Towards efficacious groupware development:
an Empirical Modelling approach

by

Zhan En Chan

A thesis submitted to

THE UNIVERSITY OF WARWICK

in partial fulfilment for the admission to the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

University of Warwick

July 2009
Table of Contents

TABLE OF CONTENTS .. I

LIST OF FIGURES AND TABLES ... V

ACKNOWLEDGEMENT .. VIII

DECLARATION .. IX

ABSTRACT .. X

ABBREVIATIONS ... XI

CHAPTER 1 **INTRODUCTION** .. 1
 1.1 Thesis aim and scope .. 3
 1.2 Related work ... 5
 1.3 Research Contribution .. 7
 1.4 Overview of the thesis .. 8

CHAPTER 2 **GROUPWARE DEVELOPMENT IN THE HUMAN CONTEXT** 10
 2.1 Supporting group work ... 11
 2.1.1 Taxonomy of group work .. 11
 2.1.2 Awareness and Coordination .. 13
 2.1.3 Articulation work .. 14
 2.1.4 Creativity .. 16
 2.1.5 Experimentation .. 17
 2.1.6 Knowledge sharing and knowledge construction .. 18
 2.2 Issues in groupware development ... 19
 2.2.1 Groupware and CSCW .. 20
 2.2.2 The socio-technical challenge .. 21
 2.2.3 Brooks’s "No Silver Bullet" argument .. 28
 2.3 Contemporary groupware development paradigm ... 30
 2.3.1 The iterative process ... 30
 2.3.2 Ethnomethodology and Ethnography ... 31
 2.3.3 Participatory design .. 34
 2.4 Accommodating evolving human activity ... 35
 2.4.1 Evolving nature of human activity .. 36
 2.4.2 Evolution of groupware ... 37
 2.5 Towards efficacious groupware development .. 43
 2.5.1 From group-centred to human-centred for groups .. 44
CHAPTER 3 THE PARTICIPATION PROBLEM: ROLES, PARTICIPATION,
AND THE CONFLATION OF CONTEXTS IN GROUPWARE
DEVELOPMENT .. 55

3.1 The co-evolution between the developer’s understanding and
the artifact .. 58

3.2 Reconceptualising the developer and the user 63
 3.2.1 The tension between the developers and the users 64
 3.2.2 Broadening the conception of user 67
 3.2.3 Broadening the conception of developer 70
 3.2.4 Reconsidering the conception of developer and the user: a role or a
person? ... 73

3.3 The role-shifting phenomena .. 76
 3.3.1 Role-shifting in group work .. 77
 3.3.2 Role-shifting in systems development 78

3.4 Participatory development ... 83
 3.4.1 Who is the participant? .. 84
 3.4.2 Participation and the conflation of contexts 86
 3.4.3 Participation and the conflation of roles 88
 3.4.4 Participation, co-construction, and co-evolution 88

3.5 Implications for groupware development 91
 3.5.1 Co-evolution .. 92
 3.5.2 Role-shifting .. 93
 3.5.3 Participation .. 94
 3.5.4 Conception .. 96

CHAPTER 4 EMPIRICAL MODELLING IN A NUTSHELL 98

4.1 Concepts of Empirical Modelling ... 99
 4.1.1 The ODA framework .. 99
 4.1.2 The EM process ... 106
 4.1.3 The EM artifact ... 109

4.2 The philosophical foundation of Empirical Modelling 112
 4.2.1 The notion of observation and theory building 113

4.3 Characteristics of practical EM ... 116
 4.3.1 The tadden tool .. 116
 4.3.2 Conceptual constructs .. 119
 4.3.3 Instant feedback .. 123
 4.3.4 Dialogical interaction .. 125
 4.3.5 Openness and flexibility .. 128
 4.3.6 Experimentation ... 129
CHAPTER 5 EMPIRICAL MODELLING FOR COLLABORATIVE MODELLING ... 132

5.1 Defining collaborative modelling... 133

5.1.1 Five degrees of engagement in collaborative modelling......................... 134
5.1.2 The relationship between modellers and agents in collaborative modelling ... 137
5.1.3 The modes of interaction in collaborative modelling 141
5.1.4 The dynamic nature of collaboration... 150

5.2 Why is Distributed Empirical Modelling not good enough? 151

5.2.1 Historical development in Empirical Modelling for collaboration.............. 151
5.2.2 Issues with the DEM framework and its tool support.............................. 153

