and enhancing people’s lives that go above and 

beyond what is possible with the computer today” [Dis01]. Though the overall goal of 

disappearing computing is similar to that of other ubicomp research, its specific 

research strategy involves three sub-goals of particular interest in connection with this 

thesis. These are: 

 

• creating artefacts that have the attributes of openness and connectivity; 

• promoting emerging functionality through the collaboration of collections of 

artefacts; 

• designing artefacts with the emphasis on people’s experience of them.  

 

Sentient computing. Sentient computing is a collaborative project between the 

AT&T Laboratories and University of Cambridge [Sen02]. Its emphasis is on 

developing and exploiting technologies to give computers access to the state of their 

environment. The project started from the development of an ultra-sonic indoor 

location system. The system can provide the locations of tagged objects or people to 

an accuracy of about 3cm throughout a 10000 square foot building. The 

distinguishing feature of sentient computing is its use of sensors and resource status 

data to maintain a model of the real world which is shared between users and 

applications. One representative application enables a networked scanner to perform a 

selection from a list of functions presented in the form of a poster. A user can use a 

tagged object to point at one of the functions on the poster. This in turn triggers the 

scanner to perform the function. In this case, the system maintains a model of the real 
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world that incorporates the geometric relationship between the poster and the tagged 

object. This model is a communication medium between the scanner application and 

its user. In effect, “the whole world is a user interface” [Sen01]. The goal of sentient 

computing is to make applications more responsive and useful by observing and 

reacting to the physical world [Hop99]. Research is based on three major themes: 

developing sensor technology, experimenting with application devices, and 

constructing platforms that connect sensors and devices together.  

 

Augmented reality. Research on augmented reality aims to superimpose virtual 

objects upon, or compose virtual objects with, the real world. One way of augmenting 

reality is to overlay computer-generated graphics onto the real world. But augmented 

reality is not limited to sight – it might be applied to all senses. The motivation for 

augmented reality is to “enhance a user’s perception of and interaction with the real 

world. The virtual objects display information that the user cannot directly detect with 

his own sense” [Azu97]. A typical augmented reality system consists of three 

components: a head-mounted display, a tracking system, and a wearable computer 

[Bon02]. The head-mounted display allows us to see text and graphics generated by 

computers. The tracking system senses the location of a user’s head and eyes, and 

maintains the correct relationship between virtual objects and real world surroundings 

with reference to the user’s movement. The wearable computer provides portable, 

hands-free computational power to drive the whole system [Nap97]. Applications of 

augmented reality include medical visualisation, maintenance and repair, annotation, 

robot path planning, entertainment, and military aircraft navigation and targeting 

[Azu97]. 

 

Because of its potentially radical impact on everyday life, research on ubicomp 

has attracted many critics. A major common concern in critiques of ubicomp is that: 

 

• ubicomp is driven by technology 

• insufficient account is being taken of the human perspective on what is 

desirable in personal and social terms. 

 

We are acknowledging that ubicomp is not necessarily a good thing in every respect. 

However, EM is offering an approach that promotes high levels of human 

engagement in the design and use of technology. This can make it easier for 

designers and users to develop ubicomp applications in a sensitive way. 



6.2  Assessing the visions 

 

129 

6.2   Assessing the visions 

 

Although the future development of ubicomp is difficult to predict, the approaches 

reviewed in the last section do reflect the same dominant emphasis in respect of four 

key issues: the roles to be played by automation, visibility, connectivity and 

adaptation. All the approaches discussed above aspire to full automation, hiding the 

technology from the users, indiscriminate interconnection of devices and systems that 

are self-adaptive. This thesis emphasises a complementary perspective: the need to 

keep humans in the loop; to encourage user engagement; to promote understanding 

and control over the interactions amongst devices; and to allow user customisation of 

the ubicomp environment. 

 

6.2.1 Automation  
 

One of the common but inadequate visions of ubicomp is having ubicomp systems 

that require nearly no human intervention. Negroponte advocates the use of 

“intelligent agents” as digital butlers that do all the work for you while you take it easy 

[Neg96]. Joseph describes this is as “the top of the IT agenda” [Jos02]. Tennenhouse, 

a vice president in the Intel Corp, advocates “getting the human out of the interactive 

loop” [Ten00]. This vision is only an industrial hype. Full automation is not plausible 

for ubicomp. The main reason is that the ubicomp environment is the environment we 

live in – where activities are situated and exceptions are the norm. Since we cannot 

prescribe the ubicomp environment, human intelligence has to be involved in solving 

ubicomp problems. Even the authors with visions for full automation seem to agree 

that there is a need for the involvement of intelligence. Joseph [Jos02] envisages that 

“computers will be intelligent enough to manage, configure, tune, repair, and adjust 

themselves to varying circumstances to handle the workload exposed to them 

efficiently”. Tennenhouse [Ten00] wants to automate the software creation process in 

ubicomp by generating software from specifications and constraints. Such visions 

presume that we can automate the management and specification tasks that seem to 

require human intelligence. 

 

Undeniably, many people dream of sitting back and relaxing and allowing 

machine servants to help them to do all their work. This dream has become one of the 

driving motivations of ubicomp development. However, we cannot desire automation 

blindly for every device and aspect of ubicomp. Automation introduces problems of 

predictability and accountability. Edwards [Edw01] asks: “how will the 
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occupant-users adapt to the idea that their home has suddenly reached a level of 

complexity at which it becomes unpredictable?” To paraphrase Langheinrich et al. 

