
Chapter 2: Principles of MWDS

38

�
 �������	�
����
���������� � � �

This chapter has two parts. The first describes the distinctive characteristics of a definitive script

and reviews the computer tools that have been developed at Warwick to support MWDS. The

second discusses the principles of MWDS in single-agent and multi -agent scenarios and the use

of MWDS as a framework for the modeller’s construal of an external situation. The chapter also

introduces the concept of an agent-oriented LSD account and its supportive role in MWDS.

2.1 What is a definitive script?

A definitive script consists of a set of definitions. Throughout this thesis, the word ‘ definition’ is

used in a special sense to refer to a unidirectional functional dependency relation, and the word

‘definitive’ is to be interpreted as ‘definition-based’ . A set of dependencies represented in a

definitive script is normally acyclic (cf. Figure 1-2). A typical definition takes the form:

y is1 f(x1,x2, … ,xn)

where y, x1, x2, …, xn are variables, f is a formula involving some algebraic operators and the

operands are the variables x1, x2, …, xn or constants. A definition is interpreted as associating the

current value of the expression on the right-hand-side (RHS) of the “ is” (f(x1,x2, … ,xn)) with the

left-hand-side (LHS) variable (y). The association between values is indivisible in change. The

term ‘ indivisible’ is used in this context to convey the idea that a change to the value of a variable

of the RHS affects the value of a variable on the LHS in a fashion that permits no interruption.

This is similar to the way that a spreadsheet maintains the value in each cell . In fact, if we

remove the tabular interface from a spreadsheet, the cell names together with the formulae that

define the contents of cells (e.g. A1 = A2 + A3) can be regarded as a definitive script.

Chapter 2: Principles of MWDS

39

In MWDS, the variables on the LHS of a definitive script correspond to observables in the

external world referent2. As explained in Section 1.6, the association between variables and

observables is established through the interaction with the model. This association is mediated

experientially rather than abstractly specified. This motivates the introduction of variables in

definitive scripts that represent observables attached to the computer model rather than the

referent. Such observables might include graphical elements, window displays and animations as

featured on a computer screen. It is for this reason that a definitive script is to be viewed as

representing the state of a computer-based artefact rather than (say) a collection of predicates.

The term ‘definitive notation’ was first introduced in 1986 by Beynon to refer to the

syntactic forms used to describe the different kinds of variables and operators that can be used in

formulating definitive scripts. Each definitive notation is associated with particular kinds of

variable that can appear on the LHS and RHS of definitions. Each has its own underlying algebra

consisting of a family of data values and operators on these data values. Many different definitive

notations have been developed at Warwick to serve the representation needs of various kinds of

referent (cf. Section 2.1.2). These include definitive notations based on scalars, strings and lists

as well as definitive notations to relate data elements on the screen display. For instance, there is

a simple definitive notation for line drawing where the data values are points, li nes and circles,

and the operators on such data values include rotation and translation. Because of the way in

which a definitive script is interpreted, the data values and operators featured in a definitive

notation must have an experiential significance. For abstract data values such as scalars, strings

and lists, this significance stems from the modeller’s famili arity with interpreting symbolic data

(e.g. the integer 3 or the string “ hello”) and structure (as e.g. in the database records { 1, ‘Ann’ ,

165} , { 2, ‘Betty’ , 155} , { 3, ‘Catherine’ , 172} in a table which records student’s height).

To be able to explore characteristics and features of MWDS, it is necessary to understand

the fundamental concept of ‘ definition’ and ‘dependency’ , which underlies the use of a definitive

script.

1 In practice, e.g. in spreadsheets, the symbol equals (=) can be used to denote a definition
2 The object or situation that is being modelled, whether already existing or only imagined [Russ97]

Chapter 2: Principles of MWDS

40

2.1.1 The characteristics of definition and dependency

In a definition, the relationship between values is a one-way effect – if the value of the RHS is

changed, the value on the LHS changes, but not vice versa. The values and operands that occur in

a definition can be of many different types, depending on the application. In addition, there are

essentially two different kinds of definition: implicit and explicit.

• Implicit definition

A definition is implicit if its RHS is a formula that refers to one or more variables. Such a

definition establishes dependencies: changing the value of variable(s) on the RHS will

automatically affect the value of variable on the LHS. For instance, the following script consists

entirely of implicit definitions:

1. H is (L+M)*N;
2. M is (J>=0)?2: 4;
3. J is K;

In the implicit definition of the form: y is f(x1,x2, … ,xn), the value of the variable y

indivisibly depends on the current value of the expression f(x1,x2, … ,xn). Whenever the value of

one of the variables xi changes or the formula f is changed, the value of the variable y will be

automatically updated to the value that results from the evaluation of the expression f(x1,x2, …

,xn).

• Explicit definition

A definition is explicit if its RHS consists of an actual value. The value of the LHS is explicitly

given and no dependency is involved. For instance, the following script consists entirely of

explicit definitions:

1. A is 6;
2. B is “hello”;
3. C is 2.34;
4. D is [12, 29];

Because scripts can contain implicit definitions, the current value of a variable can be undefined.

Sometimes it is useful to explicitly assign an undefined value to a variable. For this purpose, the

symbol ‘@’ is used to denote ‘undefined’ .

Explicit definition has significantly different semantics from a conventional assignment in

that a change to the actual value of a variable can cause a change to the values of other variables

Chapter 2: Principles of MWDS

41

that depend upon it. For instance, in the following scripts, the assignment to A (at line 7) affects

the value of the variable sum:

5. sum is A + 10;
6. writeln(sum);

16
7. A is –10;
8. writeln(sum);

0

The definitions of A at lines 1 and 7 above illustrate the two possible interpretations of a

definition. The first definition of A is part of a definitive script, the set of definitions at lines 1

through 4, that is viewed as a representation of an external state. The value of A itself represents

the value of an external observable. The second definition of A is part of the sequence of

definitions at lines 1 through 5 and 7, that can be viewed as a redefinition that represents a

transition between external states. It can also be viewed as part of a new definitive script, the set

of definitions at lines 2 through 5 and 7. In this way, a sequence of definitions can be interpreted

as specifying a sequence of definitive scripts, in general subject to avoiding cyclic definitions.

The terms ‘ definition’ and ‘redefinition’ will be used to refer respectively to the two possible

interpretations of a definition, as part of a definitive script and as part of a sequence of

definitions.

In MWDS, definitive scripts and sequences of definitions respectively represent states and

transitions in the external world (cf. Figure 1-5). The interpretation of state is as depicted in

Figure 2-1(a): points correspond to definitive scripts and arrows to (possible) redefinitions.

Where two redefinitions can be performed in either order so as to achieve the same transition, as

depicted in Figure 2-1(b), it is also possible to interpret their execution in parallel as a single

atomic transition. In this way, the model enables us to distinguish between performing two

redefinitions in either order, or ‘at the same time’ and this can be seen as a form of true

concurrency [LMRT90].

Figure 2-1: A transition of state in definitive scripts

• •

•
•

•

• •

(a)

•
•

•

1

21

2

12

(b)

•
•

•
•

Chapter 2: Principles of MWDS

42

To comprehend how the redefinition of one variable will affect others it is necessary to

have an overall picture of the dependencies between all variables. This can be supplied by a

dependency network diagram (cf. Figure 1-2). For instance, consider the following sequence of

definitions:

1. H is (L+M)*N;
2. L is 9;
3. N is 27;
4. M is (J>=0)?2: 4;
5. J is K;
6. K is 14;
7. H is (J*L) + N;

Figure 2-2(a) gives an overall picture of the dependencies between variables established by the

definitions of H, M and J at lines 1 through 6. It also displays hierarchical dependencies between

variables, which helps in comprehending the order in which the values of these variables get

updated in dependency maintenance. For instance, as il lustrated in Figure 2-2(a), the definition of

K at line 6 will cause updating of the values of J, then M and then H in sequence. A redefinition

can also affect the dependency network diagram. For instance, the dependency network diagram

shown in Figure 2-2(a) is transformed into that in Figure 2-2(b) after the redefinition of H at line

7.

A single definition ‘directly’ establishes a direct dependency between the variable on the

LHS and the variables on the RHS (as indicated by the solid arrows in Figure 2-2). Indirect

dependencies are ‘ indirectly’ established by transitivity through chains of definitions (as

indicated by the dashed arrows in Figure 2-2). Both solid and dashed arrows indicate that the

variable at the beginning of the arrow depends on the variable at the other end.

The open-development dependency concept (cf. Figure 1-2), which underlies the

fundamental structure of a definitive script, is significant throughout this thesis. To conveniently

explain the dependency between variables, the terms ‘dependee’ 3 and ‘depender’ 4 are introduced.

A dependee is defined as a variable, which depends on others (e.g. in Figure 2-2 H is a dependee

of L) while a depender is defined as a variable on which others are dependent (e.g. L is a

depender of H). The concepts of ‘ direct’ dependee/ depender and ‘ indirect’ dependee/ depender

can be derived in a similar way to direct and indirect dependency. For instance, in Figure 2-2(a)

3 Your dependee can be interpreted as “who depends on you”
4 Your depender can be interpreted as “on whom do you depend”

Chapter 2: Principles of MWDS

43

H is a direct dependee of L, L is a direct depender of H, J is an indirect depender of H via M and

H is an indirect dependee of J via M.

