
Chapter 1: Selected dependency-based applications

15

�
 ����������	
��� �
������������������������� ��� �!�
�"�$#%����	�#%&'���

In this chapter, the concept of open-development dependency that underlies MWDS is identified

and compared and contrasted with closed-world dependency. An early example of the implicit

use of dependency can be found in Ross’s APT1 language [ITT67], developed in 1967 for

automatic programming of numerical machine tools. Several dependency-based applications,

such as spreadsheets, Agentsheets, and several graphical modell ing tools, are reviewed to

ill ustrate the potential virtues of using dependency. The last section introduces a modell ing

framework, developed at Warwick over more than ten years, that adopts dependency similar to

that reviewed in those applications as a fundamental concept.

1.1 Dependency in closed world and open development

The concept of ‘ dependency’ has been famili ar in diverse disciplines for many years.

Dependency can be interpreted in many ways. In this thesis, we are particularly concerned with

the distinction between dependency as it is used in the ‘closed world’ and in ‘open development’

in the sense of Brödner.

Dependency in closed worlds: Closed-world dependency is associated with declarative

constraints. They are typically prescribed by equational relationships or logical predicates and

make absolute assertions about relationships between variables that must hold in every acceptable

state. Declarative constraint languages have been used in many applications, including general-

purpose programming (e.g. Prolog [CM87]), graphics (e.g. SketchPad [Suth63], Juno [Nel85,

HN94]) and databases (e.g. CoLan [BG94], RL/1 [Denn91]). In the applications, declarative

1 APT stands for “Automatically Programmed Tools” , and the APT language.

Chapter 1: Selected dependency-based applications

16

constraints are well -suited to expressing the feasibil ity constraints imposed by a problem (such as

writing a program, drawing a diagram, or configuring data) in a clear and concise way.

In interpreting a declarative constraint as referring to a world, variables correspond to

observables whose values are consistent with observation. It is appropriate to call it a ‘ closed’

world because if – in exceptional or unexpected circumstances – observables have values that are

inconsistent with the constraints, they can be given no representation. The word ‘world’ is used

in this context to refer to all states within the scope of current interest and possible focus of

attention rather than to the universal domain of experience.

Figure 1-1 depicts the way in which a declarative constraint can be used to specify all the

possible states of a closed world. A particular solution to the constraint corresponds to a state of

the world. For instance, in a logic programming environment, such as Prolog, the variables x1

through xt are interpreted as inputs i1 through is and outputs o1 through ot for a program, so that

 (x1, x2, …, xs, xs+1, …, xs+t) ≡ (i1, i2,…, is, o1, o2, …, ot).

The declarative constraint Γ frames the program as a relationship between input values (to be

specified) and output values (to be determined). In this application, the declarative constraint can

have any number of solutions, potentially none. In other applications, a declarative constraint

should ideally have a unique solution. For instance, in a constraint-based graphics system, such

as Juno, the variables xi1 to xin are interpreted as geometric elements such as points and lines in a

geometric figure. The declarative constraint Γ (usually formulated as a set of constraints)

specifies the relationships between these elements needed to determine the geometric figure.

Figure 1-1: A diagram to illustrate the concept of a declarative constraint

In a practical application using declarative constraints, constraint satisfaction techniques

play an essential role. A constraint satisfaction technique is a recipe for finding values that satisfy

a declarative constraint. Its primary role is in constructing solutions to a problem. In a logic

programming environment, the execution of a program makes use of a constraint satisfaction

technique that searches for output values that match a given set of input values and satisfy a

specified input-output relation.

• X1 • X4

• X2

• X3• Xk

Γ(X) = true

Xi = (xi1, xi2, …, xin)

Chapter 1: Selected dependency-based applications

17

Constraint satisfaction techniques are intimately connected with the notion of

dependency. Dependency refers to the way in which changes to the values of some variables are

linked with changes to the values of others. In the presence of a constraint, a constraint

satisfaction technique establishes dependencies. A change to the value of a variable is

accompanied by consequent changes to other variables needed to restore the constraints.

Dependency maintenance is the mechanism by which changes to values of variables are

propagated to dependent variables. Systems based on declarative constraints thus implement a

form of dependency maintenance that is determined by the particular technique for constraint

satisfaction that is used.

Dependency in open development: Closed-world dependency is motivated by trying to use the

computer to automate problem solving. The essential idea is that people are good at identifying

the global constraints to be satisfied in the solution of the problem, but not efficient in carrying

out the computation and searching needed to find a solution.

Open-development dependency is motivated by trying to engage people in the

exploration of constraints. This exploration can be carried out prior to any knowledge of global

constraints and with no specific problem in mind. The formulation of problems and identification

of constraints relies on experiment whereby people interact in situations to identify patterns of

dependency. This dependency is much simpler in character than closed-world dependency.

The principal characteristics of open-development dependency will now be informally

described. Modell ing with definitive scripts (MWDS), which focuses on using a set of definitions

to construct a model, is represented in this thesis as the appropriate framework in which to study

open-development dependency. The justification for the epithet ‘ open-development’ will be

further discussed in Section 1.6.

The relationships that the modeller can apprehend in a situation involve recognising how

the value of one variable (say y) depends upon the values of others (say a, b and c). Such

relationships are typically based on functional dependencies, as when y, a, b and c are related by

the definition y = f(a, b, c), where f is a function that the modeller can identify through changing

a, b or c. The role of functional dependency in this context is similar to the role that it has in

Chapter 1: Selected dependency-based applications

18

relational database design2, where it supplies the essential l ink between the modeller’s experience

and the way that attributes are grouped in tables.