[Lan02], “in order to lower the demands on human intervention in … a dynamic 

world … [we require] the concept of delegation of control, where we put automated 

processes in control of otherwise boring routines, yet provide accountability 

mechanisms that allow us to understand complicated control flows”.  

 

In the ubicomp environment, creating and supervising the automatic processes 

should be part of the users’ role. We need to have the human in the loop and aim not to 

replace but to enhance and complement human abilities. 

 

6.2.2 Visibility 
 

Most of the visions for a ubicomp environment explicitly mention that computers 

should be invisible in the future (e.g. [Wei91, Nor99, Dis02]). The idea is that if we 

could somehow make computers vanish into the background, the complexity and 

frustration of using computers nowadays would disappear. In Norman’s terms, to hide 

a technology is to hide the infrastructure of it [Nor99]. He envisages a world where 

information appliances with infrastructure hidden in the background largely replace 

conventional personal computers. This view has invited some criticism. Odlyzko 

[Odl99] believes that “[information appliances] will not lessen the perception of an 

exasperating electronic environment. The interaction of the coffee pot, the car, the 

smart fridge, and the networked camera will create a new layer of complexity”, in 

which it creates new frustration. Langheinrich et al. warn that invisibility may lead to 

unpredictability: “… the ideal of the invisible, altogether unostentatious computer 

that silently hides in the background, might complicate or even impede the 

predictability of the system” [Lan02]. 

 

Visibility poses a dilemma. On one hand, it is desirable to hide the infrastructure 

of computer technology from its users, because that might just make the system easier 

to use and comprehend. A common view is that most users seem to have no interest in 

how a technology works so long as it does work. On the other hand, when things go 

wrong, as they often will in the case of computer technology, hidden infrastructure 

might hinder the possibility of fixing the problem promptly and safely. 

 

In fact, sometimes the idea that “infrastructure should be invisible” is the 

fundamental cause of frustrations. For example, the latest versions of the Microsoft 

Windows operating system (e.g. Windows XP) hide file extensions from the user by 
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default. There is an increasing number of people who do not know what file 

extensions are for, which might be a good thing because often it is the applications 

that mostly care about them. However, some of the file extensions can be shared by 

more than one application. For example, a “.txt” file can be used by Notepad, 

Wordpad, and MS Word. Frustration arises when a user wants to open a “.txt” file 

using MS Word – on double-clicking the “.txt” file, Notepad pops up every time but 

not MS Word! The problem then becomes: what should be visible and what should not? 

Unfortunately, the answer will depend on the individual user and situation. 

 

Hjelm sees some analogy between the development of radio and development of 

computer technology [Hje01]. The development of radio went through three design 

phases: the archaic, the suppressed and the utopian. In the archaic phase, the radio was 

a new invention that was intrusive in a home environment and required an expert to 

use it. In the suppressed phase (because the product was not widely accepted), 

commercial applications that involved hiding the unfamiliar radio in big bulky but 

familiar objects such as grandfather clocks were explored. In the utopian phase, the 

radio was transformed into the compact, usable, and portable forms now in wide use. 

The development of computer technology might now be viewed as entering the 

suppressed phase, where people are embedding computers into every imaginable 

everyday object. 

 

Streitz [Sto01] argues that causing the computer to disappear is only the first step 

towards achieving the final goal of “coherent experiences”. He adds “… coherent 

experience is the result of the combination of macro affordances (e.g. physical shape 

and form factor) and certain micro affordances (e.g. tactile characteristics of the 

artefact’s interface) in combination with the software providing appropriate 

interaction affordances”. We believe that this shift of emphasis to coherent experience 

is very important to the development of ubicomp. After all, it is users’ engagement 

with the ubicomp environment that governs its success. To appreciate the true 

meaning of invisibility we should ask questions about users’ engagement in addition 

to the more commonly asked questions about ways to hide infrastructure. Therefore, 

on the basis that exposing and understanding a technology is the first step towards 

making it conceptually invisible, it might be good for users to know and understand 

more about the infrastructure of the ubicomp environment. This thinking has an 

important implication: it leads us to place a conscious emphasis on the design of 

infrastructures with conceptual integrity that the user can understand easily. 
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6.2.3 Connectivity 
 

High connectivity is another feature of ubicomp. Norman describes “a distinguishing 

feature of information appliances is the ability to share information among 

themselves” [Nor99]. In ubicomp, each person is surrounded by hundreds of 

wirelessly interconnected computers [Wei93]. Through connectivity, a collection of 

artefacts can act together and produce “new behaviour and new functionality” [Dis02]. 

Current technology is certainly capable of making this vision come true. Technologies 

like Bluetooth [Blu02], a short-range, low-power radio frequency technology, already 

promise to standardise wireless communications.  

 

Connectivity has become part of the common language of ubicomp – so common 

that people often forget to justify or even think about reasons for the connections. 

What “new behaviour and new functionality” that connectivity supports is yet to be 

discovered. In fact, sometimes connecting everything to everything else is not a good 

thing. Connectivity can cause new complexity and frustration for ubicomp [Old99]. In 

[Luc99], Lucky amplifies on the potential frustrations: “My refrigerator… would 

refuse to open at certain hours of the day, having talked to my bathroom scales”; “My 

car is no longer the friend I once knew. If I exceed the speed limit, it reports me, and if 

I try to park illegally, it refuses to turn off or to let me open the door”. 

