Chapter 2: Principles of MWDS

2 Principles of MWDS

This chapter has two parts. The first describes the distinctive dharacteristics of a definitive script
and reviews the computer tools that have been developed at Warwick to support MWDS. The
second dscusses the principles of MWDS in single-agent and multi-agent scenarios and the use
of MWDS as a framework for the modeller’ s construal of an external situation. The chapter also

introduces the concept of an agent-oriented L SD account and its supportiverolein MWDS.

2.1 What is a definitive script?

A definitive script consists of a set of definitions. Throughout this thesis, the word ‘ definition’ is
used in a spedal sense to refer to a unidirectional functional dependency relation, and the word
‘definitive’ is to be interpreted as ‘definition-based’ . A set of dependencies represented in a
definitive script is normally acyclic (cf. Figure 1-2). A typical definition takes the form:

yis' f(X,Xe, ... Xn)

where y, X1, Xo, ..., X, are variables, f is a formula involving some algebraic operators and the
operands are the variables Xy, Xo, ..., X, Or constants. A definition is interpreted as associating the
current value of the expression on the right-hand-side (RHS) of the “is’ (f(x1,%, ... ,Xn)) with the
left-hand-side (LHS) variable (y). The asociation between values is indivisible in change. The
term‘indivisible’ is usedin this context to convey theidea that a change to the value of a variable
of the RHS affeds the value of a variable on the LHS in a fashion that permits no interruption.
This is smilar to the way that a spreadshed maintains the value in each cdl. In fact, if we
remove the tabular interface from a spreadshed, the cél names together with the formulae that

define the contents of cells (e.g. A1 = A2 + A3) can be regarded as a definitive script.

38

Chapter 2: Principles of MWDS

In MWDS, the variables onthe LHS of a definitive script correspord to observables in the
external world referent’. As explained in Sedion 1.6, the assciation between variables and
observables is established through the interaction with the model. This association is mediated
experientialy rather than abstractly spedfied. This motivates the introduction of variables in
definitive scripts that represent observables attached to the computer mode rather than the
referent. Such observables might include graphical elements, window displays and animations as
featured on a computer screen. It is for this reason that a definitive script is to be viewed as

representing the state of a computer-based artefact rather than (say) a colledion o predicates.

The term ‘definitive notation’ was first introduced in 1986 by Beynon to refer to the
syntactic forms used to describe the different kinds of variables and operators that can be used in
formulating definitive scripts. Each definitive notation is associated with perticular kinds of
variable that can appear onthe LHS and RHS of definitions. Each has its own underlying algebra
consisting of afamily of data val ues and operators on these data values. Many different definitive
notations have been developed at Warwick to serve the representation needs of various kinds of
referent (cf. Section 2.1.2). These include definitive notations based on scalars, strings and lists
as well as definitive notations to relate data elements on the screen dsplay. For instance, thereis
a simple definitive notation for line drawing where the data values are points, lines and circles,
and the operators on such data values include rotation and trandation. Because of the way in
which a definitive script is interpreted, the data values and operators featured in a definitive
notation must have an experiential significance. For abstract data values such as salars, strings
and lists, this ggnificance stems from the modeller’ s famili arity with interpreting symbolic data
(e.g. theinteger 3 or the string “hell0”) and structure (as e.g. in the database records {1, ‘Ann’,
165, {2, ‘Betty’, 153, {3, ' Catherine’, 172 in atable which records gudent’s height).

To be able to explore characteristics and features of MWDS, it is necessary to understand
the fundamental concept of ‘ definition’ and ‘ dependency’, which underlies the use of a definitive

Script.

YIn practice, e.g. in spreadsheets, the symbol equals (=) can be used to denote adefinition
2 The object or situation that is being modelled, whether aready existing o only imagined [Rus97]

39

Chaper 2: Principles of MWDS

2.1.1 The characteristics of definition and dependency

In a definition, the relationship between values is a one-way effed — if the value of the RHS is
changed, the value onthe LHS changes, but not vice versa. The values and operands that occur in
a definition can be of many different types, depending on the application. In addition, there are

essentially two dfferent kinds of definition: implicit and explicit.
e Implicit definition

A definition is implicit if its RHS is a formula that refers to one or more variables. Such a
definition establishes dependencies. changing the value of variable(s) on the RHS will
automatically affect the value of variable on the LHS. For instance, the following script consists

entirely of implicit definitions:

1. His(L+M)*N;
2. Mis (J>=0)?2: 4;
3. Jisk;

In the implicit definition o the form: y is f(xi.X2, ... X)), the value of the variable y
indivisibly depends on the current value of the expresson f(xi,x, ... ,X,). Whenever the value of
one of the variables x; changes or the formula f is changed, the value of the variable y will be
automatically updated to the value that results from the evaluation of the expression f(xy, X, ...

,Xn)-
* Explicit definition

A definition is explicit if its RHS comsists of an actual value. The value of the LHS is explicitly
given and no dependency is involved. For instance, the following script consists entirely of

explicit definitions:

Ais 6;

B is “hello”;
Cis 2.34;
Dis[12, 29];

PowbdpE

Because scripts can contain implicit definitions, the current value of a variable @an be undefined.
Sometimes it is useful to explicitly asggn an undefined value to a variable. For this purpose, the

symbol * @' is used to denote ‘ undefined'.

Explicit definition has sgnificantly different semantics from a @nventional assgnment in

that a change to the actual value of a variable @n cause a change to the values of other variables

40

Chapter 2: Principles of MWDS

that depend upon it. For instance, in the following scripts, the assgnment to A (at line 7) affects

the val ue of the variable sum:

5. sumis A + 10;
6. writeln(sum);

16
7. Ais-10;
8. writeln(sum);
0

The definitions of A at lines 1 and 7 above illustrate the two possble interpretations of a
definition. The first definition of A is part of a definitive script, the set of definitions at lines 1
throuch 4, that is viewed as a representation of an external state. The value of A itself represents
the value of an external observable. The second definition of A is part of the sequence of
definitions at lines 1 through 5 and 7, that can be viewed as a redefinition that represents a
transition between external states. It can also be viewed as part of a new definitive script, the set
of definitions at lines 2 through 5 and 7. In this way, a sequence of definitions can be interpreted
as gedfying a sequence of definitive scripts, in general subject to avoiding cyclic definitions.
The terms ‘definition’ and ‘redefinition’ will be used to refer respectively to the two possble
interpretations of a definition, as part of a definitive script and as part of a sequence of

definitions.

In MWDS, definitive scripts and sequences of definitions respectively represent states and
transitions in the external world (cf. Figure 1-5). The interpretation of state is as depicted in
Figure 2-1(a): paints correspond to definitive scripts and arrows to (possble) redefinitiors.
Where two redefinitions can be performed in either order so as to achieve the same transition, as
depicted in Figure 2-1(b), it is also possble to interpret their exeadtion in parallel as a singe
atomic transition. In this way, the model enables us to dstinguish between performing two

redefinitions in either order, or ‘at the same time and this can be seen as a form of true

concurrency [LMRT9Q].
.T /i\ 17] ,\\%. /:\ """
ST A ZESRN
FAN AT
@ """") B

Figure 2-1: A transition of state in definitive scripts

41

Chapter 2: Principles of MWDS

To comprehend how the redefinition of one variable will affed others it is necessary to
have an overall picture of the dependencies between all variables. This can be supplied by a
dependency network diagram (cf. Figure 1-2). For instance, consider the following sequence of
definitions:

His (L+M)*N;
Lis9;

Nis 27;

Mis (J>=0)?2: 4;
Jis K;

Kis 14;

His (J*L) + N;

NogoprwbhE

Figure 2-2(a) gives an overall picture of the dependencies between variables established by the
definitions of H, M and J at lines 1 through 6. It also displays hierarchical dependencies between
variables, which helps in comprehending the order in which the values of these variables get
updated in dependency maintenance For instance asillustrated in Figure 2-2(a), the definition of
K at line 6 will cause updating o the values of J, then M and then H in sequence A redefinition
can also affect the dependency network diagram. For instance, the dependency network diagram
shown in Figure 2-2(a) is transformed into that in Figure 2-2(b) after the redefinition of H at line
7.

A single definition ‘diredly’ establishes a direct dependency between the variable on the
LHS and the variables on the RHS (as indicated by the solid arrows in Figure 2-2). Indirect
dependencies are ‘indrectly’ established by transitivity through chains of definitions (as
indicated by the dashed arrows in Figure 2-2). Both solid and dashed arrows indicate that the
variable at the beginning of the arrow depends onthe variable at the other end.

The open-development dependency concept (cf. Figure 1-2), which underlies the
fundamental structure of a definitive script, is ggnificant throughout this thesis. To conveniently
explain the dependency between variables, the terms ‘ dependee’ * and ‘ depender’# are introduced.
A dependee is defined as a variable, which depends on ahers (e.g. in Figure 2-2 H is a dependee
of L) while a depender is defined as a variable on which ahers are dependent (eg. L is a
depender of H). The concepts of ‘direct’ depended depender and ‘indirect’ depended depender
can be derived in a similar way to drect and indirect dependency. For instance, in Figure 2-2(a)

%Y our dependee can beinterpreted as “who depends on you”
*Your depender can beinterpreted as “on whom do you depend”

42

Chapter 2: Principles of MWDS

H isadired dependeeof L, L isadirect depender of H, J is an indirect depender of H via M and
H isanindirect dependeeof J via M.

