
223

���������	��

���

G. Wyvil l ‘Pictorial Description Language’

This computer graphics system provides:

Extension to an existing programming language

A suit of specialised programs for a particular job

A number of utility programs designed to operate on a common database

Examples of PDL

Example 1:

*DEFINE LINE *LINE 0,0 1,1 *PLOT LINE

Example 2:

*DEF SQUARE *LI 0,0 1,1 1,0 0,0 *PL SQUARE

Example 3:

*DEF OBJ1 *TRANSFORM LINE *TRANSFORM SQUARE *PL OBJ1

B. Kernighan ‘PIC – A Language for Typesett ing Graphics’

A picture in Pic is written as a sequence of statements. Statements can be used to specify a

primitive object such as circle, ellipse, arc, spline or line. These objects may be a set of attributes

such as position, text, height, width and line style, which may appear in any order. Positions may

be described using absolute Cartesian coordinates and absolute sizes. These are sufficient, in that

anything can be expressed in such terms, but they make it hard both to create the first draft of a

picture and to modify it subsequently. Absolute values also discard any structural relationships

that might exist among the objects in a picture. Pic provides two methods to help the user. One is

the ability to link one object to another through positional and dimensional relationships. The

other is the use of defaults. Objects sizes and positions and the relationships among objects all

have sensible default values, so that simple pictures can be made with a minimal amount of

specification.

224

Example1:

B: box wid 0.5I ht 0.5I
 box same with .w at B.e
A: arrow from last box.c right 1i
 box same with .w at A.end
 box same with .w at last box.e

Example2:

Each object class is defined in two parts: a declarative section and an instruction section. The

declaration section contains variable declarations and relationships or constraints that must hold

among the points of the object. This gives a system of simultaneous equations. The instruction

section contains instructions for connecting points and for drawing other objects by invoking or

calling them. A box can be defined with the procedure:

rect{
var ne, nw, se, sw, wd, ht;
nw = sw +(0,1)*ht;
ne = nw +wd;
se = sw + wd;
conn ne to nw to sw to se to ne;

}

To draw an instance rect:

put rect{
ht = 2;
wd = 1;
sw = 0;

}

There are actually many ways of drawing a rectangle, e.g. by giving one corner, one dimension

and a relationship on the dimensions, or by giving three corners, or by giving two adjacent

corners and the perpendicular dimension. Any method can be used provided enough information

is given for the system to solve the equations.

put first: rect{
sw = 0;
ht = wd =1;

};
put second: rect{

nw = first.se;
ht = wd = first.ht;

};
put last: rect{

sw = first.ne;
se = next.ne;
ht = wd;

};