 

In this context, the key issue for the user is knowing the purpose of the 

connections, and being able to understand and control them at will at any time. 

Edwards et al. [Edw01] point out that we need new models of connectivity for users to 

control, use, and debug the devices that are interacting with one another in the 

environment. Questions like “How can I tell how my devices are interacting? What 

are my devices interacting with, and how do they choose?” [Edw01] should be easy to 

answer in the future ubicomp environment.  

 

6.2.4 Adaptation 
 

In the ubicomp environment, requirements are unsettled. Users’ needs change over 

time, so that a ubicomp system should facilitate dynamic adaptation to various 

situations. Research on ubicomp usually associates adaptation with 

context-awareness of applications (e.g. [Abo00, Dey01, Lae01]). Abowd et al. 

[Abo00] point out that “ubicomp applications need to be context-aware, adapting their 

behaviour based on information sensed from the physical and computational 

environment”. The definitions of the term ‘context’ given in the literature vary but a 
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generic definition can be found in [Dey01a]:  

 

“Context is any information that can be used to characterise the 

situation of an entity. An entity is a person, place, or object that is 

considered relevant to the interaction between a user and an 

application, including the user and applications themselves.” 

 

Because of the aspiration to develop fully automated systems discussed earlier, 

the typical research focus is on capturing context by using sensor technologies. 

Capturing context through sensors only works when we can define the set of possible 

contexts needed in advance. However, in a ubicomp environment what is relevant to 

the interaction between a user and an application cannot be fully specified, and 

usually relevance changes over time. Sometimes, what is relevant is very subjective to 

the user. Inferences made through the preset sensors may not be accurate. As Edwards 

et al. [Edw01] observe “… [simple sensing] may report that I am present in a room 

when, instead, I have simply left my active badge on the desk”. 

 

A complementary way of trying to fulfil the adaptation requirement of ubicomp 

is through ‘user modelling’. Traditionally, user modelling is about constructing an 

explicit profile of properties and preferences of the user in the system. The profile is 

used as the basis for adaptation and personalisation of the system. There are two 

approaches to user modelling: adaptive and adaptable [Fis00, Kul00]. In the adaptive 

approach, the system dynamically adapts itself to the current task and the current user. 

In the adaptable approach, the system gives substantial support to allow the user to 

change the functionality of the system.  

 

Systems like GUIDE (a tourist guide system [Che01]) and PDS (a personal daily 

system [Byu01]) use both context-aware and user modelling approaches. Combining 

user modelling with context-awareness in an application improves the system’s 

adaptation capability to some extent. However, there is no way for a system to take 

full account of all the preferences of the user by just maintaining an explicit 

representation of the properties of the user. In fact, even the user might not know his 

or her preferences in respect of a system. Consider one of the scenarios described in 

[Byu01] for PDS is “When a user passes by a theatre, the PDS can notify the user that 

the theatre is playing the user’s favourite movie.” In this case, the location together 

with a film preference of the user triggers the notification. The question is: who is to 

specify this behaviour of the system? If it is to be the system, we have the issue of 

properly predicting the user’s state of mind; if it is to be the user, we have the issue of 
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adequately supporting the user’s need to specify the behaviour. Whichever is the 

answer, however, it is clear that context-awareness and user model maintenance alone 

are not sufficient for system adaptation. Even in this simple situation, we need 

mechanisms to customise the system to suit individual needs. The system should be 

able to understand the user’s preference and have some reflective capability 

concerning the way in which these preferences are expressed within itself. The user 

should likewise be able to understand his or her preferences and relevant functionality 

of the system. Evolvability of the system comes from mutual understanding, which in 

turn comes from openness to interaction and customisation.  

 

Figure 6.1 summarises the ideas of this section. 

 

 
Figure 6.1: Topics, issues and recommendations relating to common ubicomp visions 

 

6.3   A new conceptual framework (SICOD) 

 

In this section, we shall discuss the potential application of EM principles to ubicomp 

and propose a new conceptual framework in which the issues mentioned in the last 

section can be more effectively addressed. The potential contribution of EM research 

to ubicomp becomes apparent when we consider the properties of a ubicomp 

environment. These include:  

 

 The concurrent nature of a ubicomp environment – EM principles are based 

on a commonsense way of construing phenomena (chapter 2). 

 The importance of context – In contrast to classical approaches to 

programming, EM gives prominent emphasis to modelling state and 

situation (chapter 2). Treating contexts as states is identified as a key issue 

in the ubicomp literature (e.g. [Dey01a, Rah01]). 

 Unforeseeable user requirements – EM principles can be used as a heuristic 

way towards human problem solving (chapter 4).  
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 Dynamic and unpredictable integration of different devices – EM principles 

assist integration (cf. [Bey00a]) and help to maintain conceptual integrity 

(chapter 5). 

 

The EM conceptual framework for ubicomp can be described as a framework for 

“controlling devices through building EM models”. We call these special-purpose 

models Interactive Control Models (ICMs). In contrast to other conceptual 

frameworks (which will be described in section 6.5 below), the EM conceptual 

framework aims to: 

 

 make the infrastructure of ubicomp more visible to the users  

 provide principles to help users to maintain the conceptual integrity of their 

views of ubicomp systems.  