In closed-world dependency, the relationship between variables is not in general a

functional one. For instance, in finding values to satisfy a given input-output relation in Prolog

there may be many solutions, or there may be none. Even where there is a functional dependency

in a closed-world model, it may not be easy for the modeller to recognise this or to identify the

function explicitly. The kind of dependency established by a declarative constraint is in general

beyond comprehensive algorithmic analysis: it is undecidable whether there is a unique solution;

there are many solutions; or there are none.

We identify open-development dependency with dependency that is established by

explicit functional dependencies that define non-cyclic recipes for computing the values of

dependent variables. A dependency of this nature is depicted in Figure 1-2. As is il lustrated in

Figure 1-2, and will be discussed in more detail in Chapter 2, such dependency can be

represented in a ‘definitive script’ .

Figure 1-2: A diagram to illustrate explicit acyclic dependency

In Figure 1-2, arrows are used to represent the functional dependencies between

variables, so that the arrows connecting x1 to x2, x4 and x5 correspond to the functional

relationship x1= f(x2, x4, x5).

Acyclic dependencies of this kind are, in fact, sometimes used to build constraint

satisfaction methods. The principle is that if we wish to change the value of a variable X subject

to a declarative constraint, we find an acyclic family of functional dependencies that define the

new values of variables dependent on X. For instance, Figure 1-3 ill ustrates how various forms

of acyclic dependency could be used to maintain the constraint a+b+c=0, when a, b, and c have

the initial values 0, -2, and 2 respectively.

2 A functional dependency in a relational database occurs when the values of a set of attributes in a relation

x1

x2 x4

x3 x5

Relations between variables are
defined as follows

x1 is f(x2, x4, x5)
x4 is g(x3, x5)
x2 is h(x3, x4)

Chapter 1: Selected dependency-based applications

19

Figure 1-3: Acyclic dependency to specify a constraint satisfaction method

As a simple practical il lustration of the use of an acyclic dependency in the maintenance

of the constraint, consider the application of Ohm’s Law (V = IR) to a simple electrical circuit

comprising a battery and a light bulb. When the battery is changed, the new values of V, R and I

are determined by the acyclic dependency

V is V', R is R', I is V/R

where V' is the voltage of the new battery and R' is the current resistance of the light bulb. When

the light bulb is changed the same acyclic dependency can be applied in a similar fashion. Far

more sophisticated constraint solving techniques in a somewhat similar spirit are applied to the

analysis of more complex circuits in Denneheuvel [Denn91, p. 79].

The applications reviewed in this chapter are all applications in which the emphasis is

upon dependency in the open development sense. As we shall see, some of these applications try

to combine the closed-world and open-development perspectives. This combination is not an

easy task, and this is one of our motivations for studying modelling with definitive scripts.

1.2 Spreadsheets

The most famili ar application of the principles associated with modell ing with definitive scripts

is the spreadsheet. The term ‘spreadsheet’ has a long history. Reference to a non-computerised

version can be found in the first edition of Eric L. Kohler’s Dictionary of Accountants3. A non-

computerised spreadsheet refers to a worksheet providing a two-way analysis of accounting data

[MattWeb]. In this accounting context, it was and is a large sheet of paper with columns and rows

that lays out everything about transactions for businessmen to examine. It spreads or shows, for

uniquely determine the value of another attribute (e.g. { StudentID, Module} → Mark).
3 1952 – for recent editions see: W. W. Cooper and Y. Iji ri: Kohler’s Dictionary for Accountants, Prentice-Hall,
Inc.

A constraint: a+b+c=0

a is –b–c
b is –c
c is γ

If c changes

a is α
b is –0.5a-2
c is –0.5a+2

If a changesIf b changes

a is c+b
b is β
c is –a–b

a = α = 0
b = β = -2
c = γ = 2

a changes
b changes

c changes

Chapter 1: Selected dependency-based applications

20

example, all of the costs, income and taxes on a single sheet of paper for a manager to look at

when making a decision [PowWeb].

The ‘ first electronic spreadsheet’ - VisiCalc4 - was invented by Bricklin and Bob

Frankston in 1979 [BrickWeb] to create a program where people could visualise the spreadsheet

as they created it. The metaphor of VisiCalc, at the time, was ‘an electronic blackboard and

electronic chalk in a classroom’ . The data presentation in VisiCalc is like the paper spreadsheets

but the data can be visualised and interacted with dynamically. The Heapsort model discussed in

Chapter 6 has some similar characteristics. The visualisation of the array and tree with a value

attached to each cell of the array and node of the tree is displayed on ‘an electronic blackboard’

where the basic relations between the visual elements are maintained through dependency.

VisiCalc organises information into predefined columns and rows. The data can be ‘added up’ by

a formula to give a total or sum. VisiCalc also has many special interactive features that support a

WYSIWYG5 environment such as displaying responsive results, which are instantly

automatically recalculated based on formulae stored in the cells referencing other cells.

VisiCalc became an almost instant success and was believed to be a catalyst for the

personal computer industry. At that time, only computer specialists could use the computers

because of their complicated programming languages and interactions. Many people cite it as the

thing that introduced them to the interactive possibilit ies of computers. It is also a tool to allow

others to work out their ideas and reduce the tedium of repeating the same calculations

[BrickWeb].

Spreadsheets are an offspring of VisiCalc. They inherited most of VisiCalc’s features.

