
Chapter 3: Abstract Definitive Modelling

77

�
 �������	��

����� ������������������� "!���#$#%���'&

This chapter introduces the Abstract Definitive Modelling (ADM) framework for MWDS in all

its aspects. The versatile use of definitive scripts in representing a variety of agent perspectives is

ill ustrated by discussing how a wide range of models can be construed as ADM artefacts. These

indicate the capacity for the ADM framework to support ‘universal agent-oriented modelling’ .

3.1 The Abstract Definitive Modelling framework

In this section, the ADM framework is motivated with reference to the wide diversity of ways of

using MWDS. Throughout the thesis so far we have shown that MWDS can be applied to both:

• open-development and closed-world modelling (cf. Figures 1-5 and 1-6) – contrast the

exploratory Number model (cf. Figure 2-16) with the program-like Jugs model subject to

the preconceived pattern of interaction supported by its graphical interface (cf. Figure 2-

5);

• single-agent and multi -agent scenarios (cf. Figures 2-18 and 2-19) – contrast the

architect’s single-agent model of the door (cf. Figure 2-6) with the user and animating

agents of the Jugs model (cf. Figure 2-5);

• internal and external semantic relations (cf. Figures 2-12(a) and (b)) – contrast the

Triangle model (cf. Figure 2-14) with the Number model (cf. Figure 2-16).

Within a multi -agent scenario, MWDS can also be used to represent:

• construal and specification (cf. Figure 2-17);

• external and internal agents (cf. Figures 2-20(a) and (b));

• distributed and non-distributed models.

Chapter 3: Abstract Definitive Modelling

78

The above review shows that MWDS is very broad and embraces both human-centred and

automatic activities. This breadth stems from the fact that the human interpreter is an integral part

of MWDS – as Figure 2-11 ill ustrates, a definitive script is not attributed an abstract meaning in

isolation from an observer and a situation. In developing the Jugs model, the modeller may be

concerned with construing possible operations and interactions involved in pouring liquid

between real-world jugs, or (as was the case in the original development [Bey89a]) with

replicating the behaviour of a procedural program. The modeller may need to project him/herself

into different agent roles, including external agents such as the user of the Jugs model (teacher or

pupil) and internal agents such as the init_pour and pour mechanisms. The purpose and the

nature of such projection frame the perspective of the modeller, the mode of observation and the

character of observables.

In MWDS, there is an essential role for three capacities of the human mind in:

• the ‘comprehension’ of state;

• the perception of continuity through change (cf. Willi am James’s concept of ‘ continuous

relation’ [James96]);

• the reinterpretation of the ‘same’ experience through its transposition to a new context

(cf. Mark Turner’s concept of ‘blending’ [Turn96]).

With reference to Figures 1-5 and 1-6, these activities correspond respectively to three

problematic issues in closed-world modell ing: combining two closed-world models into one;

referring to a state within the original closed-world model in the new revised closed-world

model; and revising the semantic relation without changing the model.

The three capacities mentioned above will be exempli fied and elaborated with reference to

an il lustrative exercise in MWDS. The first step in the modell ing exercise is to bring together the

two scripts: the Jugs and Door model as depicted in Figure 2-5 and Figure 2-6 respectively. This

involves a comprehension of state whereby the set of definitions in the two scripts are viewed as

a single definitive script to be interpreted in relation to a new situation (cf. Figure 2-11). This

reflects a commonplace human activity of bringing together disparate or spatially distributed

observables in the mind so as to form what is conceptually a single artefact. There is also

continuity in the modeller’s conception of the artefact; he/she regards the Jugs-and-Door artefact

as the Jugs artefact (cf. Figure 3-1) but having a different character corresponding to a change in

situation. The modeller makes the association between the Jugs-and-Door artefact and the Jugs

Chapter 3: Abstract Definitive Modelling

79

artefact rather than between the Jugs-and-Door artefact and the Door artefact1 because he/she

sees the potential for reinterpreting a jug as a water tank and a door as a valve within the tank.

This potential is realised in MWDS by making two copies of the Door script to represent a valve

for each tank and pasting the corresponding line drawings over the bottoms of the jugs. The final

step in the modell ing exercise is to establish dependencies between the open/closed status of the

valves and the validity of menu options. This involves the invention of a suitable construal, such

as: You cannot fill tank A or pour from tank B to tank A when valveA is open and vice versa.

The above agenda applies recursively via projection onto other agents’ roles. Such

projection is the essential principle in construing agency associated with the situated model.