(a): A dependency network for theinitial (b): A dependency network after
set of definitions (at lines 1 through 6) redefinition of H at line 7

Figure 2-2: The dependency networ k diagrams

The management of dependency by means of definitive scripts and redefinitions will be
referred to as the application of ‘ definitive principles . Definitive principles relate both to abstract
analysis and to practical model building. The central abstraction is that changing a value of a
depender will result in updating the value of al of its dependees (both drect and indirect). To
update the values of these variables in practice, a * dependency maintenance system’ is required.
Several prototype tools that feature dependency maintenance systems, such as ttyeden and
tkeden, have been developed under the EM projed. Various definitive notations such as Eden,
DoNaLD and Scout have also been implemented along with these tools. At this point, it is
necessary to gve abrief review of such systems and notations, which serve as the main means to

explore and exploit MWDS.

2.1.2 Review of computer support tools

This sction gives an overview of the tools and notations that have been devel oped at Warwick to
support modelling with definitive scripts. It discusses the esential features and usages that are
needed to understand the illustrative models throughout the thesis. To support MWDS, the
implementation of a dependency maintenance system to maintain dependencies and update the
values of dependees once the value of a depender is changed is necessary. The system should
contain basic features (1) that allow the modeller to define functions and triggered actions, (2)
that maintain and update dependencies, and (3) that provide an interactive environment to support

open-devel opment modelling. Where (1) is concerned:

» afunction is a user-defined operator, normally with no side-effed on state, for use in

definitions:

43

Chapter 2: Principles of MWDS

« atriggered action is a procedure triggered by variables (active values®), for instance, to
invoke a redefinition a exeaute a procedure. Actions may be used to synchronise
abstract and visual models (e.g. via procedural update of a display), or to simulate agent
actions.

Where (2) is concerned, basic dependency maintenance involves <heduling the re-evaluations of
variables in definitive scripts. Where (3) is concerned, actions are scheduled in such a way that
the user can interact in a ‘concurrent’ fashion i.e. to intervene in computer activity except where
this is indivisible. This gives a specia status to computing activity associated with the

management of definition, and so can be regarded as ‘ definition-driven’ programming®.

Many tools that have these basic features have been developed under the EM project.
However, throughaut this thesis, three Eden tools (ttyeden, tkeden and dtkeden) are mainly used.
Several definitive notations have also been developed along with these tools. The following
subsections give a short account of the historical development and the characteristics of these
threeEden toadls. Thisincludes a brief explanation of the syntax and features of several definitive

notations that these three Eden tools support.
Dependency maintenance systems

This subsedion reviews the specific features of the three Eden tools mentioned above that relate

to dependency maintenance in MWDS.
* Ttyeden interpreter

The Eden definitive notation and the Eden evaluator ttyeden were designed and developed by
Edward Yung in 1990[Yung90]. Ttyeden was the first dependency maintenance system to be
developed at Warwick. It has a basic text-based input and output environment that supports
interactive user-input. This all ows users to write scripts and doserve the effed of redefinitions in
a stimulus-response way. Ttyeden provides two built-in query features that help users to interact
with scripts. One type of query takes the form

x;

® Active value (in Al) is ameans of assciating procedures with a data value so that the procedures will be @lled
when the datais accessed o written [http://www.harcourt.com/dictionary].

® A definition causes some change of state, through definitions and actions, until a stable state and then acoepting
another definitions [Yun96, p.47]

44

Chapter 2: Principles of MWDS

where x is a variable name. It returns the defining expresson d x together with the list of direct
dependees of x (i.e. the variables that depend onx diredly). The other type of query takes the
form

writeln(x);
and returns the current value of variable x. The following listing (where script.e consists of the

definitions at lines 1 through 4) illustrates the use of these two commands.

1. aisb+c;
2. kisb*a;
3. b=5;
4. c=20;
5. 7?b;
b=5
b ~>[a, K];
6. writeln(a);
25;
7. ?a;
ais b+c;
a~>[K];
Listing 2-1: Ttyeden input and output for thefile script.e

e Tkeden

The tkeden tod is an extension o the Eden evaluator ttyeden. Tkeden was designed by Yung
[Yung92] in 1992,and wses atcl/tk library for windowing and graphical drawing. It does not only
support Eden notation, but also ather definitive notations such as DoNaLD (for 2D line-drawing)
and Scout (for screen dsplay). This enables the tool to support simple graphics and windowing

interfaces.

Tkeden has a GUI interface which provides a user-friendly environment to facilitate
MWDS activity. Asillustrated in Figure 2-3, users can input sequences of definitions, query and
redefine definitions through the ‘input window’ and view the results of their queries through the
‘output window’. The *history windov' keeps a record of the sequences of definitions and
gueries that have been input by the modeler. By inspecting sequences of definitions and
retrieving definitions that have been recorded in the history window, users can easily restore the
previous gate of the model. Users can also insped the current status of the Eden definitions
stored inside the system through the * Eden script window'. The features of tkeden that have been
illustrated here with reference to the Eden script script.e, also apply to the other definitive
notations (as represented by the radio buttons on the Input window in Figure 2-3) that tkeden

45

Chapter 2: Principles of MWDS

supports. In particular, there are counterparts for the Eden script window to dsplay the current

DoNaLD and Scout definitions.

Input window

Before redefinition 54 theden 196 Input T

of k is accepted Eile Eit Yiey ueml

Enter EDEM stateWents:
k 1z (a*h)-(34/c);

Ny S

- i i Eden script window
After redefinition of History window | P
kis accepted — - tkeden136: CommandHistory - [0 X | [— #4 tkeden136: EdenDefinitions - O X
Save Find Close | Edit Save Find Bebuild Update
Output window o 3e bros Close
iz b*a; -
’El-w vt <6 E 3;:%]; gs};:mgmput
2 Eile Owotions Help c = ZE;
jaratsribeen L5 tkedan | h; & is (aeB)- (3470);
b=5 k is [a*b]-(34/c);
b “> La. k1: /= b last changed by input =/ / f
a EI N . —

AN
|Inputde‘initionsasasequmce| | Input definitions as script |

Figure 2-3: MWDSin tkeden
» Dtkeden

Dtkeden, developed by Sun [Sun99], is an extension of tkeden that provides a distributed script
feature. Within the dtkeden environment, scripts can be passed from one machine to ahers via
different modes of distributing scripts, such as‘Normal’, ‘ Interference’, ‘ Broadcast’ and ‘ Private
mode. Dtkeden inherits all the features of tkeden and has sveral addtional features. One
additional feature that has been widely used in many models discussed in this thesis is ‘virtua
agency’. The virtual agent concept is used to automatically generate a large number of similar

definitions.

So far several hundred models have been implemented under these three systems and
based on definitive notations that they support — of these, many have been preserved, and in some
cases reused. About a dozen of these models are eplicitly discussed in this thesis — for
convenience, brief descriptions of these models are given in an Appendix to the thesis. The
models are also avail able together with tutorials and additional documentation in the form of a
webpage (cf. [ModelWeb]). Eden, DoNaL D and Scout are the three main definitive notations in
which most of the models are written. The next subsection gves a brief introduction to the design

and implementation of the principal definitive notations used in thisthesis.

46

Chapter 2: Principles of MWDS

Definitive notations and their evaluation

So far, we have emphasised the role of the three Eden tools as dependency maintenance system
for MWDS. In practice, many cther features are neaded to gve full support for MWDS and more
general model-building using definitive principles. The syntax and essential features of severa
definitive notations developed at Warwick to represent various observations and perspedives on
computers are discussed in this sedion together with the principal programming constructs used
to support their evaluation in Eden. The notations considered include the first definitive notation
ARCA for displaying and manipulating combinatorial diagrams, Eden for general-purpose
modelling, DoNaL D for 2D line-drawing, Scout for window display, Eddi for database modelling
and Sasami for geometric modelling.

e Eden —an Evaluator for DEfinitive Notations

Eden was first designed and developed by Yung [YY 88] in 1987 as a general-purpose definitive
notation and interpreter. It was initially devel oped with the implementation of definitive notations
in mind. The Eden interpreter provides a ‘hybrid' programming tool that all ows definitive and

procedural paradigms to be combined.

The Eden syntax and chta types are similar to those in C. The basic Eden programming
constructs are f or, whi |l e and i f, and the main types for variables are f| oat , i nt eger,
stringandli st. Eden lists can be nested and non-homogeneous in type. In aher wordsiit is
not necessary that all variables in the list have the same type. Moreover Eden has dynamic
typing. Eden variables do not need to be dedared before they are defined; they are dynamically
typed according to the type of actual values that are assgned to them through definition.
Variables can be defined implicitly by aformula:

eg.visf(a, b, ¢
or defined explicitly to the current value of an expresson:
eg.v="f(ab,c)

There are three abstract programming features in Eden: definitions, functions and actions.

Definitions are spedfied and i mplemented according to the principles described in Section 2.1.1.
The Eden interpreter maintains the values of definitive variables automatically, and records all
the dependency associated with a definitive script.

47

Chapter 2: Principles of MWDS

Functions are used to introduce user-defined gperators into definitions. The way in which Eden

functions are specified is smilar to that used in a procedural program. For instance:

func sum {
para Ist;
auto i, result;
result=0;
for(i=1;i<=Ist#;i++)
result += Ist[i];
return result;
}

specifies alist summing function that can appear on the RHS of a definition e.g.
total is sum(data);.
Actions are ‘triggered procedures which can be specified via:
proc proc_name: <triggering variables(s) as comma separated list>{

<redefinitions etc to be performed when one or more of the triggering variables is
touched>

}
The procedure is invoked to perform its action whenever any one of its triggering variables is
redefined o re-eval uated, whether or not the value of these triggering veriables is changed.