They were first developed mainly to support financial, accounting and business users and are

widely used in business for financial and related modell ing [Bod86]. This is because spreadsheets

provide features that enable even unsophisticated users to write programs by specifying formulas

that establish numerical relations between data values [NM91]. The user’s task is then to write a

series of small formulas rather than the more difficult task of specifying the full control loop of a

program as a set of procedures. Therefore the users can concentrate more fully on understanding

and solving their problems.

4 The name ‘VisiCalc’ is a compressed form of the phrase ‘visible calculation’
5 What You See Is What You Get

Chapter 1: Selected dependency-based applications

21

The use of spreadsheets as a modell ing tool was restricted to financial applications in the

early days. However because of their underlying principles and features such as definition,

instant automatic recalculation and the ‘ program-by-example’ interface, spreadsheets have

become popular and famili ar in other disciplines. For instance, in engineering, a spreadsheet has

been used as the development environment for a dynamic force model of a manoeuvring ship

[MS95].

Alan Kay, the originator of many notable ideas in computing6, was one of the first

people to point out that spreadsheets might be used for programming applications [Kay84]. Bell

and Parr [BP93] take up Kay’s agenda concerning spreadsheets for programming to demonstrate

some hitherto unexplored capacities of spreadsheets by ill ustrating how to use spreadsheets to

program ‘Conway’s game of Life’ 7.

The extension of the spreadsheet paradigm to other computer science disciplines has

been studied by a number of researchers. For instance, a system that allows both simple and

complex graphical objects to be programmed directly using direct manipulation and gestures, in a

manner that fits within the spreadsheet paradigm, has been developed by Burnett and Gottfried

[BG98]. Penguims [Hud94], which allows interactive user interfaces to be created with litt le or

no explicit programming, is an environment based on the spreadsheet model for specifying user

interfaces. Davis and Kanet in [DK94] have developed an application-specific interactive system

based on spreadsheets.

Spreadsheets have been extensively studied and used by many researchers because they

offer distinguishing characteristics such as ‘open modelling’ which represents situations, allows

meanings to evolve, and offers ‘what-if’ experiment. These il lustrate the use of open-

development dependency. Some spreadsheets also exploit closed-world dependency features (e.g.

Excel includes Equation-Solver to find a solution for a particular user-defined constraint).

Researches concerned with exploiting the principles and potential applications of

spreadsheets that relate to the open-modell ing theme include [BG87, BP93, DK94, Nar95,

Davis96]. The principal advantages and disadvantages of a spreadsheet, as identified by these

researchers, are set out in Table 1-1.

6 He is one of the inventers of Small talk and the architect of the modern windowing GUI

Chapter 1: Selected dependency-based applications

22

Advantages Disadvantages

Being an interpreter rather

than a compiler

The flexibil ity of an interpreter over a compiler is offset by

the slower speed of execution

It provides a necessary

flexibil ity for the

development of the model

Can encourage development without sufficient foresight,

debugging can be just experimented hacking.

Spreadsheet’s integrated

working environment such

as print, save, report.

Its non-procedural nature, which does not, for one thing,

enforce structural discipline. For instance, unless care has

been given to layout design and naming of cells a listing of

cell formulas need not follow the order of their execution.

This obfuscates the logic for third persons.

Table 1-1: The advantages and disadvantages of spreadsheets

Like programming languages, spreadsheets are sophisticated tools with strengths and

weaknesses and they are open to misuse. Many different researchers [Nar95, ISL95, Pan98,

Green00] have reviewed the problems and diff iculties encountered with spreadsheets from the

user perspective. For instance, adding more formulae to an existing spreadsheet is very easy, but

what Green [Green00] has identified as “ the absence of any abstraction mechanisms, the poor

role expressiveness and the pervasive hidden dependencies” encourage undetected errors and can

make the inner workings of a large spreadsheet hard to grasp.

The concept of open-development dependency, and the use of definitions in particular,

plays a crucial role in the success of the spreadsheets since it enables many kinds of real-world

referent to be straightforwardly captured in a computer so that the user can interactively

experiment with its representation (the ‘what-if’ f eature).

1.3 Graphical modelling

Many graphical and geometrical languages and systems based on dependency have been devised.

These include PIC8 [Kern82] and PDL9 [Wyv75]. Precursors for pure definition-based notations

7 The game of life is essentially based upon a two-dimensional array, together with a whole collection of rules for
how li fe is to develop. This means that situations in li fe can be represented well on a spreadsheet and that the
program is much more concise than a solution written in a procedural language such as Pascal [BP93].
8 A graphics language for describing simple diagrams or pictures
9 Pictorial Description Language designed by G Wyvill i n 1974

Chapter 1: Selected dependency-based applications

23

for computer graphics are to be found in the early research work of mathematicians Brian and

Geoff Wyvill . The PDL language, developed by G Wyvill [Wyvil74, Wyvil75], is an early

example of a definition-based notation for graphics (see Appendix A for a sample PDL script).

In his doctoral thesis ‘An Interactive Graphics Language’ [Wyv75], B. Wyvill subsequently

exploited PDL as the basis of an environment for interactive graphics. This thesis draws explicit

attention to the advantages of using open-development dependency, for instance, in reducing the

complexity of interaction in design and in integrating the roles of designer and user.

The application of dependency concepts is a recurring theme in the subsequent research

of B and G Wyvill. By way of il lustration, one important objective when designing a graphics

system is to develop a good ‘ testbed’ , where experiments with new modell ing and motion control

techniques can be easily facilitated [CW89]. This requires an ‘open’ software architecture, so that

programmers can modify or add code to a model in a dynamic interactive fashion. Such an

architecture encourages the modeller to think of the scene not as fixed, but as changing over time.

