Chapter 1: Sdlected dependency-based applications

1 Selected dependency-based applications

In this chapter, the concept of open-development dependency that underlies MWDS is identified
and compared and contrasted with closed-world dependency. An early example of the implicit
use of dependency can be found in Rosss APT! language [ITT67], developed in 1967 for
automatic programming of numerical machine tools. Several dependency-based applications,
such as greadsheets, Agentsheds, and several graphical modelling tools, are reviewed to
ill ustrate the potential virtues of using dependency. The last section introduces a modelling
framework, developed at Warwick over more than ten years, that adopts dependency similar to

that reviewed in those applications as a fundamental concept.

1.1 Dependency in closed world and open development

The concept of ‘dependency’ has been familiar in dverse disciplines for many years.
Dependency can be interpreted in many ways. In this thesis, we are particularly concerned with
the distinction between dependency asit is used in the ‘ closed world’” and in ‘open devel opment’

in the sense of Brodner.

Dependency in closed worlds: Closed-world dependency is associated with declarative
congtraints. They are typically prescribed by equational relationships or logical predicates and
make absol ute assertions about rel ationships between variables that must hold in every acceptable
state. Dedarative constraint languages have been used in many applications, including general-
purpose programming (e.g. Prolog [CM87]), graphics (e.g. SketchPad [Suth63], Juno [Nel85,
HN94]) and dhtabases (e.g. CoLan [BG94], RL/1 [Denn9l]). In the applications, declarative

L APT stands for “Automatically Programmed Tods”, and the APT language.

15

Chaper 1: Sdeded dependency-based applications

constraints are well -suited to expressng the feasibility constraints imposed by a problem (such as

writing a program, drawing a diagram, or configuring data) in a clear and concise way.

In interpreting a declarative constraint as referring to a world, variables correspord to
observables whose values are mnsistent with doservation. It is appropriate to call it a ‘closed
world because if —in exceptional or unexpected circumstances — observables have val ues that are
inconsistent with the constraints, they can be given no representation. The word ‘world' is used
in this context to refer to all states within the scope of current interest and possble focus of

attention rather than to the universal domain o experience.

Figure 1-1 depicts the way in which a dedarative constraint can be used to specify al the
possble states of a closed world. A particular solution to the constraint correspords to a state of
the world. For instance in a logic programming environment, such as Prolog, the variables x;

through x; are interpreted asinputsi; through is and outputs o; through o; for a program, so that

(le X2! AR XS, XS+1, . XS+'() E(il, iZl'-'l iSl Oll 021 ey o[)'

The declarative constraint I~ frames the program as a relationship between input values (to be
specified) and output values (to be determined). In this application, the declarative constraint can
have any number of solutions, potentially none. In other applications, a declarative constraint
should ideally have a unique solution. For instance, in a constraint-based graphics system, such
as Juno, the variables xi; to X, are interpreted as geometric elements such as points and linesin a
geometric figure. The declarative constraint /I~ (usually formulated as a set of constraints)

specifies the relati onshi ps between these el ements needed to determine the geometric figure.

r(X) = true

Xi = (Xi1, Xi2, -+ Xin)

Figure 1-1: A diagram toillustrate the concept of a declarative constraint

In a practical application using declarative constraints, constraint satisfaction techniques
play an essential role. A constraint satisfaction technique is a recipe for finding val ues that satisfy
a declarative constraint. Its primary role is in constructing solutions to a problem. In a logic
programming environment, the execution of a program makes use of a constraint satisfaction
technique that searches for output values that match a given set of input values and satisfy a

specified i nput-output relation.

16

Chapter 1: Sdlected dependency-based applications

Constraint satisfaction techniques are intimately connected with the notion o
dependency. Dependency refers to the way in which changes to the values of some variables are
linked with changes to the values of others. In the presence of a cnstraint, a constraint
satisfaction technique establishes dependencies. A change to the value of a variable is
accompanied by consequent changes to aher variables needed to restore the constraints.
Dependency maintenance is the mecdhanism by which changes to values of variables are
propagated to dependent variables. Systems based on declarative constraints thus implement a
form of dependency maintenance that is determined by the particular technique for constraint

satisfaction that is used.

Dependency in open development: Closed-world dependency is motivated by trying to use the
computer to automate problem solving. The essential idea is that people are goad at identifying
the global constraints to be satisfied in the solution of the problem, but not efficient in carrying
out the mmputation and searching needed to find a solution.

Open-development dependency is motivated by trying to engage people in the
exploration of constraints. This exploration can be arried out prior to any knowledge of global
constraints and with no specific problem in mind. The formulation o problems and identification
of congtraints relies on experiment whereby people interact in situations to identify patterns of

dependency. This dependency is much simpler in character than closed-world dependency.

The principal characteristics of open-development dependency will now be informally
described. Modelling with definitive scripts (MWDS), which focuses on using a set of definitions
to construct a model, is represented in this thesis as the appropriate framework in which to study
open-development dependency. The justification for the epithet ‘open-development’ will be
further discussed in Section 1.6.

The relationships that the modell er can apprehend in a situation invol ve recognising how
the value of one variable (say y) depends upan the values of others (say a, b and c). Such
relationships are typically based on functional dependencies, as wheny, a, b and ¢ are related by
the definitiony = f(a, b, ¢), where f is a function that the modell er can identify through changing

a, b or c. The role of functional dependency in this context is smilar to the role that it has in

17

Chapter 1: Sdlected dependency-based applications

relational database desigr?, where it supplies the eseential link between the modeller’ s experience

andthe way that attributes are grouped in tables.