Figure 2-2: The dependency network diagrams

The management of dependency by means of definitive scripts and redefinitions will be

referred to as the application of ‘definitive principles’ . Definitive principles relate both to abstract

analysis and to practical model building. The central abstraction is that changing a value of a

depender will result in updating the value of all of its dependees (both direct and indirect). To

update the values of these variables in practice, a ‘dependency maintenance system’ is required.

Several prototype tools that feature dependency maintenance systems, such as ttyeden and

tkeden, have been developed under the EM project. Various definitive notations such as Eden,

DoNaLD and Scout have also been implemented along with these tools. At this point, it is

necessary to give a brief review of such systems and notations, which serve as the main means to

explore and exploit MWDS.

2.1.2 Review of computer support tools

This section gives an overview of the tools and notations that have been developed at Warwick to

support modell ing with definitive scripts. It discusses the essential features and usages that are

needed to understand the il lustrative models throughout the thesis. To support MWDS, the

implementation of a dependency maintenance system to maintain dependencies and update the

values of dependees once the value of a depender is changed is necessary. The system should

contain basic features (1) that allow the modeller to define functions and triggered actions, (2)

that maintain and update dependencies, and (3) that provide an interactive environment to support

open-development modell ing. Where (1) is concerned:

• a function is a user-defined operator, normally with no side-effect on state, for use in

definitions:

(a): A dependency network for the initial
set of definitions (at lines 1 through 6)

(b): A dependency network after
redefinition of H at line 7

H

L M

J

K

N

H

L M

J

K

N

Chapter 2: Principles of MWDS

44

• a triggered action is a procedure triggered by variables (active values5), for instance, to

invoke a redefinition or execute a procedure. Actions may be used to synchronise

abstract and visual models (e.g. via procedural update of a display), or to simulate agent

actions.

Where (2) is concerned, basic dependency maintenance involves scheduling the re-evaluations of

variables in definitive scripts. Where (3) is concerned, actions are scheduled in such a way that

the user can interact in a ‘concurrent’ fashion i.e. to intervene in computer activity except where

this is indivisible. This gives a special status to computing activity associated with the

management of definition, and so can be regarded as ‘definition-driven’ programming6.

Many tools that have these basic features have been developed under the EM project.

However, throughout this thesis, three Eden tools (ttyeden, tkeden and dtkeden) are mainly used.

Several definitive notations have also been developed along with these tools. The following

subsections give a short account of the historical development and the characteristics of these

three Eden tools. This includes a brief explanation of the syntax and features of several definitive

notations that these three Eden tools support.

Dependency maintenance systems

This subsection reviews the specific features of the three Eden tools mentioned above that relate

to dependency maintenance in MWDS.

• Ttyeden interpreter

The Eden definitive notation and the Eden evaluator ttyeden were designed and developed by

Edward Yung in 1990 [Yung90]. Ttyeden was the first dependency maintenance system to be

developed at Warwick. It has a basic text-based input and output environment that supports

interactive user-input. This allows users to write scripts and observe the effect of redefinitions in

a stimulus-response way. Ttyeden provides two built-in query features that help users to interact

with scripts. One type of query takes the form

?x;

5 Active value (in AI) is a means of associating procedures with a data value so that the procedures will be called
when the data is accessed or written [http://www.harcourt.com/dictionary].
6 A definition causes some change of state, through definitions and actions, until a stable state and then accepting
another definitions [Yun96, p.47]

Chapter 2: Principles of MWDS

45

where x is a variable name. It returns the defining expression of x together with the list of direct

dependees of x (i.e. the variables that depend on x directly). The other type of query takes the

form

writeln(x);

and returns the current value of variable x. The following listing (where script.e consists of the

definitions at lines 1 through 4) il lustrates the use of these two commands.

1. a is b+c;

2. k is b*a;

3. b = 5;

4. c = 20;

5. ?b;

b=5

b ~> [a, k];

6. writeln(a);

25;

7. ?a;

a is b+c;

a ~> [k];

Listing 2-1: Ttyeden input and output for the file script.e

• Tkeden

The tkeden tool is an extension of the Eden evaluator ttyeden. Tkeden was designed by Yung

[Yung92] in 1992, and uses a tcl/tk library for windowing and graphical drawing. It does not only

support Eden notation, but also other definitive notations such as DoNaLD (for 2D line-drawing)

and Scout (for screen display). This enables the tool to support simple graphics and windowing

interfaces.

Tkeden has a GUI interface, which provides a user-friendly environment to facilitate

MWDS activity. As il lustrated in Figure 2-3, users can input sequences of definitions, query and

redefine definitions through the ‘ input window’ and view the results of their queries through the

‘output window’ . The ‘history window’ keeps a record of the sequences of definitions and

queries that have been input by the modeller. By inspecting sequences of definitions and

retrieving definitions that have been recorded in the history window, users can easily restore the

previous state of the model. Users can also inspect the current status of the Eden definitions

stored inside the system through the ‘Eden script window’ . The features of tkeden that have been

ill ustrated here with reference to the Eden script script.e, also apply to the other definitive

notations (as represented by the radio buttons on the Input window in Figure 2-3) that tkeden

Chapter 2: Principles of MWDS

46

supports. In particular, there are counterparts for the Eden script window to display the current

DoNaLD and Scout definitions.

Figure 2-3: MWDS in tkeden

• Dtkeden

Dtkeden, developed by Sun [Sun99], is an extension of tkeden that provides a distributed script

feature. Within the dtkeden environment, scripts can be passed from one machine to others via

different modes of distributing scripts, such as ‘Normal’ , ‘ Interference’ , ‘Broadcast’ and ‘Private’

mode. Dtkeden inherits all the features of tkeden and has several additional features. One

additional feature that has been widely used in many models discussed in this thesis is ‘ virtual

agency’ . The virtual agent concept is used to automatically generate a large number of similar

definitions.

So far several hundred models have been implemented under these three systems and

based on definitive notations that they support – of these, many have been preserved, and in some

cases reused. About a dozen of these models are explicitly discussed in this thesis – for

convenience, brief descriptions of these models are given in an Appendix to the thesis. The

models are also available together with tutorials and additional documentation in the form of a

webpage (cf. [ModelWeb]). Eden, DoNaLD and Scout are the three main definitive notations in

which most of the models are written. The next subsection gives a brief introduction to the design

and implementation of the principal definitive notations used in this thesis.

Output window

History window Eden script window

Input definitions as a sequence Input definitions as script

Input window
Before redefinition

of k is accepted

After redefinition of
k is accepted

Chapter 2: Principles of MWDS

47

Definitive notations and their evaluation

So far, we have emphasised the role of the three Eden tools as dependency maintenance system

for MWDS. In practice, many other features are needed to give full support for MWDS and more

general model-building using definitive principles. The syntax and essential features of several

definitive notations developed at Warwick to represent various observations and perspectives on

computers are discussed in this section together with the principal programming constructs used

to support their evaluation in Eden. The notations considered include the first definitive notation

ARCA for displaying and manipulating combinatorial diagrams, Eden for general-purpose

modelli ng, DoNaLD for 2D line-drawing, Scout for window display, Eddi for database modell ing

and Sasami for geometric modelling.

• Eden – an Evaluator for DEfinitive Notations

Eden was first designed and developed by Yung [YY88] in 1987 as a general-purpose definitive

notation and interpreter. It was initially developed with the implementation of definitive notations

in mind. The Eden interpreter provides a ‘hybrid’ programming tool that allows definitive and

procedural paradigms to be combined.

The Eden syntax and data types are similar to those in C. The basic Eden programming

constructs are for, while and if, and the main types for variables are float, integer,

string and list. Eden lists can be nested and non-homogeneous in type. In other words it is

not necessary that all variables in the list have the same type. Moreover Eden has dynamic

typing. Eden variables do not need to be declared before they are defined; they are dynamically

typed according to the type of actual values that are assigned to them through definition.

Variables can be defined implicitly by a formula:

e.g. v is f(a, b, c)

or defined explicitly to the current value of an expression:

e.g. v = f(a, b, c)

There are three abstract programming features in Eden: definitions, functions and actions.

Definitions are specified and implemented according to the principles described in Section 2.1.1.

The Eden interpreter maintains the values of definitive variables automatically, and records all

the dependency associated with a definitive script.

Chapter 2: Principles of MWDS

48

Functions are used to introduce user-defined operators into definitions. The way in which Eden

functions are specified is similar to that used in a procedural program. For instance:

func sum {
para lst;
auto i, result;

result=0;
for(i=1;i<=lst#;i++)
 result += lst[i];
return result;

}

specifies a list summing function that can appear on the RHS of a definition e.g.

total is sum(data);.

Actions are ‘ triggered procedures’ which can be specified via:

proc proc_name: <triggering variables(s) as comma separated list>{
<redefinitions etc to be performed when one or more of the triggering variables is

touched>
}

The procedure is invoked to perform its action whenever any one of its triggering variables is

redefined or re-evaluated, whether or not the value of these triggering variables is changed.