 

We shall describe the EM conceptual framework – to be called ‘soft interfaces 

for the control of devices (SICOD)’ – in detail, and illustrate its potential use with a 

ubicomp example. An ICM typically consists of a set of Interactive Device Models 

(IDMs) and an Interactive Situation Model (ISM). The use of EM principles in the 

construction of IDMs has been discussed in some detail in previous papers (e.g. 

[Bey01b, chapter 5 in Run02]). The development and use of ISMs has been a common 

theme in recent EM research (cf. [Sun99a, Bey99, Bey00c, Bey01b]). In developing 

ISMs for a ubicomp environment, we propose novel methods for constructing ISMs 

from IDMs that are aimed at the end-user.  

 

The left of Figure 6.2 shows an ICM with three IDMs (depicted by pentagons) 

linked to an ISM (depicted by a circle) by dependencies. The whole ubicomp 

environment can contain a network of ICMs (see the right of Figure 6.2). Notice that 

an IDM can be shared by more than one ISM. This reflects the fact that many devices 

are shared resources in a ubicomp environment. 
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Figure 6.2: An Interactive Control Model (left) and ubicomp environment with many interacting 

ICMs (right) 

 

Both IDMs and ISMs are built using EM principles but the differences between 

them are summarised as follows: 

 

IDM ISM 

Built by designers. Built and maintained by users. 

Corresponds to a particular device for 

generic application. 

Corresponds to a particular situation for 

individual use. 

Assists users to gain a conceptual 

understanding of the device.  

Assists users to configure devices 

through creating definitions to establish 

dependencies between the states of IDMs 

and users’ situated observation.  

 

IDMs are relatively stable models which are built by the device designers. Each 

device has an IDM. ISMs are models created by users of devices. An ISM links a set 

of IDMs through dependencies.  

 

To illustrate our conceptual framework, we consider a ubicomp scenario similar 

to that introduced by Huang et al. in [Hua99]. The scenario is as follows: 

 

A user sets up a model to control the stock of a particular drink in her 

fridge, in this case, canned cola. Four computer-based devices are 

involved: a fridge, a personal Global Positioning System (GPS), a 

retail store information device, and a clock. The fridge maintains a 

count of how many cans of cola there are in it (possibly through some 
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kind of object tagging and detection technology); the personal GPS 

gives the current location of the user; the store information device 

gives information about the location and opening hours (possibly 

through a web enabled device connected to the store’s homepage); the 

clock gives the current time and date. The user is holding a party on 

Friday and has to make sure that there is enough cola in the fridge. 

She wants the system to remind her to buy the drinks when she is near 

the store. If she does not go near the store before Friday, the system 

will remind her to buy the drinks on Friday. 

 

One possible realisation of this scenario within the SICOD framework is depicted in 

Figure 6.3a. The definitions involved are displayed in Figure 6.3b. These two Figures 

are complementary representations. Figure 6.3a depicts the interface for the end-user 

to specify the definitions in Figure 6.3b. A prototype implementation of such an 

interface will be described in chapter 8. 

   

 
Figure 6.3a: An ICM of a particular drink stock control 
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Figure 6.3b: Definitions of ICM of the drink stock control 

 

The 13 definitions in this ICM can be divided into two groups: fixed and 

changeable definitions3. Fixed definitions are definitions provided by IDMs, for 

example, the user cannot change the definition of storeOpen (store opening time) 

because this definition is determined by the store. In this case, each IDM corresponds 

to an agent. The changeable definitions are the definitions in the ISM that express the 

user’s special requirements of the drink stock control system. The meanings of the 

definitions are quite obvious when we look at the definitions in detail in the Figure 

6.3b. Without going into detail about each definition, we draw attention to two 

important definitions: buyCola and urgentBuy. The buyCola definition 

specifies that if the stock of cola in the fridge is below the minimum amount and the 

user is near the store within store open hours, the system can remind her to buy the 

drinks. The urgentBuy is especially for the party schedule on Friday – so that if 

there is not enough cola in the fridge on the day of the party, the system will issue a 

warning. 

 

Note that all the definitions contained in the IDMs in Figure 6.3a are fixed and so 

for reference only. These IDMs can be thought of as models of sensors linked to the 

real world. However, an IDM can also contain definitions for actuators that act on the 

real world. One example is depicted in Figure 6.3c below. Figure 6.3c extends Figure 

6.3a by adding an alarm device. This device’s IDM contains only one definition, 

alarmOn, where the right-hand-side of the definition can be changed by the user. 

The simple behaviour of the alarm device is that it generates a tone whenever the 

                                                 
3 Note that in an ICM variable assignments are represented as constant definitions. For example, we 

write “fridgeCola is 2” instead of “fridgeCola = 2”. 
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value of alarmOn is set to be True. We can define alarmOn as buyCola to 

specify that the system should remind the user to buy the drinks by generating a tone. 

This example shows how a device can be configured through its IDM by redefining an 

observable in the ISM. 

 

 

Figure 6.3c: An alarm device extension  

 

By looking at the above application, we can identify the following advantages of the 

SICOD framework: 

 

 An IDM assists the understanding of how a device works by representing the 

characteristic and persistent dependencies between its observables. This allows 

more effective communication of the designer’s conceptual model of how a 

device works to the user. 