The model looks different at different times depending upon the bias of the interaction. A

possible software architecture for integrating modell ing and animation that implicitly exploits

definitive principles is proposed by Chmilar and B Wyvill in [CW89]. Their system supports

extensibili ty and the substitution of alternative representations for the same geometric object. It

also allows multiple modell ing primitives to be used in one scene or model since different

modelli ng techniques have different strengths and weakness.

Open-development dependencies are also represented in other software for graphics.

Jean [Jean87] invented an interactive graphical diagram editor that allows users to incorporate

knowledge about the diagram through relationships or constraints between graphical objects. As

a result, it can reduce the amount of work that the user has to do when changing a diagram. Once

the user alters an object, the editor automatically alters any related object to maintain the pre-

designed relationship. The applications discussed previously focus on defining the relationship

between each graphical element explicitly. This helps a user to comprehend corresponding

changes on a graphical figure made by his/her modification, and hence assists in further

modification and design.

The use of declarative constraints in graphics, as pioneered by Sutherland in SketchPad

[Suth63] and further developed in Juno [Nel85, HN94], offers a different perspective on a

graphical model. In such a system, the positions of geometric elements are specified by

equational constraints, and the response to modifying one geometric element is to invoke a

Chapter 1: Selected dependency-based applications

24

constraint satisfaction procedure to update the positions of all other elements, which is beyond a

user’s control. Modifying a graphical model, in this sense, may be limited by characteristics of a

constraint satisfaction technique used.

The L.E.G.O. system designed by Norma Fuller is another example of an interactive

graphics system in which object definitions are expressed in terms of geometric relations between

object elements [FPR85, FP88, FP89]. The L.E.G.O system shows that using geometric

constructions can eliminate the need for solving large systems of non-linear equations inherent in

declarative constraint-based systems [FP88].

Definitive scripts discussed in this thesis offer a more explicit form of dependency

maintenance, whereby the way in which a change to one geometric element affects other

elements is explicitly prescribed – a theme explored by Richard Cartwright in his thesis [Car98].

Definitive scripts can be used to maintain simple equational geometric constraints (cf. Figure 1-

3). For instance, both Jean and Cartwright discuss ways in which – in the framework of a

definitive script – two points can be constrained to be a fixed distance apart.

1.4 Relational query languages

Edgar Codd, who is famous for his contributions to the theory and practice of database

management systems, first introduced the ‘relational model’ in 1970 [Codd70]. Codd’s

conception is the basis for relational database management systems such as Oracle, Ingres, DB2,

Access, Foxpro and Paradox. It provides an abstract theory of data that is based on mathematical

foundations in set theory and predicate logic. Codd first proposed tuple10 relational calculus,

which served as a benchmark for evaluating data manipulation languages based on the relational

model [Codd70]. His ‘relational model’ was conceived as a tool to free users from the

frustrations of having to deal with the clutter of storage representation details [Codd79]. He

attempted to protect users from having to know how the data is organised in the machine (the

internal representation). However, the activities of the end-users should remain unaffected when

the internal representation of data is changed and even when some aspects of the external

representation are changed. The relational model offers a way to link real-world semantics to

computer representations in an intell igible and manageable fashion. In this context, functional

dependency between attributes of entities plays a crucial role.

Chapter 1: Selected dependency-based applications

25

In a relational database system, each table is identified with a mathematical relation

[Date89]. The relational model gives a prescription for the representation of data (by means of

tables), and a prescription for manipulating that representation (by means of operators, such as

selection, natural join and intersection). The relational model addresses three aspects of data: data

structure, data integrity, and data manipulation. By using relations, users can describe an abstract

organisation of data without knowing in depth about any additional structure for machine

representation purposes. In this respect, relations serve as a high-level data language that yields

maximal independence between programs, on the one hand, and machine representation and

organization of data, on the other.

As the relational database model gained commercial interest, many proposals for

relational database query languages were devised. Todd introduced the Information System Base

Language (ISBL) as a relational database query language in 1976 [Todd76]. ISBL was intended

to serve as a language meaningful to the user, in which relations are treated as named variables

and the concept of dependency is exploited to ensure that data is represented and manipulated in

a natural way. The Peterlee Relational Test Vehicle (PRTV) was Todd’s prototype environment

for ISBL. In its time, PRTV was unusual as a database system that provided flexible, interactive

database support and functional extensibili ty. New relations could be created and assigned at

will . PRTV provided flexibility in mapping between system files and user relations and allowed

greater freedom in the storing of data.

ISBL is the principal medium through which the user accesses data in the PRTV system,

and is designed for manipulating bulk data held in relations. It provides for variables,

expressions, and assignments in much the same way that conventional programming languages

do. All variables denote relations, and the only operations that can be used in expressions are

those that produce relational results. There are standard features for entering and listing of

relations and for the basic arithmetic and string operations. ISBL does not have flow or control

statements such as DO, WHILE or GO TO.

ISBL is a relational database query language that makes use of the dependency concept.

For example, given the relations BOOKS and LOANS, the expression:

FULL_LOANS = N!BOOKS * N!LOANS;

10 tuple mean approximately the same as the notion of a flat record instance, introduced by Codd.

Chapter 1: Selected dependency-based applications

26

expresses FULL_LOANS as the natural join of the relations BOOKS and LOANS in such a way

that subsequent changes in BOOKS or LOANS are reflected automatically in FULL_LOANS. In

this respect, ISBL code can be regarded as a form of definitive script.