Apart from the above features, Eden provides some built-in functions that support more
advanced modeling techniques. These include, for instance, techniques to delay dependency
update, to queue actions, to deal with higher-order dependency and to generate scripts
dynamically:

- autocalc :- is a predefined boolean variable that switches the medhanism of automatically
triggering actions and updating definitions on and off;
- eager() :- isaprocedure to invoke the immediate execution of queued definitions and actions;

- execute("script”) :- isafunction that turns a “ script” (type string) to an exeautable script and

execute it;
- "string" :- thiswill turnastring into a variable name.

* DoNaLD —aDefinitive Notation for 2D Line-Drawing

The DoNaLD notation is a definitive notation for 2D line drawing. It is designed to support
interactive graphics within the framework of a general-purpose programming paradigm based
upon definitions [Bey89h]. As a definitive notation [Bey85, BABH86], DoNaLD is based upan
an underlying algebra comprising values of the basic data types: r eal , i nt eger, poi nt,
I i ne and shape, and numerous operators for combining val ues of these different types. Integer

and real are scalar values. A poi nt inthe planeis represented by a pair of scalar values {X, y}

48

Chapter 2: Principles of MWDS

or can be treated as a position vector. A | i ne is a line segment that joins two points. A shape
isaline drawing as represented by aunion o poi nt s, | i nes and sub- dr awi ngs. Thereare
also some specia predefined types such as arc, circle, el li pse, char, bool ean and
| abel . Unlike Eden, DoNaLD is a strongly typed notation. DoNaLD variables need to be
declared before they are defined. DoNaLD is implemented based on the Eden evaluator. All
DoNalLD variables are trandated into Eden variables © that each has a counterpart Eden
variable. In a DoNaLD script the equals sgn (*=') is used (in pace of ‘is) to denote definition.
The discusson of how a DoNaLD script is trandated into an Eden script will follow the

discussion of the Scout notation bel ow.
* Scout - adefinitive notation for describing SCreen layOUT

The Scout notation is designed to support the displaying o the contents and the laying out of
windows on screen. Its purposeis to present the definitive state in a user-spedfied manner andto
supplement the displayed information for other definitive notations. The notation was introduced
andimplemented by Simon Yungin 1992[Yung92].

Scout makes provision for presenting data by using definitions to describe the output
formats of a variable. With definitions, a persistent link between the internal mode and its
external representation is achieved. Moreover, the observed changes of variables can be
synchronised with internal state changes. Scout allows flexible @ntrol over output format
[Yung92] based on definitive principles. Like DoNaL D, Scout is implemented based on the Eden
evaluator. It is a strongly typed notation. In a Scout script, each variable has a counterpart
representation in the translation to Eden. The basic data types in Scout, such as wi ndows,
frames’, boxes® points, and strings, are related to designing and manipulating the

windows displayed on the screen.

The screen in Scout is an imaginary, rather than a physical screen. A mapping from the
imaginary to the physical screen is done through definition. A Scout script spedfies a single
screen that can contain many windows. Windows can be set to a ‘sensitive’ mode in arder to be
used in a user-interface (e.g. as interactive icons and buttons). A window can dsplay text, an

image or aline drawing from ARCA and DoNaLD.

" A frameis a screen area aociated with alist of boxes

49

Chapter 2: Principles of MWDS

The integration between these three notations (Eden, DoNaL D and Scout)

As mentioned before, DoNaLD and Scout are implemented using the Eden evaluator. Both
DoNaLD and Scout scripts are, in fact, trandlated into Eden scripts before being executed. The
integration between these three notations inside (d)tkeden isillustrated in Figure 2-4.

[tkeden / dtkeden)

Eden script | | DoNaLD script | [Scout script |

\
Trandated into Eden by thetrandator in (d)tkeden

4

v

Eden evaluator
_ J

Figure 2-4: The integration between Eden, DoNaL D and Scout in (d)tkeden

As mentioned previously, DoNaLD and Scout variables need to be translated into Eden

scripts. The trandation conventions are summarised in the foll owing tables.

1. The pattern for Scout and DoNaLD variables trandated into Eden

Example script Script trandated into Eden
DoNaLD table _table
table/drawer _table_drawer
Scout strl strl

2. The Eden equivalents for Scout and DoNaL D definitions and valu es

Example script Eden trandated into Eden
DoNaLD int s1=10 _slis 10;
char k="hello” _kis “hello”;
Scout string t1="good”; tl is “good”;
integer rel=2; relis 2.0;

8 A box is a rectangular block of pixels with specified the top left and bottom right corners. For instance, the

50

Chapter 2: Principles of MWDS

3. The Edentrandation of special datatypes(e.g.l i ne, poi nt, | abel andbox)

Example script Eden trandated into Eden

DoNaLD | point k1={0,10} _k1is cart(0,10);

proc P_k1: k1, A k1, DoNaLD{
plot_point(DoNaLD,& k1, &A_k1);

2
line 11=[k1,{0,20}] _l1isline(_k1, cart(0,20));
proc P_I1: 11, A_11, DoNaLD{
plot_line(DoNaLD,&_11, &A 11);

h
Scout point p1={0,0}; plis [0,0];
box bx1=[p1,{20,40}]; bx1 is formbox(p1,[20,40]);

* ARCA —andation for displaying geometric diagrams

ARCA is one of the erly definitive notations, developed by Beynon in 1983 [Bey83]. It was
originally designed to support the display and manipulation of geometric diagrams with
particular emphasis on combinatorial graphs with coloured and drected edges. It was invented as
a medium to be used (posshbly in conjunction with automated techniques) for constructing
computer representations of conneced graphs such as ‘Cayley diagrams ® and uses definitive
scripts to expressthe relationshi ps between nodes, edges and modes. ARCA includes an auxili ary
definitive notation, used to declare variables of complex type and to specify their mode of
definition. An ARCA script is more abstract than a DoNaL D script in rnature. An example of an
ARCA script will be considered in the Lines model (cf. {Lines91} in Appendix B) to be
discussed in Chapter 3.

The DoNaLD and ARCA notations are emplementary. They correspord to dfferent ways
of observing geometric structures. ARCA [Bey86] defines the abstract connectivity of a graph (in
terms of nodes, edges and vertexes), while DoNaLD scripts explicitly define geometrical

elements such aslines or points.
* Eddi —anotation for database system based on dependency

Eddi is a definitive notation which integrates the concept of dependency with a relational
database model in a similar way to Todd's ISBL [Todd76] discussed in Chapter 1 (cf. Section
1.4). The data type in Eddi is the relational table and the operators are the primitive relational

definition box1 = [pl, p2] specifies abox with pl at the top left corner and p2 at the bottom right corner.
9 “Groups and their graphs [GM65]”

51

Chapter 2: Principles of MWDS

algebra operators (cf. Section 2.1.3. Edd supports both definition and assgnment of relational
variables. Definitions in Eddi correspond to relational database views. The implementation of
Eddi is based on the Eden evaluator, and Eddi scripts are trandlated into Eden for interpretation.
An example of an Eddi script is discussedin Section 2.1.3.

* Sasami —anotation for geometric modelling

Sasami was designed and implemented by Ben Carter [Carter99]. It is a definitive notation for
modelling with boundary representations of geometry based on the OpenGL graphics API. The
basic data types in Sasami are the vertex and the polygon. Dependencies in Sasami can connect
geometric characteristics, scalar information, colour, texture and lighting attributes. Its
implementation is based on the Eden evaluator, and Sasami scripts are translated into Eden for

interpretation. A screenshot of a Sasami model is givenin Appendix B (cf. Figure B-2).
Extensionsto (d)tkeden

An important recent development has been the introduction of a parser generator, written in
Eden, by Chris Brown [Brown0Q]. This parser generator allows observation-oriented parsers to
be interactively specified and modified within the (d)tkeden environment. So far severd
notations have been implemented based on the Eden evaluator and then included into the
(d)tkeden tool. For instance the latest versions of the Eden tools allow the Eddi definitive
notation to be incorporated into the interpreter by including a specification of the Eddi parser (cf.
the procedure @l installeddi() in Figure 2-8). Variants of other programming languages that are

not definitive notations, such as SQL and LOGO, have also been implemented in this way.

2.1.3 lllustrative examples of using definitive scripts

To complement the above review of the tools and notations, some models developed wsing them
will now be discussed. These illustrate how we @n use definitive scripts in a diverse range of
applications, and particularly in those applications — spreadsheds, geometric modelling and
database — discussed in Chapter 1.

* Therole of definitive scriptsin general modelling

A spreadsheet is one of the most successul dependency-based applications. The spreadshed has
a grid initially consisting of ‘blank-input’ boxes (or so-called ‘cells) that alows users to
structure, modify, format and segment their models. It provides a goad combination of text and

graphics so that a cdl value @n be defined very compactly in the text-based formula language

52

Chapter 2: Principles of MWDS

and all cell values can be displayed on the screen. A cdl name (i.e. Al, A2) can be regarded as a

definitive variable and its associated formula & a definition.

— = screen(tkeden 1.36) < FL><| | Afullis capA==contentA; || proc init_pour : input{
Bfull is capB=contentB; updating=1;
validl is Afull; if(input==5) { ... }
valid2 is !Bfull; else option = input;
valid3 is contentA !=0; step = 0;
valid4 is contentB !=0; }
valid5 is valid6 || valid7; proc pour: step{

1:Fill & valid6 is valid3 && valid2; if(avail(option)){

- 1| valid7 is valid4 && valid1; switch(option){

case 1: contentA—; ...

}

eager(); step++; ...