There are many ways to construe the situation and this leads to an enormous variety of different

ways of viewing agents and agency.

Figure 3-1: The Jugs-and-Door artefact

Agents as active instigators of change: In construal, a primary activity is attributing state-

change to agents. For instance, when the valve opens we will expect the tank to empty. This can

be interpreted as an event (‘ valve A opens’) such that the jug empties. This can be expressed

using an LSD protocol:

(valveA_opens) && (contentA>0) → contentA=contentA-1;

In this interpretation, the context for observation is such that a “ valve-opening event” is

meaningful, and the valve-opening action is attributed to valve A as an agent. The modeller’s

likely purpose is explanation (‘ tank A empties because valve A opens’) . An alternative way of

observing the situation might correspond to an expectation (‘ tank A empties when valve A is

open’) , rather than an explanation, that can be conveniently expressed using an LSD protocol:

(valveA==open) && (contentA>0) → contentA=contentA-1;

Whereas the event valveA_opens presumes observation of motion, the observation

valveA==open can be performed statically.

1 Associating the Jugs-and-Door artefact with the Door artefact might be interpreted as ‘making a cupboard’.

Part of the
Door model

valid1 is (valveA==closed) && !Afull;
valid2 is (valveB==closed) && !Bfull;
valid5 is …

Chapter 3: Abstract Definitive Modelling

80

Automatic agents and circumscribed change: The LSD account in Figure 3-2 is the

counterpart of the tkeden implementation of the Jugs program depicted in Figure 2-5. It

documents the state-changing protocols of agents that the modeller devises for manipulating the

jugs in order to specify the init_pour and pour actions in the tkeden implementation. The

modeller develops this account of the necessary agents by projecting him/herself on each agent’s

role. In this case, the LSD account can also be viewed as a program specification (cf. Slade

[Slade89]).

Figure 3-2: An LSD account/specification of the Jugs model/program

Passive agents and latent change: In an LSD account, we can have LSD agents without any

privileges. The grouping of observables into the states of a single agent still has a purpose, for

example in identifying objects as groups of observables that come in to and go out of existence

together. Agents without protocols can be viewed as passive agents, but they may still play the

key role in maintaining state (cf. the Battery and the Light in Figure 2-20). In the course of model

development, an agent may migrate from passive to active. For instance, the bottom can fall out

of a jug when the level of liquid is too high.

The computer as an agent: In MWDS, the modeller is centrally concerned with the role of the

computer as a state-changing agent. The emphasis is on how the internal semantic relation can be

crafted by using appropriate definitive notations and the external state-generating capabiliti es of

the machine. This use of the computer as an instrument [BCH+01] is as much art as science. By

way of ill ustration, pasting the window that contains the Door model onto the Jugs model to form

the artefact depicted in Figure 3-1 exploits an incidental feature of the design of Scout windows

in an opportunistic way. The kind of definitive script used may also reflect the different

capabiliti es of notations and devices available to the modeller (cf. the text interface for the jugs

on ttyeden, as depicted in Figure 3-3).

 agent jug-user{
 handle (int) capA,
 (int) capB,
 (int) input
 protocol
 valid1 → input=1;
 valid2 …
 }

 agent pour{
 handle (int) contentA,
 (int) contentB,
 (int) step,
 (int) updating
 oracle (int) option,
 (int) step
 protocol
 (option==1)&&(valid1) →
 contentA=contentA+1;

 pour();
 option==2 …
 }

 agent init_pour{
 handle (int) step,
 (int) option,
 (int) updating
 oracle (int) input,
 (int) step
 protocol
 input==1 → updating=1;
 option=1;
 pour();
 input==2 …
 }

Chapter 3: Abstract Definitive Modelling

81

Figure 3-3: Screenshot and script extract for the text-interface Jugs model

The modeller as an agent: The role of the modeller is very rich in MWDS since he/she can take

various forms of an agent during modelling such as the role of:

• an external observer or interpreter. The modeller comprehends what is going on in the

artefact with reference to his/her observation and perception. These can be influenced by

many factors such as his/her physical abilit y (e.g. whether they are colour-blind) and

his/her personal experience, expectation, and knowledge of interactions in the situation.

All these issues contribute to effective and repeatable experiments. They can also lead to

the identification of reliable patterns of interaction between agents. As the models

discussed above il lustrate, the external observer’s construal may include elements of

open exploratory interaction and closed program-like behaviour.