The applications reviewed so far all ill ustrate the concept of single-user applications, as

introduced by Nardi and Miller in [NM91]. Such applications play a central role in the

exposition of modell ing with definitive scripts in this thesis. They are in effect examples of ‘one-

agent’ systems (cf. Chapter 2) in which a single agent plays a key role in controll ing every aspect

of the modell ing activity. Such an agent might be a financial manager or analyst (in

spreadsheets), a designer (in graphical modell ing) or a data modeller (in a PRTV database

system).

1.5 Other definition-based applications

The previous sections have discussed the role of dependency as it has featured in three main

single-user applications: spreadsheets, graphical modelling and database system. This section

discusses a wide range of emerging applications in which dependency aspects have been

embedded. This includes both academic and commercial applications.

• The make util ity in Unix

Make is one of the original Unix tools for Software Engineering. A makefile is supplied as a

parameter to the make command. The make command serves to maintain the relationships

specified in the Makefile. For instance, the Makefile:

expresses the fact that the target file prog r am.o depends upon the source file pr ogra m.c .

Whenever make is invoked, the dependent file pr ogr am.o is regenerated if there has been a

change in a source file, using the Unix built -in cc command to compile a C program. In effect,

make operates as a ‘dependency maintainer’ to update the Makefile as a ‘definitive script’ .

• Agentsheets

Agentsheets is an interactive environment developed by Alex Repenning [AgentWeb] at the

University of Colorado at Boulder. It features a versatile construction paradigm to build

dynamic, visual environments for a wide range of problem domains such as art, artificial li fe,

program.o : program.c
cc –c –o program.o program.c

Chapter 1: Selected dependency-based applications

27

education, environmental design and simulation. The construction paradigm makes use of the

agentsheet, which consists of a family of autonomous, communicating agents organised in a grid.

The grid is used to define agents and their roles and each agentsheet serves as a design space. By

way of illustration, Figure 1-4 depicts an agentsheet to represent a simple electrical circuit. The

components of the circuit (Light, Connector, Switch and Battery) are represented by icons on the

external display and by corresponding agents (L, C, S and B) in the internal representation. The

rules that define the behaviours of the agents L, C, S and B implement the dependencies in the

scripts shown in the figure and maintain the relation between internal and external state11. The

rules governing each agent are specified in terms of the states of adjacent agents.

In the Agentsheets application, designers can incrementally create and modify spatial

and temporal representations and can define the look and behaviour of agents specific to problem

domains. The behaviour assigned to agents determines the meaning of spatial arrangements of

agents (e.g. what does it mean when two agents are adjacent to each other?) and also the reaction

of agents to user events (e.g. how does an agent react if a user applies a tool to it?). The

Agentsheets system maintains dependency defined between agents (defined in a grid) in

essentially the same way that the spreadsheet does.

Figure 1-4: A simple agentsheet

11 The annotations L, C, S, B, x, y and z, and the associated definitions are used to explain the essential operation
of the model and do not feature in the agentsheet

External display

Internal
representation

x
z

y

L

CSB Light is if z then
“on” else “off”

z is yy is if (switch closed) then x else 0

x is if (battery ok)
then 1 else 0

Chapter 1: Selected dependency-based applications

28

Agentsheets postulates participatory theater, a human-computer interaction scheme

combining the advantages of direct manipulation12 (similar to spreadsheets) and delegation. This

scheme offers a continuous spectrum of control and effort to the user. Users have maximal

control over the components of their system through direct manipulation. With respect to the

theatrical metaphor, direct manipulation interfaces are like hand puppets in the sense that users

are completely in charge of the play. Extending the theatrical metaphor, tasks are delegated to

actors by giving them scripts. Once a script has been given to an actor and the play has started,

the audiences (or users) are left with no control over the play. This is because agents act

according to the patterns of inter-dependency that have been pre-defined by the modeller. In this

approach, actors in the participatory theatre will act according to their script unless the audience

or user tells them to do something different.

• MSWord automatic formatting style and drawing tool

The style option in MSWord, which allows editors to define their own textual style, can be

regarded as one form of definition. Once a style (e.g. normal) is changed, all text marked as

normal will be automatically updated with correspondence to this change.

The grouping facili ty in a drawing package is another aspect of using dependency. Each

drawing component is created as an individual object but components can also be grouped

together. After grouping selected objects, the positioning and scaling of these objects become

interdependent. When enlarging the grouped object, each object is scaled up with a consistent

proportion. It can be seen that there is a use of dependency in grouping.

• Visio

Visio is a tool, developed by Microsoft, to help in visualising complex concepts. It is promoted as

the business-diagramming standard, which empowers effective visual communication, and

provides a common visual language that everyone across the enterprise can use to communicate

more effectively. Instead of just providing text-based documents, Visio offers a variety of kinds

of diagrams to clarify text documents [VisioWeb].

12 The term ‘direct manipulation’ was coined by Shneiderman [Shne83] who describes three principles of direct
manipulation systems: continuous representation of the objects of interest; physical actions or presses of labelled
buttons instead of complex syntax; and rapid incremental reversible operations whose effect on the object of
interest in immediate visible.

Chapter 1: Selected dependency-based applications

29

The components (e.g. text boxes and flowcharts) are connected by a dependency, for

instance, a text box and an arrow is linked, so that moving the box will cause moving an arrow.