}
else{ updating=0; ...}

F—— e —m——————

Figure 2-5: The Jugs model with an array of columnsto display the current values of key
variables

Figure 2-5 depicts a variant of the original Jugs model (cf. {Jugs92} in Appendix B) that is
discussed at this gage to illustrate how definitive scripts can be used to construct a model with
features similar to a spreadshed. An array of columns (highlighted by the dashed redangle) has
been added to display the current values of key variables. This array demonstrates that within
definitive scripts there is a process of updating dependency similar to that in spreadsheets. For
instance, in the model, changing the value of contentA or contentB will affect the value of other

variables.

The Jugs mode is developed wsing the tkeden interpreter. In the mode, the three
me chanisms — definitions, functions and actions — are awmbined. As illustrated in Figure 2-5, two
jugs: jug A (on the right) and jug B (on the left) are visualised, together with the set of
permissble menu gptions. Each jug has its own capacity (capA and capB) and content
(contentA and contentB). The definitions — Afull, Bfull and validl through valid7 — represent
observable states of the model. For instance, Afull defines whether jug A isfull or not.

Two types of interactions are involved in using the model. In one mode of interaction, the
users can change the state of the model through predefined appropriate actions. For instance,
users can select menu options whose validity determined by this st of definitions assciated with
the variables validl through valid7. Each menu selection triggers the Eden action int_pour to
make an automated sequence of redefinitions in action pour. Each such definition changes either
the value of contentA or contentB, or both, and consequently will affed the values of variables
that depend upon them (as listed in the dashed rectangle in Figure 2-5). As a result, the state and

visuali sation of the model are also changed. In the second mode of interaction, users can interact

53

Chapter 2: Principles of MWDS

through the Eden interface to redefine variables freely to reflect a shift in perspective on the

modd. For instance, the redefinitions

Afull is contentA == capA -1,
Bfull is contentB == capB —1,;

reflect the idea that a full jug is not filled to the brim. The latter mode of interaction gives more
flexible interaction to users since they can arbitrarily redefine a definition in an exploratory

fashion.

The two modes of interaction are respectively similar to the redefinition of a cell value
(typically) by a spreadsheet user and the redefinition of a formula (typically) by a spreadsheet
designer. In MWDS, there is not a clear distinction between the roles of explicit and implicit
redefinition. The automated sequences of redefinitions illustrated in the Jugs model are similar to
the use of spreadsheet macros.

* Therole of definition and dependency in geometric modelling.

As discussed in Section 1.3, many researchers have studied the use of definitive principles as an
underlying concept to support geometric modelling. The interactive graphics language [Wyv75]
introduced by Wyvill is one example of work in this spirit. In developing his language and
system, Wyvill aimed to provide an interactive environment in which the user can easily define,

modify and adjust geometric entities.

1 %donald" — W screen (tkeden 1.36) HETX
2 real width, doorwidth - binee E

3 boolean open !

4 line door, n1, n2

5 point hinge, lock, NW, NE, Lframe, Rframe

6 NW = {10‘90} (a) open=true

7 NE ={90,90} Lock

8 Lframe = NW+{20,0}

9 Rframe = Lframe+{doorwidth,0} — ¥ screen (tkeden 1.36) IR
10 nl = [NW,Lframe] W hinge WE
11 n2 = [Rframe,NE] Lok

12 open =true

13 width = doorwidth

14 door = [hinge, lock] (b) open=false
15 hinge = Lframe

16 doorwidth=20.0

17 lock = hinge+ if open then {0,-width} else {width,0}

Figure 2-6: Scripts and screenshots of a geometric model representing a*door’

% o6donald is used to mark that the script defined after this point isa DoNaLD script

Chapter 2: Principles of MWDS

This sction will give a simple illustration of how definitive scripts are used to support
geometric modelling. The script in Figure 2-6 defines the line drawing to represent an open door
as it might appear on an architectural plan (cf. Figure 2-6(a)). Each variable represents poi nt ,
i ne and | abel that can be mapped drectly to its referent on the visualisation o the model.
Scripts are defined in an easily interpretable way, for instance, a line consists of two points, and

changing one of these points aff ects the position of the line.

In Figure 2-6, n1 and n2, as defined at line 10 and 11, represent the sedions of wall on
each side of the door. The actual door is represented by the variable door at line 14, which is
dependent on its two end points. hinge and lock. The dependency network diagram to dsplay
the dependencies between variables can be drawn as depicted in Figure 2-7.

WALL DOOR

4 | nl | | n2 | |hinge|e| |OCk| A

|width| | open |

Figure 2-7: The dependency networ k diagram for the script in Figure 2-6

Redefining variables will cause the re-evaluation and update of the variables that depend upmn
these variables. From the diagram above, it can be seen that redefining the position of NW wiill
affect the position o all points and lines with the exception of the point NE. Changing the size of
doorwidth results in repaositioning of Rframe, lock and hence changes the size of the door.
Changing the value of open to ‘false’ or ‘true’ will repasition lock so that the visuali sation of the

door becomes *open’ and‘closed’ as $rown in Figure 2-6 (a) or (b) respectively.
* Therole of definitive scriptsin a database model

As discussed in Sedion 1-4, Codd's relational model allows attributes to be organised in a
systematic way acarding to the relationship between them. Todd [Todd76] implemented a
system to maintain relationships between data based on Codd's relational model by using
dependency (cf. ISBL discussed in Section 1-4).

The Eddi notation was developed as an extension to tkeden to illustrate how we @n use
definitive scripts to set up and query a relational database. Edd is implemented using the Eden

evaluator and can run onthe (d)tkeden systems. Eddi implements the five basic operators of

55

Chapter 2: Principles of MWDS

relational algebra — union(+), difference(-), natural join(*), intersedion(.) and selection(:) —
identified by Codd[Codd79]. The syntax of the Eddi data definition language (DDL) and cata
mani pulation language (DML) can be seen in Figure 2-8. In the panel on the left in Figure 2-8,
the first two Eddi DDL commands respectively create atable ALLFRUITS and insert values into
the table.

fruits.eddi ® otz "3
% FEile Optons Help

; jaratsriBgen ; [~ Models /ENDL /Eddi-ttyeden]$ ttyeden =
Y%eddi 212 Celoe ot i
ALLFRUITS (NAME char, BEGIN int, END int); i Tl oaLLFRUITS:
ALLFRUITS << ["granny",8,10],["lemon”,5,12]; | |[w& Vemm Tan 1 \
ALLFRUITS << ['kiwi",5,6], ["passion”,5,7]; I _W
ALLFRUITS << [‘orange",4,11], ['grape”,3,6]; | [[== 12 122 1 :
ALLFRUITS << ["lime",4,7], ["pear",4,8]; e Ve b
ALLFRUITS << ["cox",1,12], ["red",4,8]; Eraps | 2 1E
APPLE (NAME char , PRICE real, QNT int); e R
APPLE << ["cox",0.20,8],["red",0.35,4]; red t4 18 1
APPLE << ["granny”,0.25,10]; el T 2 CITRUS T3> A, PRICE S
CITRUS (NAME char, PRICE real, QNT int); NAME | PRICE |
CITRUS << ["orange",0.55,8],["kiwi",0.75,5]; rarge | 0.55 |
CITRUS << ["lemon",0.50,2]; ‘;‘;ﬁ”gfiil

Zeddi &|r EARLYCITRUS is {(CITRUS=ALLFRULTS :BEGIN<=d3}%NAME
Keddi 71> PEARLYCITRUS:

e | \ View definition
< orange |

\‘ (1 rou}
“eddi 81> CITRUS << ["lime".0,3.3]:
“eddi 91> PEARLYCITRUS:

NAME |
S \ DDL command

Lime |

(2 rows)
ecdi 101> o] =

Figure 2-8: Illustrating the use of Eddi

The panel on the right in Figure 2-8 is a snapshoat to illustrate the use of the Eddi DML. The
definition of EARLYCITRUS correspordsto arelational database view, rather than a query. The

SQL [Harr9g] equivalent of this definitionis:

CREATE VIEW EARLYCITRUS AS
(SELECT name FROM CITRUS, ALLFRUITS
WHERE CITRUS.name = ALLFRUITS.name AND begin<=4)

The use of dependency in Eddi is illustrated by adding a new variety of CITRUS named
lime (as indicated by the dashed arrow). As a result of maintaining dependencies, the values of
EARLYCITRUS are automatically updated with an additional value lime.

Definitive scripts can be used to represent diverse kinds of referent as $own through
previous illustrative models. Different kinds of representation can also be used in combination in
one ewironment, as siown in Figure 2-9. Figure 2-9(c) is extracted from a script in which the
ALLFRUITS table (Figure 2-9(a)) is defined in Eddi and the display (Figure 2-9(b)) of the data
asciated with the fruit of current interest (viz. ‘granny’) is represented using DoNalLD and

56

Chapter 2: Principles of MWDS

Scout. Thisillustrates the use of diverse definitive notations each of which has a particular rolein

representing the external referent.