Apart from the above features, Eden provides some built -in functions that support more

advanced modelling techniques. These include, for instance, techniques to delay dependency

update, to queue actions, to deal with higher-order dependency and to generate scripts

dynamically:

- autocalc :- is a predefined boolean variable that switches the mechanism of automatically

triggering actions and updating definitions on and off ;

- eager() :- is a procedure to invoke the immediate execution of queued definitions and actions;

- execute("script") :- is a function that turns a “ script” (type string) to an executable script and

execute it;

- `"string"` :- this will turn a string into a variable name.

• DoNaLD – a Definitive Notation for 2D Line-Drawing

The DoNaLD notation is a definitive notation for 2D line drawing. It is designed to support

interactive graphics within the framework of a general-purpose programming paradigm based

upon definitions [Bey89b]. As a definitive notation [Bey85, BABH86], DoNaLD is based upon

an underlying algebra comprising values of the basic data types: real, integer, point,

line and shape, and numerous operators for combining values of these different types. Integer

and real are scalar values. A point in the plane is represented by a pair of scalar values { x, y}

Chapter 2: Principles of MWDS

49

or can be treated as a position vector. A line is a line segment that joins two points. A shape

is a line drawing as represented by a union of points, lines and sub-drawings. There are

also some special predefined types such as arc, circle, ellipse, char, boolean and

label. Unlike Eden, DoNaLD is a strongly typed notation. DoNaLD variables need to be

declared before they are defined. DoNaLD is implemented based on the Eden evaluator. All

DoNaLD variables are translated into Eden variables so that each has a counterpart Eden

variable. In a DoNaLD script the equals sign (‘=’) is used (in place of ‘ is’) to denote definition.

The discussion of how a DoNaLD script is translated into an Eden script will follow the

discussion of the Scout notation below.

• Scout - a definitive notation for describing SCreen layOUT

The Scout notation is designed to support the displaying of the contents and the laying out of

windows on screen. Its purpose is to present the definitive state in a user-specified manner and to

supplement the displayed information for other definitive notations. The notation was introduced

and implemented by Simon Yung in 1992 [Yung92].

Scout makes provision for presenting data by using definitions to describe the output

formats of a variable. With definitions, a persistent li nk between the internal model and its

external representation is achieved. Moreover, the observed changes of variables can be

synchronised with internal state changes. Scout allows flexible control over output format

[Yung92] based on definitive principles. Like DoNaLD, Scout is implemented based on the Eden

evaluator. It is a strongly typed notation. In a Scout script, each variable has a counterpart

representation in the translation to Eden. The basic data types in Scout, such as windows,

frames7, boxes8, points, and strings, are related to designing and manipulating the

windows displayed on the screen.

The screen in Scout is an imaginary, rather than a physical screen. A mapping from the

imaginary to the physical screen is done through definition. A Scout script specifies a single

screen that can contain many windows. Windows can be set to a ‘sensitive’ mode in order to be

used in a user-interface (e.g. as interactive icons and buttons). A window can display text, an

image or a line drawing from ARCA and DoNaLD.

7 A frame is a screen area associated with a list of boxes

Chapter 2: Principles of MWDS

50

The integration between these three notations (Eden, DoNaLD and Scout)

As mentioned before, DoNaLD and Scout are implemented using the Eden evaluator. Both

DoNaLD and Scout scripts are, in fact, translated into Eden scripts before being executed. The

integration between these three notations inside (d)tkeden is illustrated in Figure 2-4.

Figure 2-4: The integration between Eden, DoNaLD and Scout in (d)tkeden

As mentioned previously, DoNaLD and Scout variables need to be translated into Eden

scripts. The translation conventions are summarised in the following tables.

1. The pattern for Scout and DoNaLD variables translated into Eden

2. The Eden equivalents for Scout and DoNaLD definitions and valu es

8 A box is a rectangular block of pixels with specified the top left and bottom right corners. For instance, the

Example script Script translated into Eden

table _tableDoNaLD

table/drawer _table_drawer

Scout str1 str1

Example script Eden translated into Eden

int s1=10 _s1 is 10;DoNaLD

char k=“hello” _k is “hello”;

string t1=“good”; t1 is “good”;Scout

integer re1=2; re1 is 2.0;

Eden evaluator

Eden script Scout scriptDoNaLD script

tkeden / dtkeden

Eden script

Translated into Eden by the translator in (d)tkeden

Chapter 2: Principles of MWDS

51

3. The Eden translation of special data types (e.g. line, point, label and box)

• ARCA – a notation for displaying geometric diagrams

ARCA is one of the early definitive notations, developed by Beynon in 1983 [Bey83]. It was

originally designed to support the display and manipulation of geometric diagrams with

particular emphasis on combinatorial graphs with coloured and directed edges. It was invented as

a medium to be used (possibly in conjunction with automated techniques) for constructing

computer representations of connected graphs such as ‘Cayley diagrams’ 9 and uses definitive

scripts to express the relationships between nodes, edges and modes. ARCA includes an auxili ary

definitive notation, used to declare variables of complex type and to specify their mode of

definition. An ARCA script is more abstract than a DoNaLD script in nature. An example of an

ARCA script will be considered in the Lines model (cf. { Lines91} in Appendix B) to be

discussed in Chapter 3.

The DoNaLD and ARCA notations are complementary. They correspond to different ways

of observing geometric structures. ARCA [Bey86] defines the abstract connectivity of a graph (in

terms of nodes, edges and vertexes), while DoNaLD scripts explicitly define geometrical

elements such as lines or points.

• Eddi – a notation for database system based on dependency

Eddi is a definitive notation which integrates the concept of dependency with a relational

database model in a similar way to Todd’s ISBL [Todd76] discussed in Chapter 1 (cf. Section

1.4). The data type in Eddi is the relational table and the operators are the primitive relational

definition box1 = [p1, p2] specifies a box with p1 at the top left corner and p2 at the bottom right corner.
9 “Groups and their graphs [GM65]”

Example script Eden translated into Eden
point k1={0,10} _k1 is cart(0,10);

proc P_k1: _k1, A_k1, DoNaLD{
 plot_point(DoNaLD,&_k1, &A_k1);
};

DoNaLD

line l1=[k1,{0,20}] _l1 is line(_k1, cart(0,20));
proc P_l1: _l1, A_l1, DoNaLD{
 plot_line(DoNaLD,&_l1, &A_l1);
};

point p1={0,0}; p1 is [0,0];Scout

box bx1=[p1,{20,40}]; bx1 is formbox(p1,[20,40]);

Chapter 2: Principles of MWDS

52

algebra operators (cf. Section 2.1.3). Eddi supports both definition and assignment of relational

variables. Definitions in Eddi correspond to relational database views. The implementation of

Eddi is based on the Eden evaluator, and Eddi scripts are translated into Eden for interpretation.

An example of an Eddi script is discussed in Section 2.1.3.

• Sasami – a notation for geometric modell ing

Sasami was designed and implemented by Ben Carter [Carter99]. It is a definitive notation for

modelli ng with boundary representations of geometry based on the OpenGL graphics API. The

basic data types in Sasami are the vertex and the polygon. Dependencies in Sasami can connect

geometric characteristics, scalar information, colour, texture and lighting attributes. Its

implementation is based on the Eden evaluator, and Sasami scripts are translated into Eden for

interpretation. A screenshot of a Sasami model is given in Appendix B (cf. Figure B-2).

Extensions to (d)tkeden

An important recent development has been the introduction of a parser generator, written in

Eden, by Chris Brown [Brown00]. This parser generator allows observation-oriented parsers to

be interactively specified and modified within the (d)tkeden environment. So far several

notations have been implemented based on the Eden evaluator and then included into the

(d)tkeden tool. For instance, the latest versions of the Eden tools allow the Eddi definitive

notation to be incorporated into the interpreter by including a specification of the Eddi parser (cf.

the procedure call installeddi() in Figure 2-8). Variants of other programming languages that are

not definitive notations, such as SQL and LOGO, have also been implemented in this way.

2.1.3 Illustrative examples of using definitive scripts

To complement the above review of the tools and notations, some models developed using them

will now be discussed. These il lustrate how we can use definitive scripts in a diverse range of

applications, and particularly in those applications – spreadsheets, geometric modelling and

database – discussed in Chapter 1.

• The role of definitive scripts in general modell ing

A spreadsheet is one of the most successful dependency-based applications. The spreadsheet has

a grid initially consisting of ‘blank-input’ boxes (or so-called ‘cells’) that allows users to

structure, modify, format and segment their models. It provides a good combination of text and

graphics so that a cell value can be defined very compactly in the text-based formula language

Chapter 2: Principles of MWDS

53

and all cell values can be displayed on the screen. A cell name (i.e. A1, A2) can be regarded as a

definitive variable and its associated formula as a definition.

Figure 2-5: The Jugs model with an array of columns to display the current values of key
variables

Figure 2-5 depicts a variant of the original Jugs model (cf. { Jugs92} in Appendix B) that is

discussed at this stage to il lustrate how definitive scripts can be used to construct a model with

features similar to a spreadsheet. An array of columns (highlighted by the dashed rectangle) has

been added to display the current values of key variables. This array demonstrates that within

definitive scripts there is a process of updating dependency similar to that in spreadsheets. For

instance, in the model, changing the value of contentA or contentB will affect the value of other

variables.