In closed-world dependency, the relationship between variables is not in general a
functional one. For instance, in finding values to satisfy a given input-output relation in Prolog
there may be many solutions, or there may be none. Even where there is a functional dependency
in a closed-world model, it may not be easy for the modeller to recognise this or to identify the
function explicitly. The kind of dependency established by a declarative constraint is in general
beyond comprehensive algorithmic analysis: it is undecidable whether there is a unique solution;

there are many sol utions; or there are none.

We identify open-development dependency with dependency that is established by
explicit functional dependencies that define non-cyclic recipes for computing the values of
dependent variables. A dependency of this nature is depicted in Figure 1-2. As isillustrated in
Figure 1-2, and will be discused in more detail in Chapter 2, such dependency can be

represented in a* definitive script’.

Xy Rel ations between variables are
l/ N defined as foll ows
X —> l/X4 X1 1S f(X2, X4, X5)
\ \l Xq 1S Q(X3, X5)
X3 X5 X2 1S (X, Xs)

Figure 1-2: A diagram toillustrate explicit acyclic dependency

In Figure 1-2, arrows are used to represent the functional dependencies between
variables, so that the arrows conneding x; to xp, X4 and xs correspord to the functional

relationship x;= f(Xz, X4, Xs).

Acyclic dependencies of this kind are, in fact, sometimes used to build constraint
satisfaction methods. The principleis that if we wish to change the value of a variable X subjed
to a dedarative constraint, we find an agyclic family of functional dependencies that define the
new values of variables dependent on X. For instance, Figure 1-3 ill ustrates how various forms
of agyclic dependency could be used to maintain the constraint a+b+c=0, when a, b, and c have

theinitial values 0, -2, and 2 respectively.

2 A functional dependency in a relational database ocaurs when the values of a set of attributes in a relation

18

Chaper 1: Sdeded dependency-based applications

cch -
cnangs | Acongraint: atb+c=0 |
a=a=0
b= = -2 lfccharges | | If bchanges | | If a charges
c=y= 2 ais—b—c aisctb aisa
bis—c bisp bis—0.5a-2
b changes cisy cis—ab cis—0.5a+2

Figure 1-3: Acyclic dependency to specify a constraint satisfaction method

Asasimple practical il lustration of the use of an acyclic dependency in the maintenance
of the constraint, consider the application o Ohn's Law (V = IR) to a simple dectrical circuit
comprising a battery and a light bulb. When the battery is changed, the new values of V, Rand |
are determined by the acyclic dependency

VisV, RisR, lisVIR
where V' is the voltage of the new battery and R’ is the current resistance of the light bulb. When
the light bulb is changed the same acyclic dependency can be applied in a similar fashion. Far
more sophisticated constraint solving techniques in a somewhat similar spirit are applied to the

analysis of more complex circuitsin Denneheuvel [Denn91, p. 79.

The applications reviewed in this chapter are all applications in which the emphasis is
upon dependency in the open development sense. As we shall see, some of these appli cations try
to combine the dosed-world and open-development perspedives. This combination is not an
easy task, and thisis one of our motivations for studying modelling with definitive scripts.

1.2 Spreadsheets

The most famili ar application of the principles asociated with modelling with definitive scripts
is the spreadsheet. The term ‘ spreadsheet’ has a long history. Reference to a non-computerised
version can be fourd in the first edition of Eric L. Kohler's Dictionary of Accountants®. A non-
computerised spreadsheet refers to a workshed providing a two-way analysis of accounting data
[MattWeb]. In this accounting context, it was and is a large shed of paper with columns and rows

that lays out everything about transactions for businessmen to examine. It spreads or shows, for

uniquely determine the value of another attribute (e.g. { StudentID, Module} — Mark).

3 1952 —for recent editions ®e W. W. Cooper and Y. ljiri: Kohler's Dictionary for Accountants, Prentice-Hall,
Inc.

19

Chapter 1: Sdlected dependency-based applications

example, all of the costs, income and taxes on a single sheet of paper for a manager to look at

when making a decision [PowWeb].

The ‘first eledronic spreadshed’ - VisiCalc® - was invented by Bricklin and Bob
Frankston in 1979[BrickWeb] to create a program where people could visuali se the spreadsheet
as they created it. The metaphor of VisiCalc, at the time, was ‘an eedronic blackboard and
electronic chalk in a clasgoom’. The data presentation in VisiCalc is like the paper spreadsheets
but the data can be visualised and interacted with dynamically. The Heapsort model discussed in
Chapter 6 has sme similar characteristics. The visualisation of the array and tree with a value
attached to each cell of the array and node of the tree is displayed on *an eledronic bladkboard
where the basic relations between the visual elements are maintained through dependency.
VisiCalc organises information into predefined columns and rows. The data can be ‘added up’ by
aformulato gveatotal or sum. VisiCalc also has many special interactive features that support a
WYSIWYG® environment such as displaying responsive results, which are instantly

automatically recalculated based onformulae stored in the cels referencing other cdls.

VisiCalc became an almost instant success and was believed to be a catalyst for the
personal computer industry. At that time, only computer specialists could use the computers
becuse of their complicated programming languages and i nteractions. Many people cite it as the
thing that introduced them to the interactive paossibilities of computers. It is also a tool to allow
others to work out their ideas and reduce the tedium of repeating the same alculations

[BrickWeb].