• an actor or participant. In this role, the modeller construes a multi-agent situation from

the perspective of an internal agent. If the modeller is an external observer of

(respectively, a participant in) the situation, this demands an abili ty to project

him/herself as an internal agent (respectively, an external observer) to view and see

things from the point of view of that agent. Such projection involves issues such as

his/her powers of imagination, speed of response, and skill in observation. In open

development, the modeller can assume the role of a super-agent in which he/she can

arbitrarily change and redesign other agents’ roles and can also act as a meta-level agent

who resolves conflict and synchronise actions.

• a director. In this role, the modeller directs the actions of internal agents in executing a

specific process. This activity is like directing a play or the manual execution of a

concurrent program. The modeller has the freedom to intervene and interrupt the running

model. This is very useful when we want to understand, debug and experiment with

processes in the model.

_display is displayabove(jjt, menuform);
jjt is displayrt(jugA, displayrt(jugB,displayrt(targt,statt)));
jugA is jugdisplay(height,capA,widthA,contentA);
func jugdisplay{
 auto s,i;
 for(i; ;){ append s, jugline(i-1,…)} return t;
}
func jugline{
 auto t, r, s, c;
 r = repchar(‘ ’ , $3-1); …
 t = r // c // s // c // r;
 return t;
} ;
func repchar{} ;
func displayabove{ } ;
…

Chapter 3: Abstract Definitive Modelling

82

The discussion so far shows that MWDS is very broad and flexible and it is useful to have a

framework in which to consider the above agenda in a coherent way.

The Abstract Definitive Modelling (ADM) framework

We shall describe an abstract framework for MWDS in all it s aspects by revisiting the ‘abstract

definitive machine’ (adm). The adm concept was first developed in connection with the possible

use of LSD for concurrent systems specification and the semantics of Eden programming. It was

first proposed as an abstract machine model for conventional applications (viz. specifying the

behaviour of concurrent systems and ‘definitive programming’) of MWDS. In the process of

investigating these applications, the adm emerged as ‘ more than a machine’ and ‘ not of its

essence machine-like’ [Slade90]. (In MWDS, if we try to give a closed-world semantics, we limit

our perception of the external world and lose the essential access to open-ended experiment.) We

will use the adm here as a setting in which to frame all the diverse uses of MWDS. When the

adm is used in this way, it is no longer appropriate to regard it as an abstract machine. In this

context, we shall instead adapt the acronym ‘adm’ and adopt the acronym ‘ADM’ to refer to the

‘Abstract Definitive Modell ing’ framework. The Abstract Definitive Modell ing framework is a

very broad concept that can be viewed from both a machine perspective (when it corresponds to a

machine architecture based on MWDS) and a human perspective (when it corresponds to a

conceptual framework for multi-agent construal).

Figure 3-4: The ADM from the machine perspective

An ADM artefact consists of instances of entities. Each entity comprises a set of

definitions and a set of actions and each instance of that entity has an identifying name. Each

Instances
of entities

Name1

Definitive script Latent actions

 Definition set k Action set k

 Definition set 1 Action set 1

 Definition set 2 Action set 2Name2

Namek

 guard1 → (redefinition | creation | deletion)* ;
 guard2 → (redefinition | creation | deletion)* ;
 …

 variable1 = expression1;
 variable2 = expression2;
 …

� � � � � � � � � � � � � ���

Chapter 3: Abstract Definitive Modelling

83

action is a guarded sequence of redefinitions, entity invocations or deletions (cf. Figure 3-4). The

ADM artefact is only meaningful in relation to a human interpreter. The primary role of the

interpreter is in bringing together the set of definitions associated with entity instances in the

artefact so that they are being viewed as a single definitive script (cf. the discussion of

comprehension of state above).

The ADM artefact is a representation of a pure definitive model that is richer than an un-

annotated definitive script. There is no direct translation from an LSD account to an ADM

artefact, but there is a loose correspondence between agents and entities, protocols and actions,

and derivates and definitions. With reference to Figure 2-11, the ADM enables us not merely to

represent features of an artefact in isolation but also in the context as established by the

modeller’s implicit knowledge and orientation towards the situation. In particular, an ADM

artefact can represent a current state with reference to what the observer associates with the state

of, and interaction with, the definitive script. How we observe the referent and how we interpret

actions in the external world depends on the context and purpose of the modell ing. In construing

situations we are concerned with attributing change to agent actions. In specifying a system we

are concerned with prescribing agent actions.