The Jugs model is developed using the tkeden interpreter. In the model, the three

mechanisms – definitions, functions and actions – are combined. As il lustrated in Figure 2-5, two

jugs: jug A (on the right) and jug B (on the left) are visualised, together with the set of

permissible menu options. Each jug has its own capacity (capA and capB) and content

(contentA and contentB). The definitions – Afull, Bfull and valid1 through valid7 – represent

observable states of the model. For instance, Afull defines whether jug A is full or not.

Two types of interactions are involved in using the model. In one mode of interaction, the

users can change the state of the model through predefined appropriate actions. For instance,

users can select menu options whose validity determined by this set of definitions associated with

the variables valid1 through valid7. Each menu selection triggers the Eden action int_pour to

make an automated sequence of redefinitions in action pour. Each such definition changes either

the value of contentA or contentB, or both, and consequently will affect the values of variables

that depend upon them (as listed in the dashed rectangle in Figure 2-5). As a result, the state and

visualisation of the model are also changed. In the second mode of interaction, users can interact

Afull is capA==contentA;
Bfull is capB=contentB;
valid1 is !Afull;
valid2 is !Bfull;
valid3 is contentA !=0;
valid4 is contentB !=0;
valid5 is valid6 || valid7;
valid6 is valid3 && valid2;
valid7 is valid4 && valid1;

proc init_pour : input{
 updating=1;
 if(input==5) { … }
 else option = input;
 step = 0;
}
proc pour: step{
 if(avail(option)){
 switch(option){
 case 1: contentA–-; …
 }
 eager(); step++; …
 }
 else{ updating=0; …}
} …

Chapter 2: Principles of MWDS

54

through the Eden interface to redefine variables freely to reflect a shift in perspective on the

model. For instance, the redefinitions

Afull is contentA == capA –1;
Bfull is contentB == capB –1;

reflect the idea that a full jug is not filled to the brim. The latter mode of interaction gives more

flexible interaction to users since they can arbitrarily redefine a definition in an exploratory

fashion.

The two modes of interaction are respectively similar to the redefinition of a cell value

(typically) by a spreadsheet user and the redefinition of a formula (typically) by a spreadsheet

designer. In MWDS, there is not a clear distinction between the roles of explicit and implicit

redefinition. The automated sequences of redefinitions illustrated in the Jugs model are similar to

the use of spreadsheet macros.

• The role of definition and dependency in geometric modelling.

As discussed in Section 1.3, many researchers have studied the use of definitive principles as an

underlying concept to support geometric modelling. The interactive graphics language [Wyv75]

introduced by Wyvill is one example of work in this spirit. In developing his language and

system, Wyvill aimed to provide an interactive environment in which the user can easily define,

modify and adjust geometric entities.

1 %donald10

2 real width, doorwidth
3 boolean open
4 line door, n1, n2
5 point hinge, lock, NW, NE, Lframe, Rframe
6 NW = {10,90}
7 NE = {90,90}
8 Lframe = NW+{20,0}
9 Rframe = Lframe+{doorwidth,0}
10 n1 = [NW,Lframe]
11 n2 = [Rframe,NE]
12 open = true
13 width = doorwidth
14 door = [hinge, lock]
15 hinge = Lframe
16 doorwidth=20.0
17 lock = hinge+ if open then {0,-width} else {width,0}

Figure 2-6: Scripts and screenshots of a geometr ic model representing a ‘door ’

10 %donald is used to mark that the script defined after this point is a DoNaLD script

(a)

(b)

Chapter 2: Principles of MWDS

55

This section will give a simple il lustration of how definitive scripts are used to support

geometric modell ing. The script in Figure 2-6 defines the line drawing to represent an open door

as it might appear on an architectural plan (cf. Figure 2-6(a)). Each variable represents point,

line and label that can be mapped directly to its referent on the visualisation of the model.

Scripts are defined in an easily interpretable way, for instance, a line consists of two points, and

changing one of these points affects the position of the line.

In Figure 2-6, n1 and n2, as defined at line 10 and 11, represent the sections of wall on

each side of the door. The actual door is represented by the variable door at line 14, which is

dependent on its two end points: hinge and lock. The dependency network diagram to display

the dependencies between variables can be drawn as depicted in Figure 2-7.

Figure 2-7: The dependency network diagram for the script in Figure 2-6

Redefining variables will cause the re-evaluation and update of the variables that depend upon

these variables. From the diagram above, it can be seen that redefining the position of NW will

affect the position of all points and lines with the exception of the point NE. Changing the size of

doorwidth results in repositioning of Rframe, lock and hence changes the size of the door.

Changing the value of open to ‘ false’ or ‘ true’ will reposition lock so that the visualisation of the

door becomes ‘ open’ and ‘closed’ as shown in Figure 2-6 (a) or (b) respectively.

• The role of definitive scripts in a database model

As discussed in Section 1-4, Codd’s relational model allows attributes to be organised in a

systematic way according to the relationship between them. Todd [Todd76] implemented a

system to maintain relationships between data based on Codd’s relational model by using

dependency (cf. ISBL discussed in Section 1-4).

The Eddi notation was developed as an extension to tkeden to il lustrate how we can use

definitive scripts to set up and query a relational database. Eddi is implemented using the Eden

evaluator and can run on the (d)tkeden systems. Eddi implements the five basic operators of

Lframe Rframe

n1 n2

NW NE

door

hinge lock

openwidth

doorwidth

DOORWALL

Chapter 2: Principles of MWDS

56

relational algebra – union(+), difference(-), natural join(*), intersection(.) and selection(:) –

identified by Codd[Codd79]. The syntax of the Eddi data definition language (DDL) and data

manipulation language (DML) can be seen in Figure 2-8. In the panel on the left in Figure 2-8,

the first two Eddi DDL commands respectively create a table ALLFRUITS and insert values into

the table.

Figure 2-8: Illustrating the use of Eddi

The panel on the right in Figure 2-8 is a snapshot to il lustrate the use of the Eddi DML. The

definition of EARLYCITRUS corresponds to a relational database view, rather than a query. The

SQL [Harr98] equivalent of this definition is:

CREATE VIEW EARLYCITRUS AS

(SELECT name FROM CITRUS, ALLFRUITS

WHERE CITRUS.name = ALLFRUITS.name AND begin<=4)

The use of dependency in Eddi is il lustrated by adding a new variety of CITRUS named

lime (as indicated by the dashed arrow). As a result of maintaining dependencies, the values of

EARLYCITRUS are automatically updated with an additional value lime.

Definitive scripts can be used to represent diverse kinds of referent as shown through

previous il lustrative models. Different kinds of representation can also be used in combination in

one environment, as shown in Figure 2-9. Figure 2-9(c) is extracted from a script in which the

ALLFRUITS table (Figure 2-9(a)) is defined in Eddi and the display (Figure 2-9(b)) of the data

associated with the fruit of current interest (viz. ‘granny’) is represented using DoNaLD and

%eddi
ALLFRUITS (NAME char, BEGIN int, END int);
ALLFRUITS << ["granny",8,10],["lemon",5,12];
ALLFRUITS << ["kiwi",5,6], ["passion",5,7];
ALLFRUITS << ["orange",4,11], ["grape",3,6];
ALLFRUITS << ["lime",4,7], ["pear",4,8];
ALLFRUITS << ["cox",1,12], ["red",4,8];
APPLE (NAME char , PRICE real, QNT int);
APPLE << ["cox",0.20,8],["red",0.35,4];
APPLE << ["granny",0.25,10];
CITRUS (NAME char, PRICE real, QNT int);
CITRUS << ["orange",0.55,8],["kiwi",0.75,5];
CITRUS << ["lemon",0.50,2];

fruits.eddi

DML queries

View definition

DDL command

Chapter 2: Principles of MWDS

57

Scout. This illustrates the use of diverse definitive notations each of which has a particular role in

representing the external referent.

Figure 2-9: (a) the tabular view of the ALL FRUITS relation (b) a graphical presentation of
the fr uit of current interest (i.e. ‘granny’) (c) the var ious extracts from types of definitive

script in the model

2.2 Single-agent modelling

As discussed in Section 1.6, the correspondence between a definitive script and its referent is

established on a state-by-state basis (cf. Figure 1-5). The observables in the referent, and the

modeller’s atomic interactions with the referent, have direct counterparts in the computer model.

Whereas the relation between the computer model and the external world is normally established

through the preconceived – and typically publicly agreed – conventions of a closed-world model

%eddi
ALLFRUITS (NAME char key, BEGIN int, END int);
ALLFRUITS << ["granny",8,10],["lemon",5,12],["kiwi",5,6],["passion",5,7],[“orange”,4,11];
%scout
point r1pos={ 100,100} ;
box br1=[r1pos, r1pos+{ 500,25}];
window record1 = {
 type: DONALD
 pict: view1
…
%donald
viewport view1
openshape bar1
within bar1 {
 label L
 int begin, end, height, length
 point SE, SW, NE, NW
 L = label(fruitname!, SW+{ length div 2, 5})
…}
%eden
_bar1_begin is (indexfruit==0)? 0: ALLFRUITS[indexfruit][2];
fruitname is "granny";
indexfruit is name2index(fruitname);
func name2index{
para s;
…}

Database stored in the
model

Window layout

Visualisation
i.e. line drawing

Definition for selecting
the fruit

Routine Function
i.e. L ibrary

(a)

(b)

(c)

Ttyeden, Eden
and Eddi

Tkeden,
DoNaLDTkeden,

Scout

Chapter 2: Principles of MWDS

58

(cf. Figure 1-6), the relationship between a definitive script and its referent is experiential and

essentially private and subjective.