Spreadsheds are an dfspring of VisiCalc. They inherited most of VisiCalc's features.
They were first developed mainly to support financial, accounting and business users and are
widely used in businessfor financial and related modelling [Bod86]. This is because spreadsheds
provide features that enable even unsophisticated users to write programs by spedfying formulas
that establish numerical relations between data values [NM91]. The user’ s task is then to write a
series of small formulas rather than the more difficult task of specifying the full control loop o a
program as a set of procedures. Therefore the users can concentrate more fully on understanding

and solving their problems.

* The name *VisiCalc' isa compressed form of the phrase ‘visible @lculation’
®What You See Is What You Get

20

Chapter 1: Sdlected dependency-based applications

The use of spreadsheets as a modelling tool was restricted to financial applications in the
early days. However becuse of their underlying principles and features such as definition,
instant automatic reclculation and the ‘program-by-example interface, spreadsheds have
become popular and famili ar in ather disciplines. For instance, in engineering, a spreadshed has
been used as the development environment for a dynamic force model of a manoeuvring ship

[MS95].

Alan Kay, the originator of many notable ideas in computing®, was one of the first
people to point out that spreadsheets might be used for programming applications [Kay84]. Bell
and Parr [BP93] take up Kay’s agenda concerning spreadsheets for programming to demonstrate
some hitherto unexplored capacities of spreadsheets by ill ustrating how to use spreadsheds to

program ‘ Conway’ s game of Life'’.

The extension of the spreadshed paradigm to aher computer science disciplines has
been studied by a number of researchers. For instance, a system that allows both simple and
complex graphical objeds to be programmed diredly using direct manipulation and gestures, in a
manner that fits within the spreadsheet paradigm, has been developed by Burnett and Gottfried
[BG9g]. Penguims [Hud94], which allows interactive user interfaces to be aeated with little or
no explicit programming, is an environment based onthe spreadsheet model for specifying user
interfaces. Davis and Kanet in [DK94] have developed an application-specific interactive system
based on spreadsheds.

Spreadsheds have been extensively studied and used by many researchers because they
offer distinguishing characteristics such as ‘open modelling’ which represents stuations, all ows
meanings to evolve, and offers ‘what-if’ experiment. These illustrate the use of open-
devel opment dependency. Some spreadsheds also exploit closed-world dependency features (e.g.

Excd includes Equation-Solver to find a solution for a particular user-defined constraint).

Researches concerned with exploiting the principles and potential applications of
spreadsheets that relate to the open-modelling theme include [BG87, BP93, DK94, Nar95,
Davis96]. The principal advantages and disadvantages of a spreadsheet, as identified by these

researchers, are set out in Table 1-1.

® Heis one of the inventers of Smalltalk and the achitect of the modern windowing GUI

21

Chapter 1: Sdlected dependency-based applications

Advantages Disadvantages

Being an interpreter rather | The flexibility of an interpreter over a compiler is offset by

than a compiler the slower speed of execution

It provides a necessry | Can encourage development without sufficient foresight,
flexibility for the | debugging can be just experimented hacking.

development of the model

Spreadshed’s integrated | Its non-procedural nature, which does not, for one thing,
working environment such | enforce structural discipline. For instance, unless care has
as print, save, report. been given to layout design and naming of cells a listing d
cdl formulas need not follow the order of their execution.

This obfuscates the logic for third persons.

Table 1-1: The advantages and disadvantages of spreadsheets

Like programming languages, spreadsheets are sophisticated tods with strengths and
weaknesses and they are open to misuse. Many different researchers [Nar95, ISL95, Pan98,
Green0Q] have reviewed the problems and dfficulties encountered with spreadsheets from the
user perspective. For instance, adding more formulae to an existing spreadsheet is very easy, but
what Green [Green00] has identified as “the absence of any abstraction medchanisms, the poor
role expressvenessand the pervasive hidden dependencies’ encourage undetected errors and can

make the inner workings of a large spreadsheet hard to grasp.

The concept of open-development dependency, and the use of definitions in particular,
plays a crucial role in the success of the spreadsheets gnce it enables many kinds of real-world
referent to be straightforwardly captured in a computer so that the user can interactively

experiment with its representation (the ‘what-if’ f eature).
1.3 Graphical modelling

Many gaphical and geometrical languages and systems based on dependency have been devised.
These include PIC? [Kern82] and PDL® [Wyv75]. Preaursors for pure definition-based notations

" The game of lifeis essentially based upon atwo-dimensional array, together with awhole @ll ection of rules for
how life is to develop. This means that Situations in life @n be represented well on a spreadsheet and that the
program is much more concise than a solution written in a procedura language such as Pascal [BP93].

8 A graphics language for describing simple diagrams or pictures

® Pictorial Description Language designed by G Wyvill i n 1974

22

Chapter 1: Sdlected dependency-based applications

for computer graphics are to be fourd in the erly research work of mathematicians Brian and
Geoff Wyvill. The PDL language, developed by G Wyvill [Wyvil 74, Wyvil 79], is an early
example of a definition-based notation for graphics (see Appendix A for a sample PDL script).
In hs doctoral thesis ‘An Interactive Graphics Language [Wyv75], B. Wyvill subsequently
exploited PDL as the basis of an environment for interactive graphics. This thesis draws explicit
attention to the advantages of using gpen-development dependency, for instance, in reducing the

complexity of interaction in design and inintegrating the roles of designer and user.