] Terminal N CY Ttyeden, Eden
window Edit Options Help and Eddi
?ALLFRUITS; =
NAME | BEGIW | END | Tkeden,
dranny | 8 |12 | Tkajen' DoNal.D
Temon | 5 | 12] (b) Scout
ko qwd | & | & |
passion | 5 | 7 | . ;
orange | 4 11 ([L .
grape | 3 | & | | SEHEEN | |J|
Time | 4 | 7 |
peat | 4 | 8 | Jan Feb Mar Apr May Jun Tul Auwg Sep | Oct MNow Dec |
COX | 1 |12
red | 4 | 8 | (G Gy ‘
(©) | 9eeqd

ALLFRUITS (NAME char key, BEGIN int, END int);
ALLFRUITS << ["granny",8,10],["lemon",5,12],["kiwi",5,6] [passon”,5,7],[orange”,4,11];
%scout

point ripos={10010G};
box br1=[r1pos, ripos+{ 500,25]; Database stored in the /
window recordl = { model

type: DONALD
pict: viewl
. | Window layout |

%donald
viewport viewl

openshape barl ¥
within barl { Visualisation
label L i.e. linedrawing
int begin, end, height, length
point SE, SW, NE, NW
L = label(fruitname!, SW+{length dv 2, 5})
-} Definition for selecting
Yoeden N, o _ . . / thefruit
_barl_beginis (indexfruit==0)? 0: ALL FRUITS[indexfruit][2];
fruitnameis "granny”;
indexfruit is name2index(fruitname);
func name2index{
paras;

)

Figure 2-9: (a) the tabular view of the ALL FRUIT Srelation (b) a graphical presentation of
the fruit of current interest (i.e. ‘granny’) (c) the various extracts from types of definitive
script in the model

Routine Function
i.e. Library

2.2 Single-agent modelling

As discussed in Sedion 1.6, the wrrespondence between a definitive script and its referent is
established on a state-by-state basis (cf. Figure 1-5). The observables in the referent, and the
modeller’ s atomic interactions with the referent, have direct counterparts in the computer model.
Whereas the relation between the computer model and the external world is normally establi shed

through the precnceved — and typically publicly agreed — conventions of a closed-world model

57

Chapter 2: Principles of MWDS

(cf. Figure 1-6), the relationship between a definitive script and its referent is experiential and

essentially private and subjective.

The models discussd in the last section have demonstrated the use of definitive scripts to
directly represent various kinds of observable. MWDS is in the first instance concerned with
‘single-agent modelling’, that is, modelling passve situations in which there is no change of state
without the intervention of the modeller. Definitive scripts, in this context, represent observables
from the modeller's perspedive. Such observables can reflect the modeller’s imagination,
experience and dbservation on external real-world entities. The arrent state of a referent, as
construed by the modeller, is determined by the current values of the observables and the
dependencies that hold between them. Observable @an represent an explicit value or an implicit
value in which the value of the observable is functionally dependent on the values of other
observables. The modeller can change the state by redefining those observables. The
interpretation of this change may reflect a shift in the modeller’s viewpoint in response to new
experience, or a change in the ecternal referent. The mode can be incrementally developed
through representing the state with a set of observables, interactively changing the state,
interpreting the corresponding state and refining the state until stable patterns of state-change that
satisfy the modeller emerge. Satisfaction in this context may take many forms. redlising a
functional input-output or stimulus-response relationship, adchieving a pleasing screen layout or
tracing a target behaviour. Model building o this nature focuses on dealing with knowledge that

isembodied in, and gained through, experience of interaction with computer artefacts.

2.2.1 General characteristics of single-agent MWDS

This sction describes and illustrates how MWDS can serve the needs of single-agent modelling
that entail s private activity, personal experience and subjective construal; how situated modelling
activity is blended with the emergence of a conceptual model; and how this applies to two

different semantic relations that we identify as ‘internal’ and‘ external’.

A key idea in MWDS is that the computer model serves to represent a situation and
transformations associated with the contemplation of this sgtuation. The model is being used, not
to compute a result, or describe a behaviour, as in conventional programming, but to represent a
state metaphorically, in such the same way that a physical artefact can be used as a prototype.
The emphasis is upon representing the state so that it can be changed and interpreted by the

modeller to reflect changes bothin his perspedive and in the external referent (cf. Figure 1-5).

58

Chapter 2: Principles of MWDS

Personal everyday exploration

In MWDS, the modeller’s viewpoint on interaction with the computer model closely resembles
higher everyday interaction with an external situation. There are two comporents in the
modeller’s understanding o the situation: the immediate perception o current state and the
implicit knowledge of potential interaction (cf. Figure 2-10). The relationship between the two is
continuaudly evaolving in response to practical activities, such as experimental interaction in the
situation and exploration o the environment surrounding the situation, and conceptual activities
asociated with interpreting this experience, such as learning skills and recalling the

consequences of patterns of behaviour.

Knowledge and experience
of expectations / interactions| What the explorer
in the situation Imagines ...

!
CEplora >

Immediate perceptions —T What the explorer is
ST of current state experiencing ...

Implicit knowledge
of potential states

Figure 2-10: The explorer’sunderstanding of a situation

The richness of the relationship between immediate perception of state and implicit
knowledge of potential states depicted in Figure 2-10is made dear by considering how different
people comprehend and construe ‘the same’ external world or situation dfferently based upon
their experience and knowledge. For instance when | take my foreign friend to my country, we
are apparently in exactly the same situation but we comprehend surrounding things differently.
Asfar asimplicit knowledgeis concerned, | know the way to the local supermarket and know the
sorts of food that | can find there. | also have a richer perception o immediate state, because |
can speak and read the language and can construe the situation and interact in it more effedively.
My friend and | can herdly be viewed as ‘being in the same situation’ since | have so much more
background knowledge and experience of the environment than my friend has. However, my
friend can enhance both his implicit knowledge and immediate perception o the situation by
experimenting within the situation and communicating and i nteracting with people. Through such

activity, thereis agradual changein understanding the situation.

59

Chapter 2: Principles of MWDS

MWDS activity and everyday exploration

Figure 2-10 is drawn with everyday interaction with a situation in mind, but applies equally to
exploring the products of MWDS. When we interact for the first time with a model based on a
complex definitive script, our situation is gmilar to that of the foreign visitor to an unfamili ar
country. The modeller — in contrast to the naive observer — typically knows far more about
possble interaction with the model (in terms of potential states, activities and interpretations),
and can also interpret the visible state of the model directly. This motivates the use of definitive

scripts to build artefacts to represent our understanding of situations.

Implicit Implicit
Conceptual
knowledge of k2--3 knowledge of
model
the artefact the referent

Stuated modelling o
activity

Arefact

Creation Discovery

Figure 2-11. M odelli ng the modeller’ s understanding

Figure 2-11 shows how the activities associated with exploring a computer-based artefact
and exploring an external-world referent are integrated in MWDS. Two activiti es, whose features
are similar to everyday exploratory activities such as are described in Figure 2-10, ¢ on in
paraled. They are linked: there is a arrespondence between observables in the artefact and the
referent and also a arrespondence between expectations and interactions at the conceptual level.
They are also different: one activity involves exploring the situation and identifying the referent
and the other involves experimenting with computer-based technology to construct an artefact.
These two activities are labelled ‘Creation’ and ‘Discovery’ in Figure 2-11. MWDS involves
situated modelling activity that combines experimentation with the referent and incremental
congtruction of the artefact. Successful modelling leads to a blending between the implicit
knowledge of the artefact and d the referent in the mind o the modeller. The significance of the
artefact cannot be assessed through the immediate perception of its current state alone, but only
through the potential interactions that are associated with implicit knowledge (cf. Figure 2-10).

60

Chapter 2: Principles of MWDS

Figure 2-11 helps to explain the personal nature of building an artefact using MWDS. It is
commonly the @se that each modeller has a different degree of knowledge of a particular
situation. The modeller typically identifies observables and represents understanding based on
hig’her badkground knowledge and experience. The artefact is first designed based on the
modeller’sinitial viewpoint on the external-world state, but both the artefact and viewpoint may
change during interaction. The artefact can embody the user's observables and persona
experience as perceived and imagined. Building an artefact in this ®nse is a kind o creative
activity since it involves understanding situations, modifying the artefact and gaining new

knowledge through interaction.
Artefact-referent relationship in MWDS

There are two ways in which the artefact-referent relationship depicted in Figure 2-11 can be
related to MWDS. A definitive script can itself be viewed as an artefact whose referent is the
state of the computer as experienced by the modeller. For instance, in Figure 2-6 the definitive
script comprises DoNaLD definitions that refer to an associated visual representation on the
computer display. Alternatively, a definitive script together with the associated visible computer
state @n be viewed as an artefact whose referent is a situation in the external world. For instance,

the DoNaL D script and the associated line drawing in Figure 2-6 represents a conventional door.

Internal semantic relation

Definitive Computer state
script /\" |eg. visudlisation
€) Internal artefact Internal referent

Essential personal, because it is experientially mediated

External semantic relation

Artefact Referent
i Definitive Computer state i External
(b) | script ¢ h' e.g. visudlisation i‘{,..] > stuation

Internal artefact *. Internal referent

Essential personal, because it is experientially mediated

Figure 2-12: Two views of the semantic relation (a) within the computer state, (b) between
the model and the exter nal situation

These two views of the artefact-referent relationship in MWDS areill ustrated in Figure 2-
12.Thefirst view, depicted in Figure 2-12(a), will be described as the internal semantic relation

and the second, depicted in Figure 2-12(b), as the external semantic relation. These two semantic

61

Chapter 2: Principles of MWDS

relations loosely correspond to the two views of the concept of ‘ progran’ described by Smith in
[Smith87], namely the spedfication view and the ingredient view respedively. In the former
view, the semantics of the program refers to the computational activity that it prescribes. In the
latter view, the semantics of the program refers to the interpretation o this computational activity

in the external world.