The models discussed in the last section have demonstrated the use of definitive scripts to

directly represent various kinds of observable. MWDS is in the first instance concerned with

‘single-agent modell ing’ , that is, modell ing passive situations in which there is no change of state

without the intervention of the modeller. Definitive scripts, in this context, represent observables

from the modeller’s perspective. Such observables can reflect the modeller’s imagination,

experience and observation on external real-world entities. The current state of a referent, as

construed by the modeller, is determined by the current values of the observables and the

dependencies that hold between them. Observable can represent an explicit value or an implicit

value in which the value of the observable is functionally dependent on the values of other

observables. The modeller can change the state by redefining those observables. The

interpretation of this change may reflect a shift in the modeller’s viewpoint in response to new

experience, or a change in the external referent. The model can be incrementally developed

through representing the state with a set of observables, interactively changing the state,

interpreting the corresponding state and refining the state until stable patterns of state-change that

satisfy the modeller emerge. Satisfaction in this context may take many forms: realising a

functional input-output or stimulus-response relationship, achieving a pleasing screen layout or

tracing a target behaviour. Model building of this nature focuses on dealing with knowledge that

is embodied in, and gained through, experience of interaction with computer artefacts.

2.2.1 General characteristics of single-agent MWDS

This section describes and illustrates how MWDS can serve the needs of single-agent modell ing

that entails private activity, personal experience and subjective construal; how situated modell ing

activity is blended with the emergence of a conceptual model; and how this applies to two

different semantic relations that we identify as ‘ internal’ and ‘external’ .

A key idea in MWDS is that the computer model serves to represent a situation and

transformations associated with the contemplation of this situation. The model is being used, not

to compute a result, or describe a behaviour, as in conventional programming, but to represent a

state metaphorically, in such the same way that a physical artefact can be used as a prototype.

The emphasis is upon representing the state so that it can be changed and interpreted by the

modeller to reflect changes both in his perspective and in the external referent (cf. Figure 1-5).

Chapter 2: Principles of MWDS

59

Personal everyday exploration

In MWDS, the modeller’s viewpoint on interaction with the computer model closely resembles

his/her everyday interaction with an external situation. There are two components in the

modeller’s understanding of the situation: the immediate perception of current state and the

implicit knowledge of potential interaction (cf. Figure 2-10). The relationship between the two is

continuously evolving in response to practical activities, such as experimental interaction in the

situation and exploration of the environment surrounding the situation, and conceptual activities

associated with interpreting this experience, such as learning skill s and recall ing the

consequences of patterns of behaviour.

Figure 2-10: The explorer ’s understanding of a situation

The richness of the relationship between immediate perception of state and implicit

knowledge of potential states depicted in Figure 2-10 is made clear by considering how different

people comprehend and construe ‘ the same’ external world or situation differently based upon

their experience and knowledge. For instance, when I take my foreign friend to my country, we

are apparently in exactly the same situation but we comprehend surrounding things differently.

As far as implicit knowledge is concerned, I know the way to the local supermarket and know the

sorts of food that I can find there. I also have a richer perception of immediate state, because I

can speak and read the language and can construe the situation and interact in it more effectively.

My friend and I can hardly be viewed as ‘being in the same situation’ since I have so much more

background knowledge and experience of the environment than my friend has. However, my

friend can enhance both his implicit knowledge and immediate perception of the situation by

experimenting within the situation and communicating and interacting with people. Through such

activity, there is a gradual change in understanding the situation.

Knowledge and experience
of expectations / interactions

in the situation

Explorer

Situation

Implicit knowledge
of potential states

Immediate perceptions
of current state

What the explorer
imagines …

What the explorer is
experiencing …

Chapter 2: Principles of MWDS

60

MWDS activity and everyday exploration

Figure 2-10 is drawn with everyday interaction with a situation in mind, but applies equally to

exploring the products of MWDS. When we interact for the first time with a model based on a

complex definitive script, our situation is similar to that of the foreign visitor to an unfamili ar

country. The modeller – in contrast to the naïve observer – typically knows far more about

possible interaction with the model (in terms of potential states, activities and interpretations),

and can also interpret the visible state of the model directly. This motivates the use of definitive

scripts to build artefacts to represent our understanding of situations.

Figure 2-11: Modelli ng the modeller’s understanding

Figure 2-11 shows how the activities associated with exploring a computer-based artefact

and exploring an external-world referent are integrated in MWDS. Two activities, whose features

are similar to everyday exploratory activities such as are described in Figure 2-10, go on in

parallel. They are linked: there is a correspondence between observables in the artefact and the

referent and also a correspondence between expectations and interactions at the conceptual level.

They are also different: one activity involves exploring the situation and identifying the referent

and the other involves experimenting with computer-based technology to construct an artefact.

These two activities are labelled ‘Creation’ and ‘Discovery’ in Figure 2-11. MWDS involves

situated modelli ng activity that combines experimentation with the referent and incremental

construction of the artefact. Successful modelling leads to a blending between the implicit

knowledge of the artefact and of the referent in the mind of the modeller. The significance of the

artefact cannot be assessed through the immediate perception of its current state alone, but only

through the potential interactions that are associated with implicit knowledge (cf. Figure 2-10).

Implicit
knowledge of
the artefact

Modeller

Artefact Referent

Creation Discovery

Conceptual
model

Situated modelling
activity

Implicit
knowledge of
the referent

Chapter 2: Principles of MWDS

61

Figure 2-11 helps to explain the personal nature of building an artefact using MWDS. It is

commonly the case that each modeller has a different degree of knowledge of a particular

situation. The modeller typically identifies observables and represents understanding based on

his/her background knowledge and experience. The artefact is first designed based on the

modeller’s initial viewpoint on the external-world state, but both the artefact and viewpoint may

change during interaction. The artefact can embody the user’s observables and personal

experience as perceived and imagined. Building an artefact in this sense is a kind of creative

activity since it involves understanding situations, modifying the artefact and gaining new

knowledge through interaction.

Artefact-referent relationship in MWDS

There are two ways in which the artefact-referent relationship depicted in Figure 2-11 can be

related to MWDS. A definitive script can itself be viewed as an artefact whose referent is the

state of the computer as experienced by the modeller. For instance, in Figure 2-6 the definitive

script comprises DoNaLD definitions that refer to an associated visual representation on the

computer display. Alternatively, a definitive script together with the associated visible computer

state can be viewed as an artefact whose referent is a situation in the external world. For instance,

the DoNaLD script and the associated line drawing in Figure 2-6 represents a conventional door.

Figure 2-12: Two views of the semantic relation (a) within the computer state, (b) between
the model and the external situation

These two views of the artefact-referent relationship in MWDS are ill ustrated in Figure 2-

12. The first view, depicted in Figure 2-12(a), will be described as the internal semantic relation

and the second, depicted in Figure 2-12(b), as the external semantic relation. These two semantic

Definiti ve
script

Computer state
e.g. visualisation

Internal artefact Internal referent

Essential personal, because it is experientially mediated

(a)

Internal semantic relation

Definiti ve
script

Computer state
e.g. visualisation

External
situation

Internal artefact Internal referent

Artefact Referent

Essential personal, because it is experientially mediated

(b)

External semantic relation

Chapter 2: Principles of MWDS

62

relations loosely correspond to the two views of the concept of ‘ program’ described by Smith in

[Smith87], namely the specification view and the ingredient view respectively. In the former

view, the semantics of the program refers to the computational activity that it prescribes. In the

latter view, the semantics of the program refers to the interpretation of this computational activity

in the external world.

Where the internal semantic relation is concerned, the treatment of a definitive script as an

artefact requires justification. As discussed in Section 1.6, definitive scripts are used to capture

the direct apprehension of open dependencies as experienced by the modeller. Observables in the

external-world referent are directly reflected in ‘ the computer model’ and there are direct

counterparts in the computer model for changes to observables in ‘ the external world’ . On this

basis, a definitive script itself can be treated as an artefact whose current state can be observed by

the modeller through querying variable values even in the absence of an explicit visualisation (cf.

Listing 2-1). Where there is an explicit visualisation (as in Scout and DoNaLD scripts), the

definitive script can be regarded as an artefact for which the external-world referent is the

computer display. For instance, the script (a set of definitions) defines the display of the Door

model as depicted in Figure 2-6. The significance of the script as a source of experience for the

modeller is highlighted by combining the script in Figure 2-6 with the dependency graph in

Figure 2-7. The implicit l inks in the text established by variable names define a physical structure

for the script that is made explicit in the dependency graph. A key idea is the physical

organisation of variables in ways that correspond to the modeller’s view of the door and the wall

as features of the line drawing on the computer display in Figure 2-6. This view of a definitive

script as an artefact reinforces the link with the spreadsheet concept: compare the way in which

the rows and columns of an examination spreadsheet are associated with students and subjects.