5.3 How EM might support collaborative modelling 157

5.3.1 Coordination ... 158
5.3.2 Collaboration .. 159
5.3.3 Cooperation .. 160
5.3.4 Co-construction ... 161
5.3.5 Co-evolution .. 162

CHAPTER 6 CASE STUDIES: PRACTISING EMPIRICAL MODELLING IN COLLABORATIVE CONTEXTS ... 164

6.1 Case study I: the Virtual Electronic Laboratory project.......................... 169

6.1.1 The background of the case study .. 169
6.1.2 Method of study and approach to data analysis 171
6.1.3 Limitations ... 175
6.1.4 Discussion ... 176

6.2 Case study II: the development of a distributed Jugs model 180

6.2.1 The background of the case study .. 180
6.2.2 Method of study and approach to data analysis 181
6.2.3 Limitations ... 186
6.2.4 The collaborative modelling process .. 188
6.2.5 Discussion ... 192

6.3 Case study III: collaborative Sudoku .. 196

6.3.1 The background of the case study .. 196
6.3.2 Method of study and approach to data analysis 197
6.3.3 Limitations ... 199
6.3.4 Discussion ... 199

6.4 Case study IV: the cricket project ... 207

6.4.1 The background of the project .. 207
6.4.2 Method of study and approach to data analysis 209
6.4.3 Team 11’s cricket simulation project ... 212
6.4.4 Limitations ... 219
6.4.5 Discussion ... 220

6.5 Concluding Remarks .. 223
CHAPTER 7 EFFICACIOUS GROUPWARE DEVELOPMENT THROUGH
EMPIRICAL MODELLING .. 225
7.1 Groupware development as collaborative modelling 227
7.2 EM for human-centred development ... 228
7.2.1 EM for genuine participation .. 229
7.2.2 Integrating the human and the technological 233
7.2.3 Enabling flexibility and evolution ... 235
7.2.4 Supporting diverse interaction and communication 235
7.3 GroupPIE – a framework for efficacious groupware development .. 236
7.4 Limitations for the GroupPIE framework 242
7.5 Towards efficacious groupware development: vision for
GroupPIE ..…………... 244

CHAPTER 8 CONCLUSIONS .. 250
8.1 Research summary ... 250
8.2 Further work ... 254
8.3 Concluding remarks ... 258

BIBLIOGRAPHY .. 260

APPENDIX A .. 285

APPENDIX B .. 287

APPENDIX C .. 290

APPENDIX D .. 293
List of Figures and Tables

Figure 1.1 – Relationships between this thesis and other doctoral theses on EM ... 4
Figure 1.2 – Relationships between chapters in this thesis 8
Figure 2.1 – Tang’s iterative process for groupware development 31
Figure 2.2 – A model for groupware evolution .. 42
Table 2.3 – Summary of the intended focus and actual focus of contemporary systems development approaches 45
Figure 2.4 – Gasson’s dual-process model .. 47
Figure 3.1 – The co-evolution between the developer’s understanding and the development of an artifact ... 59
Figure 3.2 – The spectrum of user participation in systems development 85
Figure 3.3 – A model of systems development with broader conceptions of developer and user ... 89
Figure 3.4 – A conceptual model for participatory development 90
Figure 4.1 – Three views of agent and agency in EM 103
Figure 4.2 – External observer vs. internal observer in EM 104
Figure 4.3 – The relationship between the definitive script, the screen, and its referent in the Jugs model (EMPA: JugsBeynon1988) 105
Figure 4.4 – Exploring ritualised definitions in EM 108
Figure 4.5 – Sense-making and ritualisation in EM 108
Figure 4.6 – The EM perspective on artifact, construal, model, program 112
Figure 4.7 – The tkeden modelling environment loaded with the Jugs model (EMPA: jugsBeynon2008) ... 117
Table 4.8 – Conceptual constructs in EM versus the closest conceptual constructs in other programming paradigms 120
Figure 4.9 – Cascading definitions and cyclic definitions in EDEN 121
Figure 4.10 – Triggered action in EDEN .. 122
Figure 4.11 – The difference in feedback cycles between the interpretation and compilation ... 124
Figure 4.12 – Logo script vs. Donald script .. 124
Figure 4.13 – The difference between definitive notation and procedural programming .. 128

Figure 4.14 – Potential influence between instant feedback, dialogical interaction, experimentation, openness and flexibility 130