Where the internal semantic relation is concerned, the treatment of a definitive script as an
artefact requires justification. As discussed in Sedion 1.6, dfinitive scripts are used to capture
the direct apprehension of open dependencies as experienced by the modeller. Observablesin the
external-world referent are diredly reflected in ‘the computer model’ and there are dired
counterparts in the computer model for changes to observables in ‘the external world'. On this
basis, a definitive script itself can be treated as an artefact whose current state aan be observed by
the modell er through querying variable values even in the absence of an explicit visualisation (cf.
Listing 2-1). Where there is an explicit visualisation (as in Scout and DoNaLD scripts), the
definitive script can be regarded as an artefact for which the external-world referent is the
computer display. For instance the script (a set of definitions) defines the display of the Door
model as depicted in Figure 2-6. The significance of the script as a source of experience for the
modeller is highlighted by combining the script in Figure 2-6 with the dependency graph in
Figure 2-7. Theimplicit links in the text establi shed by variable names define a physical structure
for the script that is made explicit in the dependency graph. A key idea is the physical
organisation of variables in ways that correspond to the modeller’ s view of the door and the wall
as features of the line drawing on the computer display in Figure 2-6. This view of a definitive
script as an artefact reinforces the link with the spreadsheet concept: compare the way in which

the rows and columns of an examination spreadshed are associated with students and subjeds.

The appropriate interpretation for the internal semantic relation is as a ‘ successful blend’
between the script and the external computer-state. Its success depends upan facts about the
implementation (e.g. that changing the script indivisibly affects the screen and respects
dependency) and the supporting technology (e.g. that there are ‘enough pxels for practica
purposes). This blending all ows the modeller to gain implicit knowledge of how ‘changing the
script’ and * changing the display’ arerelated. The blending between an artefact and its referent in
Figure 2-11 (as it applies to Figure 2-12(a)) also enables us to blur the distinction between *the
artefact’ and ‘the referent’ asis necessary in embedding Figure 2-12(a) into Figure 2-12(b). Such

combining o an artefact and areferent is common in everyday experience. For instance, consi der

62

Chapter 2: Principles of MWDS

the way in which a lift system is designed so that there are panels on each floor to indicate the
current position d the lift. The panel acts as an artefact whose state is indivisibly linked to the
position o thelift. This means that in practice the panel is regarded as an intrinsic part of the lift
system and the lift user make no dstinction between the actual position o the lift and the
position d thelift asindicated on the panel.

The internal and external semantic relations are respectively linked to two aspects of the
agenda for MWDS: technical and conceptual. The technical agenda is concerned with the full
exploitation o the computer as an artefact through the development of tools, notations and
techniques. The conceptual agenda is concerned with general principles and potential
applications. These two agendas interact. In making a new discovery or exploring a new domain,
we may encounter new kinds of experience. In arder to deal with the new experience we may
need to build a new kind of artefact to imitate the external-world situation. Creating new kinds of
artefact involves realising internal semantic relations between scripts and their experientia

counterparts, and for this purpose we may need to design a new tool or notation.
Inter nal semantic relation

In MWDS, theinternal representations are very significant because they are artefacts, embodying
personal observables and perceptions, for the modeller to experience This is in contrast to
traditional program semantics, where (e.g.) any two programs that have the same input-output
behaviour are regarded as equivalent. Smith in [Smith87] describes this indiscriminate
identification of programs that have the same behaviour as ‘ promiscuous modelling’, and asserts
that “although, promiscuous modelling may be helpful in answering large-scale and hence rather
coarse-grained questions, ..., it can be pernicious when one asks fine-grained questions about
control, intentional identity, and the use of finite resources.” MWDS enables the modeller to
identify and control the relationship between the script and the computer display. The blending of
the script with the computer display that results is associated with using the computer as an
instrument, as discussed in [BCH+01]. This is illustrated in [BCH+01] by considering the
computer as an instrument for clock design: the variables in the script represent observables (e.g.
the display of hour and minute hands) in the dock and a complementary set of definitions
represents dependencies that conned the paositions of the hour and minute hands to the current

time.

63

Chapter 2: Principles of MWDS

(U2V3/2)
120
120°
............................... 09 0
(@ a set of (b) a plot of 3 (c) person walking forward a unit
pixe lines distance, turning left by 120°,
forward a unit, turning left by 120°
X
(e) the result of intersection of
two circles. A and B are centre
points of circle C1 and C2
(d) an equilateral respectively
triangle

Figure 2-13: Variousrepresentations of a triangle taken from [FP389]

People perceive and represent things differently according to their different perspectives
and objectives. There is no single representation that can service all that people require. Severa
representations for a triangle, as shown in Figure 2-13, illustrate diverse possible views on
representing a triangle. Even though the external representation looks the same in each case, the
internal representation may be different. For instance, Figure 2-13 (@) is made up with a set of
pixels and Figure 2-13 (b) is defined by three lines that link coordinate points on the XY plane. In
MWDS, the internal representations of these triangles will make use of different sets of

observables.

The different internal semantic relations associated with Figure 2-13(c) and Figure 2-13(e)
areillustrated by the example scripts and snapshots corresponding to each script shown in Figure
2-14. MWDS is essentially concerned with framing the internal representation of an artefact so as
to reflect the role it has to play in representing its referent. In Figure 2-14, the two DoNaLD
scripts represent two distinct styles of triangle. One is a triangle that results from the intersection
of two circles, so that relevant observables include circles and the radii of the circles (represented
by the variable DIST1). The other triangle is designed to represent a person walking (cf. Figure
2-12(c)), so that relevant observables include variables, such as step, that represent the

movement of a person.

Each script comprises a set of observables that is required to display its corresponding
triangle. Each observable has a geometric counterpart on the display; for instance, CA and CB

refer to two circles on the figure. We can change the values of observables and this will affect the

Chapter 2: Principles of MWDS

shape of the geometric referent accordingly. For instance if the scripts are combined, the size of
the two triangles can be changed so as to be consistent with the value of the variable DIST by
defining DIST1 = DIST. Changing the value of the variable DIST will then affect the size of

both triangles.

— = screen (tkeden 1.36) =

%donald

point PA, PX, PX
circle CA, CB

PA = {350, 500}
PX ={(PA.1+PB.1) div 2, (PA.2+PB.2) div 2 + (sqrt(3)*DIST1) div2}
PB = {PA.1+DIST1, PA.2}

CA = circle(PA, DIST1) %donald

CB = circle(PB, DIST1) point pA, pX, pX

L1 =[PA, PB] line I1, 12,13

L2 = [PA, PX] PA = {350, 450}

L3 =[PB, PX] pB = {pA.1+DIST, pA.2}

pX = {(pA.1+pB.1) div 2, (pA.2+pB.2) div 2 + (sqrt(3)*DIST) div2}
11 = [pA, pA+{step*stepl, 0}]

12 = [pB, {pB.1-step*step2 div 2, pB.2+step*step2*sqrt(3) div 2}]
13 = [pX, {pX.1-step*step3 div 2, pX.2+step*step3*sqrt(3) div 2}]

Figure 2-14: A screenshot of two differ ent per spectives on representing a triangle

Exter nal semantic relation

In MWDS, the external semantic relation is at all time potentially the subject of negotiation. The
interaction between the modeller’s gate of mind and the artefact he/she is creating is dynamic,
and the meaning o the artefact is shaped as it is being developed. The Number model
{Number02} andits variants have been developed to illustrate how the model can be reshaped to
serve different external situations as they occur to the modeller. Figure 2-15 shows sveral of
these variants, such as might be used for example:

(1) By childrento learn to read and to count numbers;

(2) For diagnosing problemsin number and word recognition;

(3) For writing a cheque (either for a person o as part of a supermarket chedout);
(4) For learning to read numbersin dfferent languages;

(5) For exploring the structure of number systemsin dfferent cultures.

65

Chapter 2: Principles of MWDS

engtable

1 one
%eden 2 two
curnum = 9;
table is engtable; 11 eleven
readnum is (curnum%2100>20)? search((curnum/10)*10,table)// 12 twelve

search(curnum%?10,table): search(curnum,table);

func search{ ... }; 20 twenty
30 thirty

Figure 2-15: The seed for the Number model

All the modelsin Figure 2-16 are derived from the simple seed moddl in Figure 2-15. Initsinitial
form, the seed model establishes a dependency between a number (the variable curnum) in the
range 1 to 99 and the number as expressed in words (the variable readnum). The table, as iown
in Figure 2-15, records the association between the digit and its English reading; in this case we
are oncerned with reading numbersin English. The first appli cation of the Number model can be
used in the situation (3): the model is a comporent of a device that reads a number and
transforms it into words so that no visualisation is required. In the script in Figure 2-15, the
asumption is that the number is given abstractly (e.g. taken from a computer memory) but in
other contexts it may be more appropriate to doserve numbers as drings of digits (cf. the

cashier’ s view of the number to be entered through a keypad).