The application of dependency concepts is a reaurring theme in the subsequent research
of B and G Wyvill. By way of illustration, one important objective when designing a graphics
systemisto develop agoad ‘ testbed', where experiments with new modelling and motion control
techniques can be easily facilitated [CW89]. Thisrequires an ‘open’ software architecture, so that
programmers can modify or add code to a model in a dynamic interactive fashion. Such an
architecture encourages the modell er to think of the scene not asfixed, but as changing over time.
The mode looks different at different times depending upon the bias of the interaction. A
possble software architedure for integrating modelling and animation that implicitly exploits
definitive principles is proposed by Chmilar and B Wyvill in [CW89]. Their system supports
extensibility and the substitution of alternative representations for the same geometric objed. It
also alows multiple modelling primitives to be used in one scene or model since different

modelli ng techniques have different strengths and weakness

Open-development dependencies are also represented in aher software for graphics.
Jean [Jean87] invented an interactive graphical diagram editor that allows users to incorporate
knowledge about the diagram through relationships or constraints between graphical objeds. As
aresult, it can reduce the amount of work that the user has to do when changing a diagram. Once
the user alters an doject, the aitor automatically alters any related dbject to maintain the pre-
designed relationship. The applications discussed previously focus on defining the relationship
between each gaphical element explicitly. This helps a user to comprehend corresponding
changes on a graphical figure made by his’her modification, and hence asssts in further

modification and design.

The use of dedarative constraints in graphics, as pioneered by Sutherland in SketchPad
[Suth63] and further developed in Juno [Nel85, HN94], offers a different perspective on a
graphical model. In such a system, the positions of geometric dements are spedfied by

equational constraints, and the response to modifying one geometric element is to invoke a

23

Chapter 1: Sdlected dependency-based applications

constraint satisfaction procedure to update the positions of all other elements, which is beyond a
user’s control. Modifying a graphical model, in this snse, may be limited by characteristics of a

constraint satisfaction technique used.

The L.E.G.O. system designed by Norma Fuller is another example of an interactive
graphics systeminwhich dojed definitions are expressed in terms of geometric relations between
object elements [FPR85, FP38, FP89]. The L.E.G.O system shows that using geometric
constructions can eli minate the need for solving large systems of non-linear equations inherent in

declarative constraint-based systems [FP3§].

Definitive scripts discussed in this thesis offer a more eplicit form of dependency
maintenance, whereby the way in which a change to one geometric dement affeds other
elements is explicitly prescribed — a theme explored by Richard Cartwright in his thesis [Car9§].
Definitive scripts can be used to maintain simple equational geometric constraints (cf. Figure 1-
3). For instance both Jean and Cartwright discuss ways in which — in the framework of a

definitive script — two points can be constrained to be a fixed dstance apart.

1.4 Relational query languages

Edgar Codd, who is famous for his contributions to the theory and practice of database
management systems, first introduced the ‘relational model’ in 1970 [Codd70]. Codd's
conception is the basis for relational database management systems such as Oracle, Ingres, DB2,
Access Foxpro and Paradox. It provides an abstract theory of data that is based on mathematical
fourdations in set theory and predicate logic. Codd first proposed tuple'® relational calculus,
which served as a benchmark for evaluating data manipulation languages based on the relational
model [Codd7(]. His ‘relational model’ was conceived as a tool to free users from the
frustrations of having to deal with the dutter of storage representation details [Codd79]. He
attempted to protect users from having to know how the data is organised in the madine (the
internal representation). However, the activities of the end-users $ould remain unaffected when
the internal representation of data is changed and even when some aspeds of the external
representation are tanged. The relational model offers a way to link real-world semantics to
computer representations in an intelligible and manageable fashion. In this context, functional

dependency between attributes of entities plays a crucial role.

24

Chapter 1: Sdlected dependency-based applications

In a relational database system, each table is identified with a mathematical relation
[DateB9]. The relational model gives a prescription for the representation of data (by means of
tables), and a prescription for manipulating that representation (by means of operators, such as
selection, natural join and intersection). The relational model addresses three aspects of data: data
structure, data integrity, and data manipulation. By using relations, users can describe an abstract
organisation of data without knowing in depth about any additional structure for madine
representation puposes. In this resped, relations srve as a high-level data language that yields
maximal independence between programs, on the one hand, and machine representation and

organization of data, onthe other.

As the relational database mode gained commercial interest, many proposals for
relational database query languages were devised. Todd introduced the Information System Base
Language (ISBL) as arelational database query language in 1976[Todd76]. 1SBL was intended
to serve as a language meaningful to the user, in which relations are treated as named variables
and the concept of dependency is exploited to ensure that data is represented and manipulated in
a natural way. The Peterlee Relational Test Vehicle (PRTV) was Todd's prototype environment
for ISBL. Initstime, PRTV was unusual as a database system that provided flexible, interactive
database support and functional extensibility. New relations could be aeated and assgned at
will. PRTV provided flexibility in mapping between system files and user relations and all owed
greater freedom in the storing o data.

ISBL is the principal medium through which the user accesses data in the PRTV system,
and is designed for manipulating bulk data held in relations. It provides for variables,
expresgons, and assgnments in much the same way that conventional programming languages
do. All variables dencte relations, and the only operations that can be used in expressons are
those that produce relational results. There are standard features for entering and listing of

relations and for the basic arithmetic and string gperations. 1SBL does not have flow or control

statements such as DO, WHI LE or GO TO.

ISBL is arelational database query language that makes use of the dependency concept.
For example, given therelations BOOKS and LOANS, the expresson:

FULL_LOANS = NIBOOKS * NILOANS;

1% tuple mean approximately the same & the notion of a flat record instance, introduced by Codd.

25

Chapter 1: Sdlected dependency-based applications

expresses FULL_LOANS asthe natural join of the relations BOOKS and LOANS in such a way
that subsequent changesin BOOKS or LOANS arereflected automatically in FULL_LOANS. In

this respect, ISBL code @an be regarded as aform of definitive script.