The appropriate interpretation for the internal semantic relation is as a ‘successful blend’

between the script and the external computer-state. Its success depends upon facts about the

implementation (e.g. that changing the script indivisibly affects the screen and respects

dependency) and the supporting technology (e.g. that there are ‘enough pixels’ f or practical

purposes). This blending allows the modeller to gain implicit knowledge of how ‘changing the

script’ and ‘changing the display’ are related. The blending between an artefact and its referent in

Figure 2-11 (as it applies to Figure 2-12(a)) also enables us to blur the distinction between ‘ the

artefact’ and ‘ the referent’ as is necessary in embedding Figure 2-12(a) into Figure 2-12(b). Such

combining of an artefact and a referent is common in everyday experience. For instance, consider

Chapter 2: Principles of MWDS

63

the way in which a li ft system is designed so that there are panels on each floor to indicate the

current position of the li ft. The panel acts as an artefact whose state is indivisibly linked to the

position of the lift. This means that in practice the panel is regarded as an intrinsic part of the li ft

system and the lift user make no distinction between the actual position of the lift and the

position of the lift as indicated on the panel.

The internal and external semantic relations are respectively linked to two aspects of the

agenda for MWDS: technical and conceptual. The technical agenda is concerned with the full

exploitation of the computer as an artefact through the development of tools, notations and

techniques. The conceptual agenda is concerned with general principles and potential

applications. These two agendas interact. In making a new discovery or exploring a new domain,

we may encounter new kinds of experience. In order to deal with the new experience we may

need to build a new kind of artefact to imitate the external-world situation. Creating new kinds of

artefact involves realising internal semantic relations between scripts and their experiential

counterparts, and for this purpose we may need to design a new tool or notation.

Internal semantic relation

In MWDS, the internal representations are very significant because they are artefacts, embodying

personal observables and perceptions, for the modeller to experience. This is in contrast to

traditional program semantics, where (e.g.) any two programs that have the same input-output

behaviour are regarded as equivalent. Smith in [Smith87] describes this indiscriminate

identification of programs that have the same behaviour as ‘promiscuous modell ing’ , and asserts

that “although, promiscuous modell ing may be helpful in answering large-scale and hence rather

coarse-grained questions, …, it can be pernicious when one asks fine-grained questions about

control, intentional identity, and the use of finite resources.” MWDS enables the modeller to

identify and control the relationship between the script and the computer display. The blending of

the script with the computer display that results is associated with using the computer as an

instrument, as discussed in [BCH+01]. This is il lustrated in [BCH+01] by considering the

computer as an instrument for clock design: the variables in the script represent observables (e.g.

the display of hour and minute hands) in the clock and a complementary set of definitions

represents dependencies that connect the positions of the hour and minute hands to the current

time.

Chapter 2: Principles of MWDS

64

Figure 2-13: Various representations of a triangle taken from [FP89]

People perceive and represent things differently according to their different perspectives

and objectives. There is no single representation that can service all that people require. Several

representations for a triangle, as shown in Figure 2-13, illustrate diverse possible views on

representing a triangle. Even though the external representation looks the same in each case, the

internal representation may be different. For instance, Figure 2-13 (a) is made up with a set of

pixels and Figure 2-13 (b) is defined by three lines that link coordinate points on the XY plane. In

MWDS, the internal representations of these triangles will make use of different sets of

observables.

The different internal semantic relations associated with Figure 2-13(c) and Figure 2-13(e)

are illustrated by the example scripts and snapshots corresponding to each script shown in Figure

2-14. MWDS is essentially concerned with framing the internal representation of an artefact so as

to reflect the role it has to play in representing its referent. In Figure 2-14, the two DoNaLD

scripts represent two distinct styles of triangle. One is a triangle that results from the intersection

of two circles, so that relevant observables include circles and the radii of the circles (represented

by the variable DIST1). The other triangle is designed to represent a person walking (cf. Figure

2-12(c)), so that relevant observables include variables, such as step, that represent the

movement of a person.

Each script comprises a set of observables that is required to display its corresponding

triangle. Each observable has a geometric counterpart on the display; for instance, CA and CB

refer to two circles on the figure. We can change the values of observables and this will affect the

(0,0) (1,0)

(1/2,√3/2)
120°

120°

X

A B
C1 C2

(a) a set of
pixel

(b) a plot of 3
lines

(c) person walking forward a unit
distance, turning left by 120°,
forward a unit, turning left by 120°

(d) an equilateral
triangle

(e) the result of intersection of
two circles. A and B are centre
points of circle C1 and C2
respectively

Chapter 2: Principles of MWDS

65

shape of the geometric referent accordingly. For instance, if the scripts are combined, the size of

the two triangles can be changed so as to be consistent with the value of the variable DIST by

defining DIST1 = DIST. Changing the value of the variable DIST will then affect the size of

both triangles.

Figure 2-14: A screenshot of two different perspectives on representing a triangle

External semantic relation

In MWDS, the external semantic relation is at all t ime potentially the subject of negotiation. The

interaction between the modeller’s state of mind and the artefact he/she is creating is dynamic,

and the meaning of the artefact is shaped as it is being developed. The Number model

{ Number02} and its variants have been developed to il lustrate how the model can be reshaped to

serve different external situations as they occur to the modeller. Figure 2-15 shows several of

these variants, such as might be used for example:

(1) By children to learn to read and to count numbers;

(2) For diagnosing problems in number and word recognition;

(3) For writing a cheque (either for a person or as part of a supermarket checkout);

(4) For learning to read numbers in different languages;

(5) For exploring the structure of number systems in different cultures.

%donald
point PA, PX, PX
circle CA, CB
PA = {350, 500}
PX = {(PA.1+PB.1) div 2, (PA.2+PB.2) div 2 + (sqrt(3)*DIST1) div2}
PB = {PA.1+DIST1, PA.2}
CA = circle(PA, DIST1)
CB = circle(PB, DIST1)
L1 = [PA, PB]
L2 = [PA, PX]
L3 = [PB, PX]

%donald
point pA, pX, pX
line l1, l2, l3
pA = {350, 450}
pB = {pA.1+DIST, pA.2}
pX = {(pA.1+pB.1) div 2, (pA.2+pB.2) div 2 + (sqrt(3)*DIST) div2}
l1 = [pA, pA+{step*step1, 0}]
l2 = [pB, {pB.1-step*step2 div 2, pB.2+step*step2*sqrt(3) div 2}]
l3 = [pX, {pX.1-step*step3 div 2, pX.2+step*step3*sqrt(3) div 2}]

Chapter 2: Principles of MWDS

66

Figure 2-15: The seed for the Number model

All the models in Figure 2-16 are derived from the simple seed model in Figure 2-15. In its initial

form, the seed model establishes a dependency between a number (the variable curnum) in the

range 1 to 99 and the number as expressed in words (the variable readnum). The table, as shown

in Figure 2-15, records the association between the digit and its English reading; in this case we

are concerned with reading numbers in English. The first application of the Number model can be

used in the situation (3): the model is a component of a device that reads a number and

transforms it into words so that no visualisation is required. In the script in Figure 2-15, the

assumption is that the number is given abstractly (e.g. taken from a computer memory) but in

other contexts it may be more appropriate to observe numbers as strings of digits (cf. the

cashier’s view of the number to be entered through a keypad).

 Figure 2-16: Several example variants of the Number model

The next development was to extend the model to deal with larger numbers. With the addition of

a simple interface (consisting of Scout definitions for displaying two windows, one to get an

%eden
curnum = 8; table is engtable;
_num is (curnum/5==0)? curnum%5: curnum/5*5;
_num1 is (curnum/5==1)? curnum%5: 0;
readnum is rdig1//rdig2//rdig3//rdig4//rdig5//rdig6//rdig7;
%donald
circle c1
…

(a)

(b)

(c)

(d)

(e)

%eden
curnum = 234567; lstnum is numtolist(curnum);
dig1 is lstnum[1]; dig2 is lstnum[2];
…
rdig1 is (dig1>0)? search(dig1, table)//search(mill,table):””;
…

%eden
table is thaitable;

%eden
readnum is tdigit1//tdigit2//tdigit3...;
tdigit1 is …;

%eden
table is engtable;

1
2
…
11
12
…
20
30
…

one
two
…

eleven
twelve

…
twenty
thirty

…

engtable

%eden
curnum = 9;
table is engtable;
readnum is (curnum%100>20)? search((curnum/10)*10,table)//
 search(curnum%10,table): search(curnum,table);
func search{ … };
…

Chapter 2: Principles of MWDS

67

input number and the other to display the reading of that number), this model is as depicted in

Figure 2-16(b). This application can be used for both educational purposes (1) and (2) described

above – in the appropriate situations. For instance, the model might be useful to children with

basic numeracy and literacy skills and also to the people who are learning English. A major

feature of MWDS is that it can take account of the subtle effect of situation on the external

semantic relation. By way of il lustration, a brain-damaged banker is recorded as being unable to

read the simple and commonest words but having no trouble at all i n reading number words

[Fron02]. Thinking about the variety of ways in which humans might observe and interpret

numbers motivated extensions of the seed model (including all those depicted in Figure 2-16)

that take digits rather than numbers as the basic observables. It also indicates the potential role

for presentations of numbers that are based on artefacts rather than symbols. Figure 2-16(a) is a

model for teaching children to read, to write and to count numbers that combines symbolic

representation with an artefact in a way that is characteristic of MWDS. The modification of the

model to read numbers in different language (e.g. Thai) is depicted in Figure 2-16(d). To do this,

we needed to define a table (analogous to the engtable in Figure 2-15) for mapping between the

digit and its Thai reading and to include a set of definitions to specify the structure of the Thai

number system.