 

 ICMs help users to maintain conceptual integrity of the system. For example, it is 

easy to find the answers to ‘why’ questions – cause and effect is clear and 

accessible through navigation of the dependency graph of an ICM (e.g. if the 

value of buyCola is True, the user can investigate why this is so by following 

the dependency links). Since conceptual integrity is a subjective matter, it is 

doubtful whether the designer of the system can effectively prescribe a view with 

conceptual integrity for the user. For this reason, we instead need a conceptual 

framework that helps the user to maintain conceptual integrity. Unlike a 

traditional window-based GUI, the SICOD framework enables users to have a 

global conception of system state. 

 

 Uses of the system are highly customisable. In a typical ubicomp environment, 

there are no fixed boundaries for the system. The system emerges when we build 

an ICM to link devices together. In fact, the system is created by the user and 

therefore, high flexibility is guaranteed. 

 

 The sharing of devices is mediated naturally by the framework. The values of the 
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observables in an IDM can be used by many users concurrently. Particular 

definitions in an IDM may be changeable and may also be restricted to reflect the 

fact that they can be changed by only one user at a time. For example, this applies 

to the definition of alarmOn in Figure 6.3c. 

 

 Contexts in the ubicomp environment are explicitly represented as states within 

the SICOD framework. This is in line with the practice of representing contexts 

as states to be found in much ubicomp literature. For examples, Dey writes that 

“… a collection of states can be described as a situation.” [Dey01a]; Rahlff et al. 

defines personal context as “a snapshot of the state of the most important 

situational parameters: personal identification, time, location, task at hand, 

nearby objects, nearby people, etc.” [Rah01]. Furthermore, by using definitions, 

we can explicitly specify the relationship between states.  

 

 The framework supports rapid prototyping of a particular use situation. As new 

requirements come from the users, the best people to prototype the system are 

the users themselves through the building of ISMs. The designer’s 

responsibilities are to build the functions to support the definitive notation and 

the sensing technology to support the automatic update of observables. 

 

 The user can use an ISM for a system to adapt the reliable behaviours of IDMs so 

that they reflect the current situation. For instance, in the context of the drink 

stock control, a user can configure the ISM so that the notification that the supply 

of cola is exhausted is suspended during the night. 

 

Apart from the advantages listed above, the SICOD framework also addresses 

the four important issues discussed in connection with visions for ubicomp in the last 

section. We shall now discuss these in turn. 

 

6.3.1 Human in the loop 
 

As we discussed in section 6.2.1, full automation is over-hyped in the visions of 

ubicomp and we need to put the human in the loop. This point can be illustrated by 

considering the difficulties in obtaining contextual states automatically. The states of 

digital devices are the easiest to obtain automatically. States of the environment, such 

as room temperature, illumination intensity and noise level are harder to obtain 

because they depend on sensor technology. What can be reliably sensed by current 

technology is limited to very primitive contextual state. States such as the orientation 
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of an arbitrary physical object, the meaning of a sign and the topic of a conversation 

are very difficult for devices to detect automatically. It is doubtful whether all such 

states, which involve human perception and interpretation, can be reliably sensed by 

computers automatically. The ICM of the cola stock control scenario is a good 

example – most of the behaviour of the system is determined by the ISM, not by the 

IDMs.  

 

Most activities in our everyday life are situated. Situated activities mostly 

contain actions that involve conscious reference to the context and the choice of 

course of action [Sun99a]. For this reason, ISMs in the SICOD framework play an 

important role in capturing context-awareness. An ISM maintained by the user of the 

system represents a particular use case of a system of devices that cannot be 

prescribed and therefore, the ISM itself cannot be automatically built by the system 

(cf. circumscription of use cases in UML). 

 

The SICOD framework supports problem-solving in a ubicomp environment 

that is based on intelligence captured through practical experience – a precept that 

human agents tacitly use to solve problems encountered in the real world [Bey94a, 

Sun99a]. It supports experimentation, discovery and exploration of an environment 

prior to the identification of desired reliable behaviour. Automation comes later when 

patterns of interaction become reliable and a system emerges. However, familiar and 

reliable patterns cannot take account of dynamical changes in the ubicomp 

environment. Humans should be involved in constant revising of the ICM to adapt to 

new requirements and new contexts. 

 

 

6.3.2 User engagement 
 

We argued in section 6.2.2 that true invisibility comes not hiding infrastructure but 

from the user’s engagement in the primary activities of interest. Sometimes, it is 

appropriate to make infrastructure visible to the user. 

 

The SICOD framework provides a direct way of modelling the observation of 

the system and its environment by the user. In particular, just like cells in a 

spreadsheet, observables associated with an ICM are all task-oriented (the term used 

by Nardi in [Nar93]) – they represent states that can be perceived and observed by the 

user; they represent entities that are of interest to the user for the particular task or 

situation. The user can engage with the task at hand more easily using a spreadsheet 
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than another conventional programming paradigm [Nar93]. An ICM inherits this 

advantage of the spreadsheet. 

 

The modelling of observation provided by the SICOD framework is very useful 

in a ubicomp environment. Since the designer cannot prescribe all the observables in a 

user’s mind in advance, it is left to the user to describe the observables using an ISM. 

After a period of time, the management of some of these observables might follow 

such commonplace patterns that the designer can prescribe them in systems for other 

users.  

 

In the SICOD framework, states are represented explicitly, and interactions are 

direct. This allows users to define what is to be observed, and allows users to engage 

in setting up the devices based on their subjective experience (cf. the computer as 

instrument discussion in [Bey01a]).  