The applications reviewed so far all ill ustrate the concept of single-user applications, as
introduced by Nardi and Miller in [NM91]. Such applications play a central role in the
exposition of modelling with definitive scriptsin this thesis. They are in effed examples of ‘ one-
agent’ systems (cf. Chapter 2) in which a single agent plays a key role in controlling every aspect
of the moddling activity. Such an agent might be a financial manager or analyst (in
spreadsheets), a designer (in graphical modelling) or a data modeller (in a PRTV database
system).

1.5 Other definition-based applications

The previous ctions have discussed the role of dependency as it has featured in three main
single-user applications: spreadsheds, graphical modelling and catabase system. This sction
discusses a wide range of emerging applications in which dependency aspects have been

embedded. Thisincludes both academic and commercial appli cations.
e Thenake utility in Unix

Make is one of the original Unix tools for Software Engineering. A makefile is supplied as a
parameter to the make command. The make command serves to maintain the relationships

specified inthe Makefile. For instance, the Makefile:

program.o : program.c
cc—-C—0 program.0 program.c

expresses the fact that the target file prog r am.o depends upan the source file pr ogra mc .
Whenever ma&ke is invoked, the dependent file pr ogr am.o is regenerated if there has been a
change in a sourcefile, using the Unix built-in cc command to compile a C program. In effect,

make operates as a ‘ dependency maintainer’ to update the Makefile as a* definitive script’.
* Agentsheets

Agentsheets is an interactive environment developed by Alex Repenning [AgentWeb] at the
University of Colorado at Boulder. It features a versatile construction paradigm to build

dynamic, visual environments for a wide range of problem domains such as art, artificial life,

26

Chapter 1: Sdlected dependency-based applications

education, environmental design and simulation. The construction paradigm makes use of the
agentsheet, which consists of a family of autonomous, communicating agents organised in a grid.
The grid is used to define agents and their roles and each agentsheet serves as a design space. By
way of illustration, Figure 1-4 depicts an agentsheet to represent a simple electrical circuit. The
components of the circuit (Light, Connector, Switch and Battery) are represented by icons on the
external display and by corresponding agents (L, C, S and B) in the internal representation. The
rules that define the behaviours of the agents L, C, S and B implement the dependencies in the
scripts shown in the figure and maintain the relation between internal and external state™. The

rules governing each agent are specified in terms of the states of adjacent agents.

In the Agentsheets application, designers can incrementally create and modify spatial
and temporal representations and can define the ook and behaviour of agents specific to problem
domains. The behaviour assigned to agents determines the meaning of spatial arrangements of
agents (e.g. what does it mean when two agents are adjacent to each other?) and also the reaction
of agents to user events (e.g. how does an agent react if a user applies a tool to it?). The
Agentsheets system maintains dependency defined between agents (defined in a grid) in
essentially the same way that the spreadsheet does.

External display

/7
N~

Internal
representation

— —
X is if (battery ok) Lightisi
Bl S C ight isif zthen
then 1 else 0 r/ g “on” dse “off’

| yisif (switch closed) then x else 0 zisy

Figure 1-4: A ssimple agentsheet

" TheannotationsL, C, S, B, X, y and z, and the associated definitions are used to explain the essential operation
of the model and do not feature in the agentsheet

27

Chapter 1: Sdlected dependency-based applications

Agentsheets postulates participatory theater, a human-computer interaction scheme
combining the advantages of direct manipulation*” (similar to spreadsheets) and delegation. This
scheme offers a continuous spedrum of control and effort to the user. Users have maximal
control over the comporents of their system through drect manipulation. With respect to the
theatrical metaphor, dired manipulation interfaces are like hand puppets in the sense that users
are ompletely in charge of the play. Extending the theatrical metaphor, tasks are delegated to
actors by giving them scripts. Once a script has been gven to an actor and the play has darted,
the audiences (or users) are left with no control over the play. This is because agents act
according to the patterns of inter-dependency that have been pre-defined by the modeller. In this
approach, actors in the participatory theatre will act according to their script unlessthe audience

or user tell s them to do something dfferent.
* MSWord automatic formatting style and drawing tool

The style option in MSWord, which allows editors to define their own textual style, can be
regarded as one form of definition. Once a style (e.g. normal) is changed, all text marked as

normal will be automatically updated with correspondence to this change.

The grouping facility in a drawing padkage is another aspect of using dependency. Each
drawing comporent is created as an individual object but comporents can also be grouped
together. After grouping selected dbjects, the positioning and scaling o these objects become
interdependent. When enlarging the grouped doject, each dbject is saled up with a consistent
proportion. It can be seen that thereis a use of dependency in grouping.

* Visio

Visioisatool, developed by Microsoft, to help in visualising complex concepts. It is promoted as
the businessdiagramming standard, which empowers effective visual communication, and
provides a common visual language that everyone acrossthe enterprise @an use to communicate

more effedively. Instead o just providing text-based documents, Visio offers a variety of kinds

of diagramsto clarify text documents [VisioWeb].

12 The term “direct manipulation’ was coined by Shneiderman [Shne83] who describes three principles of direct
mani pulation systems: continuous representation d the objects of interest; physical actions or presses of labelled
buttons instead of complex syntax; and rapid incrementa reversible operations whose effect on the object of
interest in immediate visble.

28

Chapter 1: Sdlected dependency-based applications

The comporents (e.g. text boxes and flowcharts) are wnnected by a dependency, for
instance, a text box and an arrow is linked, so that moving the box will cause moving an arrow.
Visio dagrams can be linked to databases © that information is g/nchronised between the

programs directly.