Visio diagrams can be linked to databases so that information is synchronised between the

programs directly.

Visio, moreover, provides a facili ty in which users can modify shapes or create

customised ones to suit organisational or personal needs. Visio allows the user to define shapes in

a form of ‘definition’ , as shapes can be edited and saved in a template. Intell igence can also be

added to shapes by writing formulae, as in a spreadsheet. Shapes can also be made data-aware or

their behaviour modified in other ways. For example, a door shape can ‘know’ when it is hinged

to a wall shape and rotated appropriately. A file cabinet shape has a drawer that pulls out to show

clearance. A network equipment shape includes properties for the manufacturer and other

information with sample data already assigned.

• OLE (Object Linking and Embedding)

OLE is a technique for creating a compound document13 developed by the Microsoft Corporation

[OLEWeb]. It features embedding and linking objects. Each element in the compound document

is stored in such a way that it can be manipulated by the application that created it. OLE allows

users to mix different forms of expression rather than artificially separating them. It enables the

creation of objects with one application, which can then be linked or embedded in a second

application. Embedded objects retain their original format and links to the application for which

they were created. The concept of linking or embedding with OLE is similar to dependency.

Embedded objects always link to their original applications, which is similar to a dependency

concept.

1.6 Modelling with definitive scripts (MWDS)

The applications reviewed above all feature uses of dependency in which human involvement

and interpretation have an essential role. The interactions with spreadsheets, geometric models

and databases that we have discussed are guided in a dynamic way by observation of an external

13 A compound document is a document that contains elements from a variety of computer applications such as, a
single compound document including text from a word processor, graphics from a drawing program and a chart
from spreadsheets applications.

Chapter 1: Selected dependency-based applications

30

situation14. Our particular interest is in those interactions where the modeller is uncertain about

the outcome, not only in the famili ar sense of ‘what-if’ experiment – where the framework for

interpreting interactions is typically well established, but where interaction has a genuinely open

character – as when a spreadsheet is first being constructed, or exploratory geometric modell ing

is involved.

The concept of modell ing with definitive scripts (MWDS), as introduced at Warwick in

the design of the ARCA notation in 1983, is a primary ingredient of what is now known as the

Empirical Modell ing (EM) project. As a technique, MWDS had been anticipated by several of

the applications discussed above, but its significance within EM stems from the alternative to a

closed-world semantic framework that it can be viewed as offering. The primary aim of studying

MWDS is to account for situated modelli ng – of the kind represented in applications that we have

reviewed – where new observables are introduced, and new interpretations are invoked in ways

that have not been preconceived. As will now be discussed, the special characteristics of MWDS

that support open development relate to the close connection that can be established between

experience of interactions with a computer-based model and of interactions with the external

situation to which it refers. On this basis, MWDS can be regarded as the archetype for open-

development modelling.

We should acknowledge at this point that the narrow characterisation of open

development, the close association of open development with MWDS, and the sharp distinction

between closed-world and open-development approaches may seem inappropriate. Of course, in

computing practice, there are many contexts in which new observables are introduced and new

interpretations invoked without the conscious adoption of alternative principles. Such contexts

arise, for instance, in the use of prototyping techniques in software development, the

development of formal specifications to support exploratory modelling, and the construction of

mathematical models (perhaps using explicitly programmed dependency) using Mathematica

[MathWeb], all of which activities have features in common with MWDS. The discussion of

such activities is outside the scope of this thesis because they are far more sophisticated than

primitive MWDS. As a loose but useful parallel, the distinction between informal empirically-

guided computer-based or computer-related modell ing and MWDS is similar to that between

14 The term ‘external situation’ is used here to refer to the wider context, outside the computer model itself, that
provides the experiences, possibly stemming from the modeller’s imagination, that actively inform the ongoing
modell ing activity.

Chapter 1: Selected dependency-based applications

31

what colloquially is understood to be an experiment and what a scientist would regard as a

'scientific experiment'. In representing the latter distinction, it is easier in the first instance to

describe the characteristics of 'scientific experiment' without reference to the status of informal

experiment. It is also apparent that an informal experiment can only be viewed as scientific if it

conforms to certain principles and practices that might at first seem to restrict rather than enhance

the experimenter's power to discover knowledge.

State in closed-world and open-development modelling

In building a computer model, a modeller’s interaction with an external situation has both closed-

world and open-development aspects15. The closed-world aspect is associated with theory-style

knowledge about the global properties of the objects with which he/she interacts. Such

knowledge is appropriately formulated using declarative constraints. The open-development

aspect is associated with knowledge about what kind of pattern of local changes is encountered

when interacting in the world or can be exploited when constructing a computer model. As

discussed in section 1.1, our aim is to show that knowledge of this kind can be appropriately

formulated using explicit functional dependencies (cf. Figure 1-2).

The closed-world and open-development aspects of modell ing are related to the

modeller’s experience in quite different ways. Theory-style knowledge requires a deep

understanding of the situation that is usually acquired through extensive experience (possibly on

the part of the theory builder rather than the modeller) prior to modelling rather than during the

model building. Knowledge about patterns in local changes of state is acquired through

confronting a particular state and – through experiment – refining our expectations of what will

happen in response to a particular interaction. Expectation, in this context, is expressed in terms

of how we expect a change in the value of one observable to affect the values of other

observables indivisibly. This kind of knowledge is essentially different in character from

absolutely reliable knowledge, in that it is accessed only through interaction and is subject to

empirical validation. Every time we act, our expectations about changes of state are being put to

the test – they could be confounded.