Y%eden
curnum = 8; table is engtable;

(a) — ¥ screen(tkeden 1.26) .0 _hum is (curnum/5==0)? curnum%5: curnum/5*5;
/ _hum1l is (curnum/5==1)? curnum%y5: O;

readnum is rdig1//rdig2//rdig3//rdig4//rdig5//rdig6//rdig7;

o =t %donald
O O O circlecl
O %;den

Q O O O curnum = 234567; Istnum is numtolist(curnum);
/ digl is Istnum([1]; dig2 is Isthum[2];

(b) [soreengtiecen138) |/ rdigl is (dig1>0)? search(dig, table)//search(milltable):";

234567 two hundred and thirty four thoussnd five hundred and sixty sewven |

%eden
(© = Gl s e 1) 4L~ |table s thaitable;

234567 song roy =nd see pan ha roy and jed | I
%eden

(d) — 4 screen(tkeden 1.36) :gg(ljtriul;n |s.tdlgltllltd|g|t2//td|g|t3...;

234567 song san sam mun see pan ha roy hok sib jed | 1
l%eden

= table is engtable;
(€) | — - screen(tkeden 1.36) / ———

234567 two three four thousand five hundred six ten sewven I

Figure 2-16: Several example variants of the Number model

The next development was to extend the model to deal with larger numbers. With the addition of

a smple interface (consisting o Scout definitions for displaying two windows, one to get an

66

Chapter 2: Principles of MWDS

input number and the other to dsplay the reading of that number), this model is as depicted in
Figure 2-16(b). This application can be used for both educational purposes (1) and (2) described
above — in the appropriate situations. For instance, the model might be useful to children with
basic numeracy and literacy skills and also to the people who are learning English. A major
feature of MWDS is that it can take account of the subtle effect of situation on the external
semantic relation. By way of illustration, a brain-damaged banker is recorded as being unable to
read the simple and commonest words but having no trouble at al in reading number words
[Fron02Z]. Thinking about the variety of ways in which humans might observe and interpret
numbers motivated extensions of the seed modd (including all those depicted in Figure 2-16)
that take digits rather than numbers as the basic observables. It also indicates the potential role
for presentations of numbers that are based on artefacts rather than symbols. Figure 2-16(a) is a
model for teaching children to read, to write and to count numbers that combines symbolic
representation with an artefact in a way that is characteristic of MWDS. The modification of the
model to read numbersin dfferent language (e.g. Thai) is depicted in Figure 2-16(d). To do this,
we needed to define a table (analogous to the engtable in Figure 2-15) for mapping between the
digit and its Thai reading and to include a set of definitions to specify the structure of the Thai

number system.

In practice, the various modifications of the Number model led to a series of scripts, each
referring to dfferent situations. One of these — the ‘final-version’ of the Number model —is the
basis for all the models shown in Figure 2-16. The script extracts in Figure 2-16(a) through
Figure 2-16(e) ill ustrate how the variants of the Number model can be successvely derived from
the final version by redefining variables or including a set of definitions. Note that, by redefining
the table in the model depicted in Figure 2-16(b) to thaitable, the number isread in Thai, but the
transcriptionis gill based on the structure of the English number system, as depicted in Figure 2-
16(c). A set of definitions that specifies the Thai number systemisincluded so that the model can
corredly read numbers in Thai culture, as depicted in Figure 2-16(d). Imitating the shift from
Figure 2-16(b) to Figure 2-16(c), if we redefine the table from Thai to English at this stage, the
number will be read in English, but the transcription will be based on the Thai number system, as
depicted in Figure 2-16(d). By observing the change made by a series of redefinitions from
Figure 2-16(b) through Figure 2-16(e), we @n explore the structure of number systems in

different cultures (cf. (5)). It is characteristic of MWDS that the transition from the model in

67

Chapter 2: Principles of MWDS

Figure 2-16(b) to that in Figure 2-16(c) was discovered by acddent, but turns out to be
unexpectedly useful in explaining the relation between Thai and Engli sh number systems.

The modifications described above are not exhaustive. Other simplifications could be
done: the numbers required in teaching children are very simple (e.g. in therange 1 to 10) so that
the script can be less complicated than the one required in the other variants of the model (e.g.
Figure 2-16(b) through Figure 2-16(€)). Throughait the development of the Number model, the
important issue is not so much the complexity of the modelling activity and redefinitions, but the
rich interpretations of the situations and perceptions of the modeller. By studying the script, we
can understand how the script is changed to reflect the external situation and the modeller's
perspective. For instance, the representations of the number are first based on its abstract value
(cf. Figure 2-15), then later based on the list of digits (cf. Figure 2-16). This change of
representation may be motivated by a change in situation (e.g. a number is keyed in dgit by
digit) or a change in the modeller’s perspedive (e.g. reading a digit in assciation with its

position).

In MWDS, many other instances of potential redefinition are motivated by the different
roles that the modeller can pay. Acting as a designer, he/she may change attributes such as the
colour, font and size of the number in the Number model for children (cf. Figure 2-16(a)). Acting
as a user, he/she may consider such issues as how to improve the way we key in the input number
and the presentation of the word-based output. The modeller can also act in arole that is outside
the scope of either the designer or the user, as when reconfiguring the display to convenient size
for demonstration, or introducing alternative non-standard definitions that express 1200 as
‘twelve hurdred’ . The opennessof the Number model is further illustrated by the fact that it can
be directly used in conjunction with ather models that make use of integer data values.

2.2.2 The role of MWDS in construal

It is part of human rature to seek to understand, to be able to predict and to exercise some ntrol
over the world we live in. Kelly [Kelly55] pictured this by saying that we operate as ‘ persordl
scientists’, developing implicit ‘theories’ about our experience Once ‘theories have been
proved, tested and accepted, they supply the rules that can be applied to relate and understand
behaviours of interesting domains. Before this dage is readhed, the process of observing,

expresgng and understanding problem domainsis involved.

68

Chapter 2: Principles of MWDS

In building an artefact to represent our understanding of a situation, there are two types of
situations to consider. In one type of situation (the ‘single-agent’ scenario), the modeller regards
him/herself as the sole instigator of change. In the other (the ‘multi-agent’ scenario), the modeller
observes that there are apparently changes beyond hisher control and attributes these to ather
agents. This informal clasdfication of situations is based on the modeller’s interpretation and

forms part of his/her ‘construal’, in a senseto be daborated below.

So far owr discusson of MWDS has focused onthe single-agent scenario. In this senario,
an artefact is typicaly being used interactively to stimulate thougt or to capture observations.
For instance, when using a spreadsheet as a sing e-user application in financial planning, the user
is the sole instigator of change. In the multi-agent scenario, the modeller stands in the role of an
external observer of concurrent interaction involving many agents. Building an artefact to
represent such a situation is more complicated: the modeller is not only concerned with how

he/she interacts, but also with understanding how other agents interact.

Computer model Referent

Agents

\ Situation

+ Spacefor agent
action

Variadble (=) Observable
Definition {==) Dependency

Redefinition{==) Agent action

Figure 2-17: MWDS for computer-based construal

MWDS provides a framework for bulding such artefacts. Within the artefact, it is
necessary to represent concurrent actions of several agents. Figure 2-17 ill ustrates how MWDS
can be applied in this context. In the figure, the space for agent action corresponds to the state
spacein Figure 2-1(b) and the redefinitions a and b to the redefinitions labelled 1 and 2 in Figure

69

Chapter 2: Principles of MWDS

2-1(b). Two agents A and B are acting concurrently in this space to perform the redefinitions a
and b respedively. In Figure 2-17, the definitive script represents the modeller’s view of statein

hig'her role as an external observer.

The framework for MWDS depicted in Figure 2-17 is a generic pattern for the
representation o the moddler’s understanding, or construal of a situation. The term construal
here refers to ‘sense-making’ in a very general context that embraces both single-agent™ and
multi-agent scenarios. People @n construe situations differently based on their roles and
objectives. For instance, for the artist, construal is associated with exploring and making sense of
personal experience and i magination through the aeation of an artefact. Thisistypically a single-
agent activity. The work of the playwright or novelist has a multi-agent aspect; he/she construes
fictional situations in terms of the roles of characters and how they interact. The enginee engages
with construal in connection with the design o real-world products to perform a spedfic
function. The scientist tries to understand a complex phenomenon by devising construals through

observation and experiment.

MWDS is most closdly related to the way in which the experimental scientist uses an
artefact as a means for the metaphorical representation of observables. For instance as Gooding
describes in [Good9(], Faraday constructed artefacts to represent observables such as eectrical
currents, magnetic fields and the relationships between the polarity of a magnetic field and the
direction of current. Gooding introduces the term ‘construal’ to refer to a @ncrete artefact to
embody understanding the experimental interactions such as Faraday favoured when trying to
understand complex phenomena. In emphasising the role of physical artefact in understanding,
Gooding is gressing the aucial contribution of knowledge of the physical world to scientific
theory. In a similar spirit, Feynman points out the essential non-mathematical complement to a
theory-based perspective on physics [FL S64]:

“A physical understanding is a completely unmathematical, imprecise, and
inexact thing, but absolutely necessary for a physicist”.

MWDS as depicted in Figure 2-17 offers a framework for constructing construals as
physical artefactsin the sense advocated by Gooding. It is also associated with a shift perspective
on computer science similar in spirit to what Gooding and Feynman promote for physics. In

computer science, most people tend to interpret computing in terms of a mathematical theory of

" \When applying Figure 2-17 in a single-agent scenario, the modeller replaces agents A and B

70

Chapter 2: Principles of MWDS

computation, whilst in MWDS we emphasise the embodiment of computation within the external
situation. In the context of Figure 2-17, the concepts of agent, dependency and doservable are the
key concepts in construal. Using definitive scripts as a means to construct computer-based
construals of situations asdsts the cognitive process of identifying agency, dependency and
observables. This activity relates to aspects of computing for which there is no theory, that can
only be eplored within a pragmatic framework, such as are significant in respect of pre-

articulate activities, pre-formalisation, situated modelling and personal viewpoints.

In Figure 2-17, the use of humanoid icons to depict agents is not intended to exclude
impersonal or inanimate forms of agency, but to stressa key principle of definitive scripts. All
agencies are onstrued as smilar to human agency. All state-changing agents are cnstrued as
operating through changing observables and, in their turn, responding to changes in observables.
When construing complex phenomenon, we will need to postulate observables that we annot
directly observe (e.g. electric currents). The strategy for construing such interactions in a multi-
agent scenario is described in [Bey97]:

“For inanimate agents, the stimuli and responses typically involve observables
that cannot be directly sensed and manipulated by a human agent. Knowledge about

the protocols for interaction of such agents has then to be represented in ways that
are intelligible to a human agent.”