Figure 5.1 – Collaborative modelling scenarios .. 138

Figure 5.2 – The relationships between modellers and agents in the model..... 139

Figure 5.3 – Private mode of interaction ... 143

Figure 5.4 – Peer-to-peer mode of interaction.. 143

Figure 5.5 – Broadcast mode of interaction .. 144

Figure 5.6 – Blackboard mode of interaction .. 146

Figure 5.7 – Interference mode of interaction ... 148

Figure 5.8 – Supporting diverse modes of interaction in collaborative modelling .. 149

Table 6.1 – Considerations that the case studies have addressed 167

Figure 6.2 – A screen capture of the VEL model (EMPA: velShethDOrnellas1998) within the dtkeden modelling environment .. 171

Figure 6.3 – Cooperation between Sheth and D’Ornellas in the VEL project...... 178

Figure 6.4 – Triggered actions graph after Matrix A is changed in the VEL model .. 178

Figure 6.5 – The room configuration of the distributed jugs modelling case study .. 182

Figure 6.6 – The room configuration of the collaborative modelling workshop .. 182

Figure 6.7 – A glimpse of the interaction between two modellers in a distributed jugs modelling .. 187

Figure 6.8 – Collaborative modelling of a pair of jugs at the early stage 187

Figure 6.9 – A glimpse of the development of the distributed jugs in a collaborative modelling environment .. 188

Figure 6.10 – Screen capture of the distributed Jugs model constructed in the second distributed jugs modelling session 192

Figure 6.11 – A screen capture of King’s Sudoku model (EMPA: sudokuKing2006) with the tkeden modelling environment........ 196

Figure 6.12 – Co-construction of the check rules in the collaborative Sudoku model .. 200
Figure 6.13 – Evolution of a set of check rules in the collaborative Sudoku model 202
Figure 6.14 – A little helper agent ‘wcs’ used in the collaborative Sudoku modelling .. 202
Figure 6.15 – Modeller S queried the ‘checkstatus’ observable before defining the initial version of the little helper agent ‘wcs’ 202
Table 6.16 – The distribution of expertise in team 11 (extracted from the minutes attached in Team’s 11 FTR). ... 212
Figure 6.17 – The dependency graph for the team model of Team 11 213
Figure 6.18 – Colour coded team’s model and individuals’ models listed side by side .. 216
Table 6.19 – Contribution by the members in Team 11 .. 217
Figure 7.1 – Factors surrounding participatory development 229
Figure 7.3 – The participation perspective in the GroupPIE framework............ 238
Figure 7.4 – The interaction perspective in the GroupPIE framework............. 241
Figure 7.5 – The evolution perspective in the GroupPIE framework............. 241
Figure 7.6 – The scope of efficacious groupware development in relation to ACMP ... 242
Table 8.1 – Similarities between Empirical Modelling and Participatory Design ... 254
Acknowledgement

I would like to thank my supervisor, Dr Meurig Beynon, who has been guiding me and sharing my emotions throughout my research journey at University of Warwick. I am indebted to him for substantial assistance in correcting language mistakes during the writing of this thesis. I am also indebted to Dr Meurig Beynon for his enthusiasm, patience, and invaluable help in all aspects during the writing of this thesis.

Special thanks goes to Dr Steve Russ and Dr Mike Joy, who have given me invaluable insight on early ideas in forming the structure of this thesis. I am also grateful to Prof Erkki Sutinen, who has given insightful comments about the overall orientation of this thesis and possible future research directions.

I would like to thank my parents who have been taking care of my poor health, and sharing my stress, depression, and joy since I was born. They are patient and encouraging. Without their support, I would never been able to realise this thesis.

I would also like to thank Dr Roger Packwood and the IT Services for their help in setting up equipment for the case studies. Lastly but not least, thank you to the present and the past members of the Empirical Modelling group who have been participating in the group seminars and provoked valuable ideas in relation to my research: Dr Charles Care, Dr Ashley Ward, Dr Antony Harfield, Dr Chris Roe, Russell Boyatt, Karl King, George Efstathiou, Nick Pope, Timothy Heron, Sunny Chang, Amanda Wright, Chris Brown.
Declaration

This thesis is presented in accordance with the regulations for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree. The work in this thesis has been undertaken by myself except where otherwise stated.