15 The distinction between closed-world and open-development modell ing that is developed in this chapter leads
to a distinction between two meanings for the term ‘computer model’ . Closed-world modelling is associated with
traditional formal mathematical models, whilst open development leads to models that are more similar to the
physical artefacts that a designer, artist or engineer might construct.

Chapter 1: Selected dependency-based applications

32

The above discussion shows that, in computer-based modell ing for open development, it

is critically important that the modeller can recognise latent state-transition patterns in the

computer model and associate them with an external situation. This focuses our attention on the

way in which states and transitions are implemented and interpreted in closed-world and open-

development dependency models. In broad terms, a state in such models is associated with an

assignment of values to the relevant observables (viz. xi1, xi2, …, xin in Figure 1-1 and x1, x2, …,

x5 in Figure 1-2), and transitions16 are associated with the technique adopted for dependency

maintenance.

In a closed-world dependency model, the states – in the strict sense – are associated with

possible solutions that satisfy the constraints (cf. Figure 1-1, where the possible states are the

values X1, X2, X3, …, Xk that satisfy the constraint Γ). A transition from one state to another (e.g.

from X1 to X2 in Figure 1-1) is automatically performed by the system using a constraint

satisfaction method. Strictly speaking, any intermediate state associated with this transition

cannot be interpreted in the closed-world model. This will suit a modeller who does not wish to

be involved in the constraint satisfaction activity and who may not even comprehend what is

going on in the transition. For such a modeller, transitions in the closed world are like jumping

from state to state.

In using a closed-world dependency model, the interpreted states are not always strictly

restricted to possible solutions to declarative constraints (cf. Figure 1-1). Consider, for instance, a

logic programming environment, where constraint satisfaction is used to determine a solution

state (x1, x2,…, xs+t) ≡ (i1, i2,…, is, o1, o2, …, ot), for given values of the inputs i1 through is.

Because of the undefined values, the initial state of the program, in which the inputs have been

specified and the outputs are yet to be determined does not correspond to a solution of a

constraint. Despite this, all the assignments of values to x1 through xt that are made during the

execution of the constraint satisfaction method are interpreted. They correspond to the states of

the executing logic program as it passes from its initial state to its final state. Where declarative

constraints are used to frame programming activity in this way, the modeller (who is here the

logic programmer) must have essential knowledge about these states. For instance, in Prolog, it is

necessary to use the ‘cut’ [CM87, p. 75] in debugging and optimisation. Similarly, in Juno-2, the

double-view editor is designed to display the program or constraint that draws the picture as well

16 In this context, a transition is interpreted as atomic, involving a single state-changing step

Chapter 1: Selected dependency-based applications

33

as the picture itself. However, although the modeller may be able to understand the constraint

satisfaction mechanism used to maintain the closed-world dependency (cf. Figure 1-3), the

transitions are primarily under the control of the mechanism rather than the modeller.

Transitions in an open-development dependency system are different from those in the

closed world since they can be explicitly comprehended and are under the open-ended control of

the modeller. Open-development dependency maintains relationships between observables in a

less constrained way than closed-world dependency. This means that the value of an observable

can be changed and a functional dependency modified by the modeller in an exploratory way (for

instance, as in ‘what-if’ activity in spreadsheets). In this respect, the way in which the modeller

experiences and interacts with the computer model is well matched to the way in which the

modeller acquires knowledge about patterns of state change in open development.

In open development, the correspondence between atomic transitions in a state

represented in the computer and atomic transitions in the state of the external world to which it

refers is highly significant. In transitions from state to state in closed-world modell ing, the

modeller only has to be able to interpret the initial and final states, but in open development,

there is not only an abstract correspondence between transitions in the model and transitions in

the external world, but also a correspondence between each transition in the model and its

counterpart transition in the external world as experienced by the modeller. This can be

interpreted as saying that observables in the external-world referent are directly reflected in the

computer model and that there are direct counterparts in the computer model for changes to

observables in the external world.

Figure 1-5: The interpretation of state in open-development modelling

The most significant implication of open-development modell ing is that it enables an

association between states of the computer model and external-world states that, being based on

the perceived close correspondence between possible atomic transitions, relies upon intrinsic and

• •

•
•

•

• •

External worldComputer model

�

�

�

�

Intrinsic
interpretation

1 2

34

1 2

34

Chapter 1: Selected dependency-based applications

34

local knowledge of interaction (cf. Figure 1-5). In Figure 1-5, the dashed arrows represent

possible transitions between states in the computer model and between states in the external

world. The transitions labelled 1, 2, 3 and 4 represent a possible sequence of interactions by the

modeller. The transition labelled 2 in the external world might represent an experimental

interaction. The transition labelled 3 in the external world might resemble the action needed to

restore the experimental context, and the transition labelled 4 the repetition of the experiment.

Figure 1-6: The interpretation of state in closed-world modelling

The dotted boundaries in Figure 1-5 indicate the open character of the space being

constructed and explored by the modeller. The interpretation of the state of the computer model

can evolve to reflect experience and change in an external situation as they develop. This means

that open-development modelli ng offers the possibili ty of dynamic re-interpretation of the

computer model as artefact. In contrast, the interpretation of a state in a closed-world model, once

initially established, is fixed. In Figure 1-6, Xi represents a state that is associated with a set of

values for the variables xi1, …,xin that satisfies the predefined constraint Γ, and these variables

correspond to observables in the external-world state in a preconceived way that has been well-

justified by theory and experiment. In this way, the semantics of state in the closed world is

defined with reference to an entire state space, rather than state-by-state.