Figure 2-17 is to be interpreted in the implicit context of the modeller's exploratory
interaction with the computer model and its referent. The aim of this interaction is to create a
model embodying relationships between observables, dependencies and agents congruent to
those that the modeller projects onto the referent. The computer model provides perceptible

counterparts for relationships that typically cannot be diredly observed in the referent.

Figure 2-17 illustrates the application o what we identify as ‘ definitive principles for the
representation o state’ [Slade89]. Throughaut this thesis, a modd that exploits definitive
principles will be referred to as a ‘definitive model’*2 Figures 2-11 and 2-12 ill ustrate the
distinctive — and, to our knowledge, otherwise unremarked — way in which the internal and
external semantic relations are treated in MWDS. On this basis, throughautt the thesis other kinds
of computer-based model will be described as ‘traditional’. In practice, many of the definitive

models that have been implemented using the (d)tkeden tool have features other than definition.

2 The term ‘mode’ is being used here in the sense asociated with open development (cf. Section 16) and does
not refer to amathematical model.

71

Chapter 2: Principles of MWDS

In MWDS, we are concerned with definitive models that — apart possbly from user-defined
operators to be used in defining formulae and some forms of construct to automate redefinition —

purely comprise definitions (* pure definitive models)) .
LSD Analysis

In interacting with an unfamili ar definitive model, the explorer (cf. Figures 2-10 and 2-11) lacks
the original modeller’ s knowledge and experience of expedations and interactions. This model
might be a construal of a multi-agent scenario (cf. Figure 2-17). To understand such a mode, the
explorer needs to grasp the original modeller’ s conceptual model (cf. Figure 2-11), identify the
agents within the model and account for their interaction. In the particular case when the explorer
is the modeller, for instance, throughait the development of an artefact, it is also important to be

able to record and document how to construe and interact with the artefact.

LSD is a specia-purpose notation designed for specifying and documenting ou
experiences, expedations and posshble interactions in the context of MWDS. It supports a form
of observation-oriented and agent-oriented analysis originally developed by Beynon in
collaboration with Mark Norris of British Telecom in 1986[BN88]. Mike Slade [Slade9(] further
elaborated on its design and characteristics as an agent-oriented notation. LSD is interpreted in

several ways according to context: for construal (an LSD ‘account’), for description and for

specification.
DEFINITIVE SCRIPTS
® A=f(CD}d—
ORACLE : i
AGENT = N
HANDLE ® B-10
v‘:HANDLEs . = .
ORACLES ™ ® C=g(F5—p
Observable N ° ?:“Hi" .
Environment

Figure 2-18: Definitive script as observer’s model of state (‘one-agent’” modelli ng)

The basic concepts of LSD will be introduced with reference to single-agent MWDS. In

this context, definitive scripts are used to document the interactions that describe and/or prescribe

72

Chapter 2: Principles of MWDS

the modeller's view of a situation. Definitive variables™® implicitly serve as parameters for
change. By interacting with the script, the modell er can infer the arrent status of the artefact and
seethe dfect of changing a parameter. Different classes of variables can be characterised from
the modeller’ s point of view. There are those variables — such as readnum in the Number model
(cf. Figure 2-16(a)) —that are implicitly defined and are subject only to indired changes of value;
these will be @lled derivates. Some variables — such as curnum whaose value is defined by the
user — are onditionally under an agent’s control; these will be @lled handles. Other variables,
such as the choice of the table, refled the external environment; they can be observed by the

modeller, but are subjed to change beyond the user’ s dired control; these will be alled or acles.

The relationship between handles, oracles and derivates is depicted in Figure 2-18 —nate
that the dassfications are not exclusive. Some variables are handles for the user, some are

oracles and the derivates indicate how these variables are indivisibly coupled in change.

In a multi -agent scenario, an additional function o LSD isto describe the roles that can be
played by the agents participating in the particular situation. LSD agents can represent both
human participants and i nanimate comporents. In kegping with the principle that all agencies are
construed as $milar to human agency, these roles are spedfied with reference to those aspeds of
the situated state to which the agent can respond and those which it can conditionally change
[BNOS90]. In a multi-agent scenario, LSD then supports the systematic analysis and
metaphorical representation o observables through which stimulus and response are mediated.
Exceptionally, LSD can be used for spedfication puposes, but in general it admits many
different operational interpretations, corresponding to dfferent presumptions about the

environment in which agents interact, and the nature and reliability of their stimulus-response

Figure 2-19illustrates how the modeller, in the role of an external observer, establishes an
LSD clasdfication of observables in multi-agent MWDS. The blocks of definitions in the right
hand column of the figure correspond to observables that are bound to dfferent agents (Agent 1,
Agent 2 etc.) internal to the model (‘internal’ agents). The variables bourd to an agent are
clasdfied as state variables. Such variables reflect the properties and features that are attached to
the agent. (These variables are nat normally considered in single-agent modelling since it is

unusual to take account of the state of the modeller.)

2 The term ‘definitive variable’ is used to refer to a variable in a definitive script. Unlike mathematical and
programming variables, definitive variables can beinterpreted as observables (cf. Figures 2-12 and 2-17).

73

Chapter 2: Principles of MWDS

DEFINITIVE SCRIPTS
o -....
STATESof Agent1l <« o« =
| ® = -Agent1
ORACLEs =
|~ " Agent2
/ ® -... .o —»
/ ° = DERIVATE5
A HANDLE; " =.Agent3
'.| | A%
‘ hd e
“ ® -—..... e
“ hd e
\
‘\
External observer ‘ T
in the role of > R
participant P ------=""""" R
* T Agent5=P
Multi -agent environment

Figure 2-19: Definitive script as observer’s model of state (‘ multi-agent’” modelli ng)

The presence of agents other than the modeller in Figure 2-19, in contrast to Figure 2-18,
reflects the different perceptions of the modeller about possble instigators of change. Whereas in
Figure 2-18 the assumption is that the effed of any action of the modeller is predictable, and can
be modelled via dependencies between observables, in Figure 2-19, there are changes to

observables that cannot be attributed to the modeller’ s actions. In this way, agents can be viewed

as complementary to dependencies.

In the multi-agent scenario, Figure 2-18 has a simple counterpart which shows how the
observables associated with the internal agents are dassfied as oracles, handles and derivates
from the perspedive of the external observer. Such a clasdfication is shown in Figure 2-20(a) for
the particular case of the dedrical circuit previously used to illustrate Agentsheds in Chapter 1
(cf. Figure 1-4). Figure 2-20(b) ill ustrates the way in which LSD can be used to classfy
observables from the perspective of each of the internal agents (B, S, C and L). Figure 2-19
depicts the way in which the external observer develops a ‘personal construal’ for an internal

agent (Agent 5) in the multi-agent environment. To adiieve this, the external modeller

74

Chapter 2: Principles of MWDS

participates, or imagines participating, in the role of each internal agent to identify the oracles,
handl es and derivates pertaining to that agent (cf. ORACLEs, HANDLE;, etc).

(b) Private construal for the internal agents

@ Battery STATE;: Battery
X HANDLEg: X
HANDLE - Agent B DERIVATEs: X is (BatteryOK)? 1: 0;
/ v ® Switch STATEg Switch
HANDLE X' ORACLEg: X'
ORACLE || VY Agents: HANDLEsy

\ V\ L DERIVATEs y is(Switch)? x": 0
yl

ORACLE z ORACLE¢: Y
\ .- Agent C HANDLEc: z
® Ligh ORACLE,: 7

z STATE,: Light

“AgentL | DERIVATEL: LightisZ?1:0

(a) Public construed by the external observer

Figure 2-20: An L SD account of the electrical circuit (cf. Figure 1-4)

In building a definitive model, an LSD account is typically used as a design-sketch — not
as a complete design. The behaviour of the model to which the account refers is very open. For
instance, in the Gase of the dectrical circuit in Figure 2-20, we @an introducethe derivates

xX"isx,y'isy
to describe the normal and typically reliable behaviour, but the light can fail, the battery may be
flat, the switch can be stuck and the @ble @n be cut. The interpretation of oraclesin this context
is sufficiently open to correspond to unexpeded situations. For instance an aracle might only be
observed intermittently or only provide an approximate or out-of-date value. In addition, there
are other potential behaviours outside the scope of any given LSD account. For instance, in the

electrical circuit, the battery life depends on time.

An LSD account also makesit posshleto attribute state dhanges to agents. For instance, in
the dectrical circuit, the switch is normally operated by the user. This can be recorded in LSD by
asciating a privilege to the user agent. Thistakes the form of a guarded action:

condition — action

where the action involves redefinitions of the values of observables and instantiation o deletion

of agents. The user’s privilege to gperate the switch can be expressd:

75

Chapter 2: Principles of MWDS

switch==on - switch=off

or —if wewish to consider the position d the user relative to the switch:

(switch==0n) && (distance_between_user_and_switch<=...) - switch=o0ff.

The set of privileges for an agent is described as its protocol. As is explored at length in
[Slade9q, it is imposshle to gve a precise specification of the assumptions that are needed in
order to gve an gperational behaviour to an LSD account. By way of illustrating some of the
isales, inthe context of the dectrical circuit, the switch may be attached to atimer so that it has a
privilege:
(switch==0n) && (time>timey) - switch=off

where time, refers to the time at which the switch was switched on. This privilege is quite
different in character from the user’s privilege to operate the switch, in that it represents a
potentially reliable stimulus-response pattern associated with the agent that is linked to the
observation o time. There is also a posshility of conflict in any behaviour associated with the
LSD account in this case, since more than one agent can change the same observable. The
character of an LSD account as a way of documenting interactions involving real-world
observables and agents is similar to that of Faraday’'s informal — but esential — record of the

interactions with his construals, as described by Gooding in [Good90Q].

76