Visio, moreover, provides a facility in which users can modify shapes or create
customised ones to suit organisational or personal needs. Visio allows the user to define shapesin
aform of ‘definition’, as dapes can be edited and saved in a template. Intelligence @n also be
added to shapes by writing formulae, as in a spreadshed. Shapes can also be made data-aware or
their behaviour modified in aher ways. For example, a door shape @n ‘know’ when it is hinged
to awall shape and rotated appropriately. A file @binet shape has a drawer that pulls out to show
clearance A network equipment shape includes properties for the manufacturer and cather

information with sample data dready assgned.
* OLE (Objea Linking and Embedding)

OLE is atechnique for creating a ampourd document™ devel oped by the Microsoft Corporation
[OLEWEeb]. It features embedding and linking dojects. Each element in the compourd document
is gored in such away that it can be manipulated by the application that created it. OLE allows
users to mix different forms of expresson rather than artificially separating them. It enables the
creation o objects with one application, which can then be linked o embedded in a second
application. Embedded dbjeds retain their original format and links to the application for which
they were aeated. The concept of linking o embedding with OLE is smilar to dependency.
Embedded dbjects always link to their original applications, which is smilar to a dependency

concept.
1.6 Modelling with definitive scripts (MWDS)
The applications reviewed above all feature uses of dependency in which human involvement

and interpretation have an essential role. The interactions with spreadsheets, geometric models

and databases that we have discussed are guided in a dynamic way by observation o an external

3 A compound cbcument is a document that contains elements from a variety of computer applications such as, a
single ompound dbcument including text from a word procesor, graphics from a drawing program and a dart
from spreadsheets applications.

29

Chapter 1: Sdlected dependency-based applications

situation™. Our particular interest is in those interactions where the modeller is uncertain about
the outcome, not only in the familiar sense of ‘what-if’ experiment — where the framework for
interpreting interactions is typically well established, but where interaction has a genuinely open
character — as when a spreadshed is first being constructed, or exploratory geometric modelling

isinvolved.

The concept of modelling with definitive scripts (MWDYS), as introduced at Warwick in
the design of the ARCA notation in 1983,is a primary ingredient of what is now known as the
Empirical Modelling (EM) project. As a technique, MWDS had been anticipated by several of
the appli cations discussed abowve, but its ggnificance within EM stems from the alternative to a
closed-world semantic framework that it can be viewed as offering. The primary aim of studying
MWDS isto account for situated modelling— of the kind represented in applications that we have
reviewed — where new observables are introduced, and new interpretations are invoked in ways
that have not been preconceved. Aswill now be discussed, the spedal characteristics of MWDS
that support open development relate to the dose connection that can be established between
experience of interactions with a cmmputer-based model and of interactions with the externa
situation to which it refers. On this basis, MWDS can be regarded as the archetype for open-

devel opment modelling.

We should adknowledge at this point that the narrow characterisation o open
development, the dose asociation of open development with MWDS, and the sharp distinction
between closed-world and open-devel opment approaches may seem inappropriate. Of course, in
computing practice, there are many contexts in which new observables are introduced and new
interpretations invoked without the conscious adoption o alternative principles. Such contexts
arise, for instance, in the use of prototyping techniques in software development, the
development of formal specifications to support exploratory modelling, and the construction o
mathematical models (perhaps using explicitly programmed dependency) using Mathematica
[Mathweb], all of which activities have features in common with MWDS. The discussion of
such activities is outside the scope of this thesis because they are far more sophisticated than
primitive MWDS. As a loose but useful parallel, the distinction between informal empirically-
guided computer-based o computer-related modelling and MWDS is smilar to that between

% The term ‘externa situation’ is used here to refer to the wider context, outside the mmputer model itself, that
provides the experiences, possibly stemming from the modeller’ s imagination, that actively inform the ongoing
modelling activity.

30

Chapter 1: Sdlected dependency-based applications

what colloguially is understood to be an experiment and what a scientist would regard as a
‘scientific experiment’. In representing the latter distinction, it is easier in the first instance to
describe the characteristics of 'scientific experiment’ without reference to the status of informal
experiment. It is also apparent that an informal experiment can only be viewed as ientific if it
conformsto certain principles and practices that might at first seem to restrict rather than enhance

the experimenter's power to dscover knowledge.
State in closed-wor Id and open-development modelling

In building a computer model, a modell er’ s interaction with an external situation has both closed-
world and open-development aspects™. The dosed-world asped is associated with theory-style
knowledge about the global properties of the objeds with which he/she interacts. Such
knowledge is appropriately formulated using declarative @nstraints. The open-devel opment
asped is associated with knowledge about what kind of pattern of local changes is encountered
when interacting in the world o can be eploited when constructing a computer model. As
discussed in section 1.1, air aim is to show that knowledge of this kind can be appropriately
formulated using explicit functional dependencies (cf. Figure 1-2).

The closed-world and open-development aspeds of modeling are related to the
modeller's experience in quite different ways. Theory-style knowledge requires a deep
understanding of the situation that is usually acquired through extensive experience (possibly on
the part of the theory builder rather than the modeller) prior to modelling rather than during the
model building. Knowledge about patterns in local changes of state is acquired through
confronting a particular state and — through experiment — refining our expedations of what will
happen in response to a particular interaction. Expedation, in this context, is expressed in terms
of how we e&pect a change in the value of one observable to affed the values of other
observables indivisibly. This kind o knowledge is essentially different in character from
absolutely reliable knowledge, in that it is accessed only through interaction and is subjed to
empirical validation. Every time we act, our expedations about changes of state are being put to

the test — they could be confourded.