 

6.3.3 Understanding and controlling the connectivity 
 

Where connectivity is concerned, we have emphasised user understanding and control 

of the interconnections between devices. In the SICOD framework, this is addressed 

by the notions of agency and dependency. 

 

Within the framework, what to connect to what is entirely up to the user. With 

dependency graphs, a user is able to get a visual understanding of the interconnections. 

This helps the user to maintain a clear conceptual model of the communications and 

devices involved. The explicit representation of dependency helps to make the system 

traceable, so that, for instance, communication between two devices exists only if 

there is a dependency link. This helps to ensure that the user can tell why and how the 

devices are interacting each other. 

 

The notion of agency supports a user’s natural commonsense attribution of state 

change. For example, with reference to the cola stock scenario, a user can refer to the 

store location definition but cannot change the definition; the fridge agent is 

responsible for counting the colas. This is a natural application of LSD analysis 

introduced in chapter 2.  

 

6.3.4 User customisation 
 

We argued in section 6.2.4 that conventional context-awareness and user modelling 
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techniques are not sufficient to meet the system adaptation requirement for a ubicomp 

environment. We also need ways for the user to customise the system. Ideally, these 

should be flexible and easy to use. Usually there are trade-offs between flexibility and 

ease of use so that if a way is flexible it is usually not easy to use and vice versa (cf. 

[Odl99]). However, the SICOD framework can arguably provide ways to customise 

the system that are both flexible and easy to use. 

 

To illustrate this point consider a central heating controller, called Balmoral, 

based on a real-life model described by Green [Gre99]. Figure 6.4 shows the control 

panel and a summary of instructions on how to use the controls. 

 

 

Figure 6.4: A layout of a central heating control panel and its instructions adapted from [Gre99]. 

On this control panel, there is an LCD on the left and there are buttons on the right. 

 

By pressing buttons on this control panel, a user can set up three periods of 

heating for each weekday. The operation of the control panel is highly dependent on 

the mode switching button called ‘ADVANCE’. Mode switching buttons like this also 

exist in most programmable VCRs, washing machines, digital watches and desk 

clocks. They are also popular in conventional windows-based GUIs. Mode switching 

makes a system difficult to comprehend because it demands users to switch the 

perception of the system accordingly. With a conventional ‘press-button’ interface, 

however, it is usually unavoidable because of the physical constraints on the number 

of buttons that we can put on a control panel. For example, it would be inconvenient to 
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have a separate pair of ‘PLUS’ and ‘MINUS’ buttons for every weekday and every 

heating period. We shall refer to this kind of interface as a ‘hard interface’. 

 

In designing a hard interface, we not only have to prescribe the functionality of 

the system but also the possible observables and their interpretation by the user in the 

situations of use. This is a potential barrier to providing a system view that has 

conceptual integrity for the user (e.g. consider the different roles that the ‘PLUS’ and 

‘MINUS’ play according to the current mode of operation). It also affects the 

flexibility of the resulting system. For example, the central heating interface only 

allows the user to enter 3 heating periods for every weekday – a rather arbitrary 

prescription imposed by the designers. 

 

The SICOD framework provides a different way to configure the system. We can 

regard an ICM as a ‘soft interface’ to a system of ubicomp devices. Applying the 

SICOD framework, an ICM of central heating control would be like the one shown in 

the Figure 6.5a. The corresponding definitions are shown in the Figure 6.5b. 

 

 
Figure 6.5a: An ICM for central heating control 
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Figure 6.5b: Definitions of ICM of the central heating control 

 

The observables sunday, saturday and weekday specify the user’s configuration 

of the heating period. The observables sundayOn, saturdayOn and weekdayOn 

evaluate to True only if they can match their own day and heating period with the 

current time and day information provided by the Clock agent. The central heating 

will be turned on only if heaterOn evaluates to True. 

 

With the ICM, extension of the system becomes very easy. For example, suppose 

that the user has bought sensors to detect if there is any person in the house. The 

central heating ICM can make use of this information to allow more efficient use of 

central heating – the user can change the heaterOn definition to:  

 
heaterOn is (sundayOn or saturdayOn or weekdayOn) and houseNotEmpty 

 

A conventional central heating interface will surely have difficulty in embracing 

this requirement without replacing the whole control panel and developing 

mechanisms to link to the sensors. 

 

The SICOD framework improves both flexibility and ease of use of the resulting 

system: 

 

 the system becomes more flexible as its ICM is open to change and 

extension; 

. 

 the system becomes easier to use as the SICOD framework provides a 

simple interface through which to customise devices. The user needs only to 

learn the underlying definitive notation to be able to control a variety of 
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different devices. 

 

The idea of allowing the user to customise most parts of the ubicomp system is 

an alternative approach to the adaptation through auto-learning described in [Byu01]. 

Byun et al. propose several scenarios in which a ubicomp system can learn patterns of 

use. One of them is “If a user participates in a meeting at 10 am every fourth Monday, 

the PDS [their proposed system] might learn this behaviour and suggest that the user 

might have to go to a meeting today (the fourth Monday) at 10 am. However, a more 

sophisticated level of learning would enable the system to realize when such a 

notification is inappropriate, for example when the user is on holiday.” [Scenario D in 

Byu01]. Simple problems of user customisation become complex problems of 

artificial intelligence. Even if we do eventually have systems which are smart enough 

to act on behalf of users, system predictability will become an issue.   