In practice, the various modifications of the Number model led to a series of scripts, each

referring to different situations. One of these – the ‘ final-version’ of the Number model – is the

basis for all the models shown in Figure 2-16. The script extracts in Figure 2-16(a) through

Figure 2-16(e) ill ustrate how the variants of the Number model can be successively derived from

the final version by redefining variables or including a set of definitions. Note that, by redefining

the table in the model depicted in Figure 2-16(b) to thaitable, the number is read in Thai, but the

transcription is still based on the structure of the English number system, as depicted in Figure 2-

16(c). A set of definitions that specifies the Thai number system is included so that the model can

correctly read numbers in Thai culture, as depicted in Figure 2-16(d). Imitating the shift from

Figure 2-16(b) to Figure 2-16(c), if we redefine the table from Thai to English at this stage, the

number will be read in English, but the transcription will be based on the Thai number system, as

depicted in Figure 2-16(d). By observing the change made by a series of redefinitions from

Figure 2-16(b) through Figure 2-16(e), we can explore the structure of number systems in

different cultures (cf. (5)). It is characteristic of MWDS that the transition from the model in

Chapter 2: Principles of MWDS

68

Figure 2-16(b) to that in Figure 2-16(c) was discovered by accident, but turns out to be

unexpectedly useful in explaining the relation between Thai and English number systems.

The modifications described above are not exhaustive. Other simplifications could be

done: the numbers required in teaching children are very simple (e.g. in the range 1 to 10) so that

the script can be less complicated than the one required in the other variants of the model (e.g.

Figure 2-16(b) through Figure 2-16(e)). Throughout the development of the Number model, the

important issue is not so much the complexity of the modell ing activity and redefinitions, but the

rich interpretations of the situations and perceptions of the modeller. By studying the script, we

can understand how the script is changed to reflect the external situation and the modeller’s

perspective. For instance, the representations of the number are first based on its abstract value

(cf. Figure 2-15), then later based on the list of digits (cf. Figure 2-16). This change of

representation may be motivated by a change in situation (e.g. a number is keyed in digit by

digit) or a change in the modeller’s perspective (e.g. reading a digit in association with its

position).

In MWDS, many other instances of potential redefinition are motivated by the different

roles that the modeller can play. Acting as a designer, he/she may change attributes such as the

colour, font and size of the number in the Number model for children (cf. Figure 2-16(a)). Acting

as a user, he/she may consider such issues as how to improve the way we key in the input number

and the presentation of the word-based output. The modeller can also act in a role that is outside

the scope of either the designer or the user, as when reconfiguring the display to convenient size

for demonstration, or introducing alternative non-standard definitions that express 1200 as

‘ twelve hundred’ . The openness of the Number model is further il lustrated by the fact that it can

be directly used in conjunction with other models that make use of integer data values.

2.2.2 The role of MWDS in construal

It is part of human nature to seek to understand, to be able to predict and to exercise some control

over the world we live in. Kelly [Kelly55] pictured this by saying that we operate as ‘personal

scientists’ , developing implicit ‘ theories’ about our experience. Once ‘ theories’ have been

proved, tested and accepted, they supply the rules that can be applied to relate and understand

behaviours of interesting domains. Before this stage is reached, the process of observing,

expressing and understanding problem domains is involved.

Chapter 2: Principles of MWDS

69

In building an artefact to represent our understanding of a situation, there are two types of

situations to consider. In one type of situation (the ‘single-agent’ scenario), the modeller regards

him/herself as the sole instigator of change. In the other (the ‘multi -agent’ scenario), the modeller

observes that there are apparently changes beyond his/her control and attributes these to other

agents. This informal classification of situations is based on the modeller’s interpretation and

forms part of his/her ‘construal’ , in a sense to be elaborated below.

So far our discussion of MWDS has focused on the single-agent scenario. In this scenario,

an artefact is typically being used interactively to stimulate thought or to capture observations.

For instance, when using a spreadsheet as a single-user application in financial planning, the user

is the sole instigator of change. In the multi -agent scenario, the modeller stands in the role of an

external observer of concurrent interaction involving many agents. Building an artefact to

represent such a situation is more complicated: the modeller is not only concerned with how

he/she interacts, but also with understanding how other agents interact.

Figure 2-17: MWDS for computer-based construal

MWDS provides a framework for building such artefacts. Within the artefact, it is

necessary to represent concurrent actions of several agents. Figure 2-17 ill ustrates how MWDS

can be applied in this context. In the figure, the space for agent action corresponds to the state

space in Figure 2-1(b) and the redefinitions a and b to the redefinitions labelled 1 and 2 in Figure

Computer model Referent

b

a

Agents

Space for agent
action

Situation

� = ----------
� = ----------

…….
� = ----------
� = ~~~~~
� = ----------
� = ~~~~~

� = ----------
� = ----------

…….
� = ----------
� = ----------
� = ----------
� = ----------

A B

Variable

Redefinition

Definition

 Observable

 Dependency

 Agent actiona

b

Chapter 2: Principles of MWDS

70

2-1(b). Two agents A and B are acting concurrently in this space to perform the redefinitions a

and b respectively. In Figure 2-17, the definitive script represents the modeller’s view of state in

his/her role as an external observer.

The framework for MWDS depicted in Figure 2-17 is a generic pattern for the

representation of the modeller’s understanding, or construal of a situation. The term construal

here refers to ‘ sense-making’ in a very general context that embraces both single-agent11 and

multi -agent scenarios. People can construe situations differently based on their roles and

objectives. For instance, for the artist, construal is associated with exploring and making sense of

personal experience and imagination through the creation of an artefact. This is typically a single-

agent activity. The work of the playwright or novelist has a multi -agent aspect; he/she construes

fictional situations in terms of the roles of characters and how they interact. The engineer engages

with construal in connection with the design of real-world products to perform a specific

function. The scientist tries to understand a complex phenomenon by devising construals through

observation and experiment.

MWDS is most closely related to the way in which the experimental scientist uses an

artefact as a means for the metaphorical representation of observables. For instance, as Gooding

describes in [Good90], Faraday constructed artefacts to represent observables such as electrical

currents, magnetic fields and the relationships between the polarity of a magnetic field and the

direction of current. Gooding introduces the term ‘construal’ to refer to a concrete artefact to

embody understanding the experimental interactions such as Faraday favoured when trying to

understand complex phenomena. In emphasising the role of physical artefact in understanding,

Gooding is stressing the crucial contribution of knowledge of the physical world to scientific

theory. In a similar spirit, Feynman points out the essential non-mathematical complement to a

theory-based perspective on physics [FLS64]:

“A physical understanding is a completely unmathematical, imprecise, and
inexact thing, but absolutely necessary for a physicist”.

MWDS as depicted in Figure 2-17 offers a framework for constructing construals as

physical artefacts in the sense advocated by Gooding. It is also associated with a shift perspective

on computer science similar in spirit to what Gooding and Feynman promote for physics. In

computer science, most people tend to interpret computing in terms of a mathematical theory of

11 When applying Figure 2-17 in a single-agent scenario, the modeller replaces agents A and B

Chapter 2: Principles of MWDS

71

computation, whilst in MWDS we emphasise the embodiment of computation within the external

situation. In the context of Figure 2-17, the concepts of agent, dependency and observable are the

key concepts in construal. Using definitive scripts as a means to construct computer-based

construals of situations assists the cognitive process of identifying agency, dependency and

observables. This activity relates to aspects of computing for which there is no theory, that can

only be explored within a pragmatic framework, such as are significant in respect of pre-

articulate activities, pre-formalisation, situated modelling and personal viewpoints.

In Figure 2-17, the use of humanoid icons to depict agents is not intended to exclude

impersonal or inanimate forms of agency, but to stress a key principle of definitive scripts. All

agencies are construed as similar to human agency. All state-changing agents are construed as

operating through changing observables and, in their turn, responding to changes in observables.

When construing complex phenomenon, we will need to postulate observables that we cannot

directly observe (e.g. electric currents). The strategy for construing such interactions in a multi-

agent scenario is described in [Bey97]:

“For inanimate agents, the stimuli and responses typically involve observables
that cannot be directly sensed and manipulated by a human agent. Knowledge about
the protocols for interaction of such agents has then to be represented in ways that
are intelligible to a human agent.”

Figure 2-17 is to be interpreted in the implicit context of the modeller’s exploratory

interaction with the computer model and its referent. The aim of this interaction is to create a

model embodying relationships between observables, dependencies and agents congruent to

those that the modeller projects onto the referent. The computer model provides perceptible

counterparts for relationships that typically cannot be directly observed in the referent.