%% The distinction between closed-world and open-devel opment modelling that is developed in this chapter leads
to adistinction between two meanings for the term ‘ computer model’. Closed-world modelling is associated with
traditional formal mathematical models, whilst open development leads to models that are more smilar to the
physical artefactsthat a designer, artist or engineer might construct.

31

Chaper 1: Sdeded dependency-based applications

The above discusgon shows that, in computer-based modelling for open development, it
is critically important that the modeller can recognise latent state-transition patterns in the
computer model and asociate them with an external situation. This focuses our attention on the
way in which states and transitions are implemented and interpreted in closed-world and open-
development dependency models. In broad terms, a state in such models is associated with an
assgnment of values to the relevant observables (viz. X1, X2, ..., Xin in Figure 1-1 and Xy, Xy, ...,
Xs in Figure 1-2), and transitions™ are asociated with the technique adopted for dependency

maintenance

In aclosed-world dependency modd, the states — in the strict sense — are associated with
possble solutions that satisfy the constraints (cf. Figure 1-1, where the possible states are the
values Xy, Xz, X, ..., Xcthat satisfy the @nstraint I"). A transition from one state to another (e.g.
from X; to X, in Figure 1-1) is automatically performed by the system using a onstraint
satisfaction method. Strictly speaking, any intermediate state associated with this transition
cannot be interpreted in the dosed-world model. This will suit a modeller who does not wish to
be involved in the constraint satisfaction activity and who may not even comprehend what is
going on in the transition. For such a modeller, transitions in the dosed world are like jumping

from state to state.

In wsing a closed-world dependency model, the interpreted states are not always drictly
restricted to passible solutions to declarative constraints (cf. Figure 1-1). Consider, for instance, a
logic programming environment, where mnstraint satisfaction is used to determine a solution
state (X1, X2,..., Xs+t) = (i1, i2,..., Is, O1, Op, ..., O, fOr given values of the inputs i; throudh is.
Becuse of the undefined values, the initial state of the program, in which the inputs have been
specified and the outputs are yet to be determined does nat correspord to a solution of a
congtraint. Despite this, al the assgnments of values to x; through x; that are made during the
execution d the constraint satisfaction method are interpreted. They correspond to the states of
the executing logic program as it passs from its initial state to its final state. Where dedarative
congtraints are used to frame programming activity in this way, the modeller (who is here the
logic programmer) must have esential knowledge about these states. For instance, in Prolog, it is
necessary to usethe ‘cut’ [CM87, p. 75 in debugging and optimisation. Similarly, in Juno-2, the

douHe-view editor is designed to dsplay the program or constraint that draws the picture as well

%8 n this context, atransition isinterpreted as atomic, involving a single state-changing step

32

Chapter 1: Sdlected dependency-based applications

as the picture itself. However, although the modeller may be able to understand the constraint
satisfaction medchanism used to maintain the dosed-world dependency (cf. Figure 1-3), the

transitions are primarily under the control of the mechanism rather than the modell er.

Transitions in an open-development dependency system are different from those in the
closed world since they can be eplicitly comprehended and are under the open-ended control of
the modeller. Open-development dependency maintains relationships between observables in a
lessconstrained way than closed-world dependency. This means that the value of an doservable
can be changed and a functional dependency modified by the modeller in an exploratory way (for
instance as in ‘what-if’ activity in spreadsheets). In this respect, the way in which the modeller
experiences and interacts with the computer model is well matched to the way in which the

modeller acquires knowledge about patterns of state changein gpen devel opment.

In open development, the correspordence between atomic transitions in a state
represented in the computer and atomic transitions in the state of the external world to which it
refers is highly significant. In transitions from state to state in closed-world modelling, the
modeller only has to be able to interpret the initial and final states, but in open development,
there is not only an abstract corresporndence between transitions in the model and transitions in
the external world, but also a rrespordence between each transition in the model and its
counterpart trangition in the external world as experienced by the modeller. This can be
interpreted as saying that observables in the external-world referent are diredly refleded in the
computer model and that there are dired counterparts in the computer model for changes to

observables in the external world.

| Computer mod | External world

. A /7] ~ Intringc OOA 7]
w. 1 J § -, interpretdtion O S p
At Y 70
° N . ; [} \\ §

Figure 1-5: Theinter pretation of state in open-development modelling

The most significant implication o open-development modelling is that it enables an
asciation between states of the computer model and external-world states that, being based on

the percdved close crrespondence between posshble atomic transitions, relies upon intrinsic and

33

Chapter 1: Sdlected dependency-based applications

local knowledge of interaction (cf. Figure 1-5). In Figure 1-5, the dashed arrows represent
possble transitions between states in the computer model and between states in the externa
world. The transitions labelled 1, 2, 3and 4 represent a possble sequence of interactions by the
modeller. The transition labelled 2 in the external world might represent an experimental
interaction. The transition labelled 3 in the external world might resemble the action needed to

restore the experimental context, and the transition labell ed 4 the repetition o the experiment.

Established by theory and
well-jugtified by experiment

| Computer model | | External world |

r(X) = true
Xi = (Xi1, Xi2, .- Xin)

Figure 1-6: Theinter pretation of state in closed-world modelling

The dotted bourdaries in Figure 1-5 indicate the open character of the space being
constructed and explored by the modeller. The interpretation o the state of the computer model
can evolve to reflect experience and change in an external situation as they develop. This means
that open-development modelling offers the possibility of dynamic re-interpretation o the
computer model as artefact. In contrast, the interpretation of a state in a closed-world model, once
initially established, is fixed. In Figure 1-6, X; represents a state that is asociated with a set of
values for the variables xi, ...,Xin that satisfies the predefined constraint I, and these variables
correspond to observables in the external-world state in a preconceived way that has been well-
justified by theory and experiment. In this way, the semantics of state in the closed world is
defined with reference to an entire state space, rather than state-by-state.