 

In discussing possible extension to Context Toolkit (see [Dey01a] and section 

6.5), Dey describes the struggle involved in negotiating the tradeoff between 

supporting a complex situation and providing a simple method for describing a 

situation. He adds that “while designers who have domain-specific expertise can 

determine part of the solution [to a ubicomp problem], they will obviously not think of 

everything that is needed to support individual users. It is the end user who is in the 

best position to further specialize context-aware application to meet their individual 

needs.” [Dey01a]. The application of the SICOD framework is potentially a simple 

way to allow users to represent situations by building ISMs. 

 

The SICOD framework transforms the role of the designer from ‘prescribing use 

situations’ to ‘developing reusable functionalities that allow users to specify use 

situations by themselves’. An analogy can be made here with the spreadsheet 

framework, in which designers provide a library of domain-specific functions but the 

actual use of these functions is for spreadsheet users with their specific tasks to 

determine. 

 

With the SICOD framework, users can develop their understanding of use 

situations specific to them. This understanding can be animated and visualised by 

building ICMs. With current technologies, we can envisage users making use of 

Personal Data Assistants (PDAs) to build and maintain ICMs anytime and anywhere. 

The new tool introduced in Chapter 8, for example, can be used for this purpose. The 

result is a ubicomp system of devices without a fixed system boundary, capable of 

better adaptation to use situations and open to evolution. 
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6.4   Challenges for realising the SICOD framework 

 

In this section, we identify some of the challenges that will have to be met in realizing 

the SICOD framework. The aim of this section is to identify the key issues for further 

research rather than to provide or propose immediate solutions. 

 

Synchronisation of the external states with an ICM. There are two related 

questions. The first concerns keeping the virtual model up-to-date with the 

real-world situation. For instance, in the drink stock control example, how can the 

cola count information be updated in the ICM immediately after the action of buying? 

The second concerns the conversion of real-world analogue states into digital states. 

This conversion is handled by sensor technologies, but the choice of how frequently 

this conversion occurs (i.e. the update rate) can affect the responsiveness and 

integrity of the system (cf. precision, granularity and accuracy of sensor data 

discussed in [Hon01]). The key question is: how can a user comprehend and manage 

the conversion process? 

 

Interface for maintaining an ICM. We need simple means for users to create 

and modify ICMs. This issue is one of the themes of this thesis. The development of 

WING, EME and DMT (described in later chapters) is targeted towards simplifying 

the model building activities. The assumption in current EM tools development is 

that a flat screen-like display and a keyboard is available to the user. However, we 

could build interfaces of other kinds when new display technologies have evolved. 

For example, if we combine 3D hologram technology (e.g. [Fre02]) with precision 

location systems such as the one at AT&T Lab [Sen02], we can create an interface 

by generating 3D objects and interacting with them. In this way, it might be possible 

to build an ICM by physically moving virtual 3D objects.  

 

Scalability of ICMs. In some ubicomp scenarios, we are expecting hundreds of 

ICMs connecting thousands of devices. To implement the SICOD framework on 

such a big scale it would be necessary to solve problems of reliability and efficiency.  

 

Development of suitable terminology. Introducing the SICOD framework 

also introduces many terms that will be unfamiliar to end-users. While they are 

appropriate for academic discussions, terms such as IDM, ISM, ICM and LSD are 

not easily interpreted by users. We need to develop more user friendly terms that still 
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make the underlying concepts clear. 

 

Integrating with existing technology. So far, we have concentrated on applying 

the SICOD framework ‘through-and-through’, expecting every device to be designed 

with an IDM. In the real situation, we shall have to consider an environment which 

includes other devices that were not designed with the SICOD framework in mind. 

We surely cannot throw away all current devices and replace them with new devices 

designed for the SICOD framework. 

 

Safety of customisations. One good thing about traditional hard interfaces is 

that they prevent users from doing things that are dangerous. The open nature of ICMs 

might allow users to configure the system so that it exhibits dangerous behaviours. 

For example, imagine the consequences of connecting a car navigation system to the 

wrong map.  

 

Security of private observables. Sharing observables between ICMs might 

sometimes be desirable. However, ICMs might also contain personal information (e.g. 

credit card numbers) that we might not want to share with others. Methods for 

attaching scopes and privileges to observables are needed so that we can specify and 

distinguish these sensitive observables. 

 

Intangible interface. ICMs potentially offer a better conceptual model of the 

system than a traditional hard interface at the expense of sacrificing physical 

affordance. For example, in some contexts, the use of an ICM might be an inadequate 

replacement for the physical buttons on a device; it would be inappropriate to replace 

all the channel buttons on a TV remote controller with an ICM.  

 

Naming conventions for the observables. How can we make sure that we are 

referring to the central heating system in our house and not the one next door? We 

shall need to standardise the naming conventions for observables. One possible 

solution would be to use conventions similar to URLs for the Internet.  

 

Distributed dependency maintenance. It is relatively easy to implement a 

centralised model of dependency maintenance. Definitions are stored in one place. 

The proper order of evaluation of definitions can be determined by classical 

topological sort algorithms. In a distributed ubicomp environment, where definitions 

are scattered amongst different devices, the order of evaluation becomes 

undeterminable and updates of definitions become concurrent. In his thesis, Sun 
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proposed a client and server model of distributed dependency maintenance [Sun99a]. 

The result is a distributed prototype version of TkEden called DTkEden. DTkEden is 

a good tool for studying the issues involved in distributed dependency maintenance. 