Empirical Modelling (EM)

The applications of open-development modelling, and the relationship between closed-world and

open-development modelling are central themes of the Empirical Modelling (EM) project. EM

generalises the modelling principles represented in the applications reviewed in previous

sections, providing a framework for computer-based modelling based on three key concepts:

observation, agency and dependency. EM refers to a situated modelling activity in which the

computer-based model, the modeller and the situation stand in a special relation. The character of

the modelling activity is as depicted in Figure 1-5 and involves creation and discovery on the part

Established by theory and
well-justified by experiment

�

�

�

�

�

�

♦ X1
�

Computer model External world

Γ(X) = true
Xi = (xi1, xi2, …, xin)

♦ X2

♦ X3 ♦ X3♦ Xk

Chapter 1: Selected dependency-based applications

35

of the modeller. This gives key roles to the modeller’s understanding and to observation and

experiment in the external world. The significance of the computer model cannot be appreciated

in isolation: the actual experiences of the modeller, as expressed in knowledge of interactions and

expectations, are the essential part of the design.

As is il lustrated in Figure 1-2, the dependency used in open development can be

naturally represented by a definitive (definition-based) script (cf. Section 2.1). The tools

developed under the EM project include definitive notations and dependency maintenance

systems (cf. Section 2.1.2) that provide a means for a modeller to construct such scripts. The

construction of computer-based models using open-development dependency based on definitive

scripts is a major theme of this thesis.

The use of a definitive script to represent acyclic dependency (cf. Figure 1-2) provides

the modeller with a rich mechanism to manipulate patterns of dependency. As illustrated in

Figure 1-7, we can redefine a variable by a value or a formula, introduce a new definition and

delete a definition. The interpretation of modell ing activity with a definitive script is also very

open-ended. It can represent various interactive activities such as changing the value of an

observable, understanding the pattern of dependency through experiment, deleting a constraint,

introducing a new observable and adding a new constraint. By way of il lustration, Figure 1-7

shows how the value of an observable can be arbitrarily changed (as b is changed from (1) to

(2)); how a dependency can be introduced (as b is changed from (2) to (3)); how a dependency

can be eliminated (as a is changed from (3) to (4)) and how a new observable can be introduced

(as variable d is introduced in (5)).

Figure 1-7: Scripts to illustrate modelling activity in open-development sense

This modell ing approach enables the modeller to take account of new observations and

hitherto inconceivable states in the external situation in a way that respects the ongoing

exploratory character of open development. (In contrast, if strictly interpreted, closed-world

modelli ng deals with novelty in the external situation by replacing one closed-world model by

another.) The model can be initially constructed with no specific goal and then experimentally

a is b+c;
b = 20;
c = 5;

a is b+c;
b = 30;
c = 5;

a = 35;
b is 6*c;
c = 5;

a = 35;
b is 6*c;
c = 5;
d is a+2-c;

(1) (2) (3) (4)

a is b+c;
b is 6*c;
c = 5;

(5)

Chapter 1: Selected dependency-based applications

36

refined and modified until it satisfies the modeller’s needs. As Russ points out (cf. [Russ97]), this

is particularly useful in areas where there is no adequate theory):

 “ In such areas we may wish to build models simply in order to aid our
understanding; any specific purpose may be unknown, or provisional, and it is then
only an impediment to make early commitments to certain properties we wish to
preserve in the model.”

Open-development modell ing is essentially concerned with the way in which the

modeller observes, perceives and interprets the world. This perception and interpretation,

typically based on a modeller’s experience, may be altered by a shift in perspective possibly

resulting from a change in the modeller’s role or understanding of the situation, an interaction

with a model or a change in the external situation. There is no fixed interpretation for such shifts

in perspective, which can either be viewed as originating from the modeller (‘The behaviour of

the world is different from what I thought it was’) or from external factors (‘The world is now in

a different state’) .

A major theme in MWDS is the way in which patterns of interaction with a definitive

script can reflect different roles for the modeller as a state-changing agent. For instance, the

redefinition of the value of an observable may signify a change in the state of the artefact

(‘modeller as user’) or the redesign of the artefact itself (‘modeller as designer’). The use of a

definitive script is not confined to representing the interaction of external agents such as

designers and users with an artefact – it can also extend to the representation of internal agents

that are the components of the artefact itself. The essential principle is that patterns of

dependency amongst observables are seen as characterising the perspective of any state-changing

agent. The potential for combining open-development dependency with agency in this spirit is

ill ustrated in Agentsheets, where the states of neighbouring agents supply the observables of a

particular agent and dependencies can be defined and arbitrarily redefined to reflect changes in

this agent’s perspective (cf. Figure 1-4).

MWDS focuses on using a script to represent state as experienced and observed, not just

on using definitions as a programming device. It is connected with a wide range of modell ing

activity. A model built based on MWDS is exploratory, unpredictable and hand-driven: human

interaction is essential. People can change the state of the model by redefining the value of

variable, change a pattern of transitions by introducing a new definition (or a definitive script)

and bring in new observations by including a new set of definitions. The outstanding

characteristics of such models are broad interaction; comprehension via interaction; openness;

Chapter 1: Selected dependency-based applications

37

flexibility; easy modification; fast prototyping; learning by doing and experienced-based design.

Throughout this thesis, the characteristics of MWDS are studied by reviewing many models.

These models illustrate its essential semantics, its wide range of potential uses and the principles

and techniques it offers to support modelling activity.