Empirical Modelling (EM)

The applications of open-development model ling, and the relationship between closed-world and
open-devel opment modelling are central themes of the Empirical Modelling (EM) project. EM
generalises the modelling principles represented in the applications reviewed in previous
sections, providing a framework for computer-based modelling based on three key concepts:
observation, agency and dependency. EM refers to a situated modelling activity in which the
computer-based model, the modeller and the situation stand in a special relation. The character of

the modelling activity is as depicted in Figure 1-5 and involves creation and discovery on the part

34

Chapter 1: Sdlected dependency-based applications

of the modeller. This gives key roles to the modeller’s understanding and to doservation and
experiment in the external world. The significance of the computer model cannot be appreciated
inisolation: the actual experiences of the modell er, as expressed in knowledge of interactions and

expedations, are the esential part of the design.

As is illustrated in Figure 1-2, the dependency used in open development can be
naturally represented by a definitive (definition-based) script (cf. Section 2.1). The tools
developed under the EM project include definitive notations and dependency maintenance
systems (cf. Sedion 2.1.2 that provide a means for a modeller to construct such scripts. The
construction of computer-based models using open-devel opment dependency based ondefinitive

scriptsis a major theme of thisthesis.

The use of a definitive script to represent acyclic dependency (cf. Figure 1-2) provides
the modeller with a rich mechanism to manipulate patterns of dependency. As illustrated in
Figure 1-7, we @n redefine a variable by a value or a formula, introduce a new definition and
delete a definition. The interpretation of modelling activity with a definitive script is also very
open-ended. It can represent various interactive activities sich as changing the value of an
observable, understanding the pattern o dependency through experiment, deleting a constraint,
introducing a new observable and adding a new constraint. By way of illustration, Figure 1-7
shows how the value of an dbservable @n be arbitrarily changed (as b is changed from (1) to
(2)); how a dependency can be introduced (as b is changed from (2) to (3)); how a dependency
can be diminated (as a is changed from (3) to (4)) and how a new observable @an be introduced

(asvariabled isintroduced in (5)).

aisb+c; aisb+c; aisb+c; a= 35 a= 35

b= 20; b= 30; bis6*c; bis6*c; bis6*c;

c=75 c=75 c=75 c=75 c=5;
disa+2-c;

D

2

3

(4)

©)

Figure 1-7: Scriptstoillustrate modelling activity in open-development sense

This modelling approach enables the modeller to take acoourt of new observations and
hitherto inconcavable states in the external situation in a way that respeds the ongoing
exploratory character of open development. (In contrast, if strictly interpreted, closed-world
modelling deals with novelty in the external situation by replacing one dosed-world model by
anather.) The model can be initially constructed with no specific goal and then experimentally

35

Chapter 1: Sdlected dependency-based applications

refined and modified until it satisfies the modeller’ s needs. As Russpoints out (cf. [Rus97]), this

is particularly useful in areas where there is no adequate theory):

“In such areas we may wish to build models simply in order to aid our
understanding; any specific purpose may be unknown, or provisional, and it is then
only an impediment to make early commitments to certain properties we wish to
preserve in the model.”

Open-development modelling is esentially concerned with the way in which the
modeller observes, perceives and interprets the world. This perception and interpretation,
typically based on a moddler's experience may be altered by a shift in perspective possbly
resulting from a dhange in the modeller’s role or understanding of the situation, an interaction
with a model or a changein the external situation. There is no fixed interpretation for such shifts
in perspective, which can either be viewed as originating from the modeller (‘ The behaviour of
the world is different from what | thought it was') or from external factors (‘ The world is now in

adifferent state’).

A magjor theme in MWDS is the way in which petterns of interaction with a definitive
script can reflea different roles for the modeller as a state-changing agent. For instance, the
redefinition of the value of an doservable may signify a dhange in the state of the artefact
(‘modeller as user’) or the redesign of the artefact itself (‘modeller as designer’). The use of a
definitive script is not confined to representing the interaction o external agents such as
designers and wsers with an artefact — it can also extend to the representation of internal agents
that are the comporents of the artefact itsef. The essential principle is that patterns of
dependency amongst observables are seen as characterising the perspedive of any state-changing
agent. The potential for combining open-devel opment dependency with agency in this spirit is
ill ustrated in Agentsheets, where the states of neighbouring agents supply the observables of a
particular agent and dependencies can be defined and arbitrarily redefined to refled changes in

this agent’ s perspedive (cf. Figure 1-4).

MWNDS focuses on using a script to represent state as experienced and doserved, not just
on wsing definitions as a programming device It is connected with a wide range of modelling
activity. A mode built based on MWDS is exploratory, unpredictable and hand-driven: human
interaction is essential. People @n change the state of the model by redefining the value of
variable, change a pattern of transitions by introducing a new definition (or a definitive script)
and bring in new observations by including a new set of definitions. The outstanding

characteristics of such models are broad interaction; comprehension via interaction; openness

36

Chapter 1: Sdlected dependency-based applications

flexibility; easy modification; fast prototyping; learning by doing and experienced-based design.
Throughout this thesis, the characteristics of MWDS are studied by reviewing many models.
These modelsillustrate its essential semantics, its wide range of potential uses and the principles

and techniques it offers to support modelling activity.

37