Figure 2-17 il lustrates the application of what we identify as ‘definitive principles for the

representation of state’ [Slade89]. Throughout this thesis, a model that exploits definitive

principles will be referred to as a ‘definitive model’ 12. Figures 2-11 and 2-12 ill ustrate the

distinctive – and, to our knowledge, otherwise unremarked – way in which the internal and

external semantic relations are treated in MWDS. On this basis, throughout the thesis other kinds

of computer-based model will be described as ‘ traditional’ . In practice, many of the definitive

models that have been implemented using the (d)tkeden tool have features other than definition.

12 The term ‘model’ is being used here in the sense associated with open development (cf. Section 1.6) and does
not refer to a mathematical model.

Chapter 2: Principles of MWDS

72

In MWDS, we are concerned with definitive models that – apart possibly from user-defined

operators to be used in defining formulae and some forms of construct to automate redefinition –

purely comprise definitions (‘pure definitive models’) .

LSD Analysis

In interacting with an unfamili ar definitive model, the explorer (cf. Figures 2-10 and 2-11) lacks

the original modeller’s knowledge and experience of expectations and interactions. This model

might be a construal of a multi -agent scenario (cf. Figure 2-17). To understand such a model, the

explorer needs to grasp the original modeller’s conceptual model (cf. Figure 2-11), identify the

agents within the model and account for their interaction. In the particular case when the explorer

is the modeller, for instance, throughout the development of an artefact, it is also important to be

able to record and document how to construe and interact with the artefact.

LSD is a special-purpose notation designed for specifying and documenting our

experiences, expectations and possible interactions in the context of MWDS. It supports a form

of observation-oriented and agent-oriented analysis originally developed by Beynon in

collaboration with Mark Norris of British Telecom in 1986 [BN88]. Mike Slade [Slade90] further

elaborated on its design and characteristics as an agent-oriented notation. LSD is interpreted in

several ways according to context: for construal (an LSD ‘account’) , for description and for

specification.

Figure 2-18: Definitive script as observer ’s model of state (‘one-agent’ modelli ng)

The basic concepts of LSD will be introduced with reference to single-agent MWDS. In

this context, definitive scripts are used to document the interactions that describe and/or prescribe

• = ………..
• A = f(C,D)
• = ………..
• = ………..
• = ………..
• = ………..
• B = 10
• = ………..
• C = g(F,5)
• = ………..
• D = “Hi”
• = ………..
• …………

ORACLE

DERIVATE
AGENT

DEFINITIVE SCRIPTS

Observable

Environment

HANDLES
ORACLES

HANDLE

Chapter 2: Principles of MWDS

73

the modeller’s view of a situation. Definitive variables13 implicitly serve as parameters for

change. By interacting with the script, the modeller can infer the current status of the artefact and

see the effect of changing a parameter. Different classes of variables can be characterised from

the modeller’s point of view. There are those variables – such as readnum in the Number model

(cf. Figure 2-16(a)) – that are implicitly defined and are subject only to indirect changes of value;

these will be called derivates. Some variables – such as curnum whose value is defined by the

user – are conditionally under an agent’s control; these will be called handles. Other variables,

such as the choice of the table, reflect the external environment; they can be observed by the

modeller, but are subject to change beyond the user’s direct control; these will be called oracles.

The relationship between handles, oracles and derivates is depicted in Figure 2-18 – note

that the classifications are not exclusive. Some variables are handles for the user, some are

oracles and the derivates indicate how these variables are indivisibly coupled in change.

In a multi -agent scenario, an additional function of LSD is to describe the roles that can be

played by the agents participating in the particular situation. LSD agents can represent both

human participants and inanimate components. In keeping with the principle that all agencies are

construed as similar to human agency, these roles are specified with reference to those aspects of

the situated state to which the agent can respond and those which it can conditionally change

[BNOS90]. In a multi-agent scenario, LSD then supports the systematic analysis and

metaphorical representation of observables through which stimulus and response are mediated.

Exceptionally, LSD can be used for specification purposes, but in general it admits many

different operational interpretations, corresponding to different presumptions about the

environment in which agents interact, and the nature and reliabilit y of their stimulus-response

Figure 2-19 il lustrates how the modeller, in the role of an external observer, establishes an

LSD classification of observables in multi -agent MWDS. The blocks of definitions in the right

hand column of the figure correspond to observables that are bound to different agents (Agent 1,

Agent 2 etc.) internal to the model (‘ internal’ agents). The variables bound to an agent are

classified as state variables. Such variables reflect the properties and features that are attached to

the agent. (These variables are not normally considered in single-agent modelling since it is

unusual to take account of the state of the modeller.)

13 The term ‘definitive variable’ is used to refer to a variable in a definitive script. Unlike mathematical and
programming variables, definitive variables can be interpreted as observables (cf. Figures 2-12 and 2-17).

Chapter 2: Principles of MWDS

74

Figure 2-19: Definitive script as observer ’s model of state (‘multi-agent’ modelli ng)

The presence of agents other than the modeller in Figure 2-19, in contrast to Figure 2-18,

reflects the different perceptions of the modeller about possible instigators of change. Whereas in

Figure 2-18 the assumption is that the effect of any action of the modeller is predictable, and can

be modelled via dependencies between observables, in Figure 2-19, there are changes to

observables that cannot be attributed to the modeller’s actions. In this way, agents can be viewed

as complementary to dependencies.

In the multi -agent scenario, Figure 2-18 has a simple counterpart which shows how the

observables associated with the internal agents are classified as oracles, handles and derivates

from the perspective of the external observer. Such a classification is shown in Figure 2-20(a) for

the particular case of the electrical circuit previously used to il lustrate Agentsheets in Chapter 1

(cf. Figure 1-4). Figure 2-20(b) ill ustrates the way in which LSD can be used to classify

observables from the perspective of each of the internal agents (B, S, C and L). Figure 2-19

depicts the way in which the external observer develops a ‘personal construal’ for an internal

agent (Agent 5) in the multi -agent environment. To achieve this, the external modeller

• = ………
• = ………
• = ………
• = ………
• = ………

• = ………
• = ………
• = ………
• = ………

• = ………
• = ………
• = ………
• = ………

• = ………
• = ………
• = ………
• = ………

• = ………
• = ………
• = ………
• = ………

STATES of Agent 1

External observer
in the role of
par ticipant P

Multi -agent environment

DEFINITIVE SCRIPTS

Agent 3

Agent 4

ORACLE5

HANDLE5

ORACLE5

DERIVATE5

Agent 2

Agent 1

Agent 5 ≡ P

Chapter 2: Principles of MWDS

75

participates, or imagines participating, in the role of each internal agent to identify the oracles,

handles and derivates pertaining to that agent (cf. ORACLE5, HANDLE5, etc).

Figure 2-20: An LSD account of the electrical circuit (cf. Figure 1-4)

In building a definitive model, an LSD account is typically used as a design-sketch – not

as a complete design. The behaviour of the model to which the account refers is very open. For

instance, in the case of the electrical circuit in Figure 2-20, we can introduce the derivates

x′ is x, y′ is y

to describe the normal and typically reliable behaviour, but the light can fail , the battery may be

flat, the switch can be stuck and the cable can be cut. The interpretation of oracles in this context

is suff iciently open to correspond to unexpected situations. For instance, an oracle might only be

observed intermittently or only provide an approximate or out-of-date value. In addition, there

are other potential behaviours outside the scope of any given LSD account. For instance, in the

electrical circuit, the battery li fe depends on time.

An LSD account also makes it possible to attribute state changes to agents. For instance, in

the electrical circuit, the switch is normally operated by the user. This can be recorded in LSD by

associating a privilege to the user agent. This takes the form of a guarded action:

condition → action

where the action involves redefinitions of the values of observables and instantiation or deletion

of agents. The user’s privilege to operate the switch can be expressed:

(b) Private construal for the internal agents

STATEB: Battery
HANDLEB: x
DERIVATEB: x is (BatteryOK)? 1: 0;

STATES: Switch
ORACLES: x′
HANDLES: y
DERIVATES: y is (Switch)? x′: 0

ORACLEC: y′
HANDLEC: z

ORACLEL: z′
STATEL: Light
DERIVATEL: Light is z′?1 :0

• Battery
• x
• …

• Switch
• x′
• y

• Light
• z′
• …

• y′
• z
• …

Agent B

Agent S

Agent C

Agent L

(a) Public construed by the external observer

ORACLE

HANDLE

HANDLE
ORACLE

Chapter 2: Principles of MWDS

76

switch==on → switch=off

or – if we wish to consider the position of the user relative to the switch:

(switch==on) && (distance_between_user_and_switch<=…) → switch=off.

The set of privileges for an agent is described as its protocol. As is explored at length in

[Slade90], it is impossible to give a precise specification of the assumptions that are needed in

order to give an operational behaviour to an LSD account. By way of il lustrating some of the

issues, in the context of the electrical circuit, the switch may be attached to a timer so that it has a

privilege:

 (switch==on) && (time>time0)→ switch=off

where time0 refers to the time at which the switch was switched on. This privilege is quite

different in character from the user’s privilege to operate the switch, in that it represents a

potentially reliable stimulus-response pattern associated with the agent that is linked to the

observation of time. There is also a possibili ty of conflict in any behaviour associated with the

LSD account in this case, since more than one agent can change the same observable. The

character of an LSD account as a way of documenting interactions involving real-world

observables and agents is similar to that of Faraday’s informal – but essential – record of the

interactions with his construals, as described by Gooding in [Good90].