The discussion of the process of co-evolution of the developer's understanding and the artifact in section 3.1 draws on the ideas presented in a paper (Beynon et al., 2008) published in the “The 20th Annual Psychology of Programming Interest Group Conference (PPIG 2008)”. The discussion of the role-shifting phenomena discussed in section 3.3 draws on a presentation (Chan, 2006) in the “Warwick Postgraduate Colloquium in Computer Science (WPCCS ’06)”, and a workshop paper (Beynon and Chan, 2006) presented in the Distributed Participatory Design (DPD) workshop that was held in conjunction with NordiCHI 2006. The preliminary results from the case study on the cricket project in section 6.4 were presented in the “Warwick Postgraduate Colloquium in Computer Science (WPCCS ’08)” (Chan, 2008). Part of the data used in the case study on the distributed jugs construction in section 6.2 was jointly collected by Antony Harfield and myself. The role-shifting phenomenon observed in section 6.2 and section 6.3 was briefly presented in the DPD 2006 workshop and in WPCCS ’06. The discussion of the case study on the cricket project draws on the technical research report CS-RR-444 (Beynon and Chan, 2009).

The ideas behind practising an EM approach to collaborative modelling presented in this thesis were also inspired by the reworking of the Clayton Tunnel railway accident model, the related presentation in the “Warwick Postgraduate Colloquium in Computer Science (WPCCS ’05)” (Chan, 2005) and the poster presented in the EU TEL Kaleidoscope Network of Excellence Showcase 2005 in Oberhausen, Germany (Harfield et al., 2005).
Abstract

Groupware development can be conceived as one particular branch of software systems development. Research into groupware development faces both methodological challenges as in classical software development, and socio-technical issues as identified in the CSCW literature. On the one hand, the paradigm needs to accommodate the changing context for use, facilitate the effective communication between developers and users, and maintain the conceptual integrity of the system. On the other hand, it has to deal with the dynamic nature of groups and the emerging work practices during the development process. As Grudin (1988) pointed out, the social and organisational aspects within the groupware development (and use) often lead groupware to fail. Individual differences make it unlikely that two groups are in reality identical. Consequently, groupware development should be seen and treated as an organic process, in which the groupware is grown by the owners with the aid of professional developers rather than constructed by professional developers alone. In this thesis, I propose a new conception of efficacious groupware development which draws on the ancient Chinese philosophical notion of shi (as interpreted by Jullien (1995)).

In this thesis, I argue that Empirical Modelling (EM) potentially offers a conceptual framework well-suited for efficacious groupware development. In the process, I propose a new conceptual framework for practising an EM approach in a groupware development context. EM is a body of principles and tools which embraces an experimental, interactive, and open approach towards systems development through the exploration of observation, dependency and agency. The proposed conceptual framework, known as GroupPIE, is based on the principles of EM. This is built upon previous research into EM, particularly Sun's Distributed Empirical Modelling (DEM). In contrast to DEM, this thesis focuses on the micro-level of collaborative modelling. In particular, it considers how EM might facilitate the collaboration amongst the modellers and interaction between the modellers and the evolving artifact which takes place in groupware development.

The thesis draws on various case studies from undergraduate projects and research projects which have practised an EM approach to collaborative modelling. The case studies suggest that the participants’ knowledge of the situation co-evolves with the artifact under construction and that there is role-shifting behaviour through the collaborative modelling. Drawing on the case studies, this thesis argues that an EM approach to collaborative modelling potentially facilitates genuine participation. This challenges the accepted ideas about the role of participants (or actors) and the relationship between them in the groupware development process. It also suggests that EM potentially facilitates a notion of participatory development which is “more” human-centred. On this basis, I argue that EM is potentially better-suited for realizing the vision of efficacious groupware development.
Abbreviations

ADM Abstract Data Machine (in the EM context)
AT Activity Theory
CM Collaborative modelling (cf. chapter 5)
CSCL Computer Supported Collaborative Learning
CSCW Computer Supported Cooperative Work
DCog Distributed Cognition
DEM Distributed Empirical Modelling
DPD Distributed Participatory Design
EGD Efficacious Groupware Development (cf. chapter 7)
EM Empirical Modelling (cf. chapter 4)
FOSS Free and Open Source Software
GD Groupware development
HCD Human-centred design
HCI Human-Computer Interaction
IS Information System
IT Information technology
ICT Interaction and Communication Technologies
LSD LSD Notation (in the EM context)
ODA Observables, dependencies, agents, and agencies (in the EM context)
PD Participatory Design
UCD User-centred design