 

6.5   Related work 

 

In this section, we describe other related work in the ubicomp research community. In 

the past five years, the lack of guiding principles for ubicomp development has been 

directly addressed by many research groups around the world. As a result, many 

‘toolkits’, ‘models’ and ‘APIs’ have been developed. Although researchers have used 

different terms and banners for their work, at some level of abstraction, each has 

introduced a set of guidelines on how a ubicomp environment should be implemented. 

We shall refer to each set of guidelines as ‘conceptual framework’ or simply a 

‘framework’ for ubicomp. In this section, we briefly review five such conceptual 

frameworks and compare then with the SICOD framework. 

 

 

6.5.1 Toolkit framework 
 

The framework introduced in the Context Toolkit [Dey01b] is based on generalising 

the idea of traditional GUI toolkits. Just as GUI toolkits separate interface concerns 

from program development, the Context Toolkit framework tries to separate concerns 

between context acquisition and the use of context in an application. There are five 

basic software components: context widgets, interpreters, aggregators, services and 

discoverers. Context widgets hide the specifics of the input devices being used from 

an application. Their role is similar to that of device drivers. Interpreters convert 

low-level context data into high-level context information. Aggregators combine 

context information. Services execute actions based on context information. 

Discoverers are responsible for maintaining a registry of other software components. 

Interaction between components is implemented through message callbacks. The 

main aim of the research is to provide “concepts that make context-aware computing 

easier to comprehend for application designers and developers” [Dey01b]. Little 

consideration has been given to users of ubicomp systems. The purpose of interpreters 

is to provide automatic interpretation of context data. This demands that the designer 

prescribes the interpretation of context, which is not easy in the dynamic environment 

of ubicomp.  
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6.5.2 Layer framework 
 

Tandler [Tan01] tries to separate the concerns of a ubicomp application into five 

layers. These layers share five data models: the interaction model, the physical model, 

the user-interface model, the tool model, and the document model. Each layer 

represents a level of programming abstraction – the module layer contains tailored 

functionality for specific applications; the generic layer contains common 

functionality across applications; the model layer contains definitions of the five data 

models; the core layer provides hybrid implementation of the underlying 

infrastructure for communications, event handling, device and sensor management, 

automatic dependency detection and update, etc. An interesting feature of this 

framework is the use of a declarative description to ensure that the dependency 

between visualisations and attributes of shared objects is automatically maintained. 

This framework is specific to OO programming. 

 

6.5.3 Middleware framework 
 

Hong and Landay [Hon01] advocate building middleware similar to the middleware 

of the Internet to provide communication services for ubicomp applications. In their 

framework, each application is responsible for implementing standardised 

communication data formats and protocols. Although this adds complexity, each 

application can be more independent. The advantages of this framework are the same 

as the advantages of the Internet infrastructure – it gives freedom in choosing 

hardware, operating system and programming language.  

 

6.5.4 Blackboard framework 
 

The Blackboard framework uses the blackboard metaphor [Win01]. A blackboard is a 

communication centre where all communication between applications takes place. 

Applications can post messages on the blackboard and subscribe to particular classes 

of message from the blackboard. A blackboard consists of two components: an event 

heap and a context memory. The event heap maintains short-term message storage. 

The context memory is a database that provides long-term message storage. The 

framework is data-centric rather that process-centric. Centralised communication 

provides opportunities for system integration [Win01].  
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6.5.5 Trigger-based framework 
 

Huang et al. [Hua99] introduced a framework for ubicomp based on extending the 

concept of triggers originating from databases. A trigger is a constraint-action pair. 

The action of a trigger will be executed when the constraint is satisfied. The 

framework provides automatic translation of a high-level task that is input by the user 

(e.g. buying a drink) into triggers that are maintained by the system. The main 

disadvantage of heavy reliance on triggers is that it may lead to state changes that are 

not easy to comprehend and anticipate. The system behaviour becomes unpredictable. 

 

6.5.6 Overall comparisons 
 

All five conceptual frameworks adopt an engineering approach to ubicomp 

application – engineers design and implement a ubicomp application; users buy the 

application and use it according to the user manual. However, as we have discussed 

throughout this chapter, because our real life environment is very dynamic and user 

requirements are always changing from situation to situation, the problems of design 

and use of ubicomp applications cannot be addressed separately. Sometimes, users 

can also find themselves in the designer’s role. It seems unlikely that an engineering 

approach can address the issues of automation, visibility, connectivity and adaptation 

discussed in section 6.2 satisfactorily. 

 

The five frameworks discussed in this section are technology-centred. The EM 

SICOD framework is human-centred. Our emphasis is on using concepts that make 

the resulting system comprehensible not only by the developers but also by the users. 

Most of the five frameworks only provide good concepts for the developer to develop 

ubicomp applications, limiting the scope for flexibility to the design phase of the 

development. The SICOD framework has the potential to extend system flexibility to 

users, allowing them to design and customise their own ubicomp environment. 

6.6   Summary 

 

In this chapter, we have discussed many visions for ubicomp and identified key issues 

associated with them. We have proposed a conceptual framework (SICOD) based on 

EM principles. The potential advantages of the SICOD framework have been 

illustrated using simple examples. Some of the challenges to be met in realising the 

framework have also been identified. Finally, we have compared the SICOD 

framework with other related ubicomp research. 