Figure 3-5: The ADM from the human perspective

The simple view of the ADM depicted in Figure 3-4, where the modeller’s role is

restricted to that of an external observer, is associated with multi-agent scenarios where the

concurrent interaction of the agents is essentially circumscribed. In such a scenario, the

relationship between the modeller and the ADM artefact is similar to the relationship between the

user and a traditional application. In interpreting the ADM as a machine (viz. the adm), we regard

Instances
of entities

Name1

Definitive script Latent actions

 Definition set k Action set k

 Definition set 2 Action set 2Name2

Namek

� � � � ���

Modeller
 Optional modeller Actions at the
 characteristics modeller’s discretion

 Definition set 1 Action set 1

Modeller as actor

Modeller as
director

Modeller as
observer � � � � � � �

Chapter 3: Abstract Definitive Modelling

84

the actions as guarded sequences of commands to be executed when guards are true in the

definitive script. The adm was first developed as an abstract model for parallel computation

based on the notion of concurrent redefinition depicted in Figure 2-1. This is described in

[BSY89] where the use of the adm to represent a systolic array architecture is il lustrated.

User interaction in the adm embraces activities such as the manual execution and

debugging of a program – the user can act as a meta-agent to direct agents in synchronising

actions and resolving conflicts. A detailed account of the role of the adm in giving an operational

interpretation to an LSD specification or to an Eden program is given in [Slade90]. Further

discussion of the adm is beyond the scope of this thesis.

In general, the modeller’s interaction within the ADM is much broader than the adm

supports. The progression of state is not normally automatic, but can proceed in an open-ended

manner under human control. All the roles of the modeller as an agent discussed above can be

interpreted within the ADM. This is illustrated in Figure 3-5 where the modeller is represented by

an additional entity in which relevant characteristics and state observables of the modeller are

represented by definitions and open-ended interactions at the discretion of the modeller are

represented by actions.

An illustrative example of an ADM artefact

The ADM artefact depicted in Figure 3-6 il lustrates how the ADM framework can be applied to

the Jugs model (cf. Figures 2-5 and 3-3). The ADM artefact enriches the definitive model

implemented in tkeden that is depicted in Figure 2-5 in several respects:

• by grouping definitions and actions into entities to represent a multi-agent construal of

the Jugs model (cf. Figure 2-19 and Figure 3-2);

• by adding actions to represent the privileges of human agents;

• by framing the stimulus-response patterns for automatic agents as actions.

The definitions and actions in the artefact all refer to the computer-based states and transitions

associated with the model. With reference to Figure 2-12, these states and transitions can

typically be interpreted in connection with both the internal and external semantic relations. This

interpretation of the definitions and actions allows us to informally classify entities according to

their role in respect of these semantic relations, as elements of the interface, of the internal state-

transition model and of the external entity-relationship model.

Chapter 3: Abstract Definitive Modelling

85

With reference to Figure 3-6, the internal agents considered serve as the interface and the

automatic mechanism. The pour agent is only intermittently alive, when it is needed to act. An

alternative interface, such as the text-based presentation of the jugs JugAtxt (cf. Figures 3-6 and

3-3), can be introduced into the artefact as a supplementary or replacement feature. The artefact

also includes entities to represent the external referent (e.g. JugA).

Figure 3-6: An ADM artefact for Jugs

The ADM artefact can be interpreted both as a specification of the Jugs program and (with

more difficulty) as a construal of a situation in which a teacher and a pupil interact with real-

world jugs. In the former (respectively, the latter) interpretation, the protocol for the pupil

corresponds to a button selection (respectively, an action such as filling a jug) and the protocol

for the teacher corresponds to parallel redefinitions of capA, capB and target (respectively,

supplying a new pair of jugs and another problem scenario). Other scenarios for use of the Jugs

artefact will be explored in Chapter 5.

< Supplementary alternative visualisation e.g. for text message on mobile phone >

 jugA is jugdisplay(height,capA,widthA,contentA); jugA touched → redisplay jugA;JugAtxt

External
entity-

relationship
model

Human
agents

 Button1 valid → select button1; …Pupil
 true → capA, capB, target=…; …Teacher

Interface
elements

 button1_colour is valid1? “white”: “black” ; valid1 → input =1;
 button1_label is “1: FillA” ;
 button1_position is …

Button1

 Button2_colour is valid2? “white”: “black” ; valid2 → input =2;
 …

Button2

 Scout definition of a window to display JugAJugAwin

 Scout definition of a window to display JugBJugBwin

Internal
state-

transition
model

 input is 1; input touched
 LIVEpour is updating; → step , option , updating = 1, …, 1;

init_pour

 input is 1; valid1 → contentA=contentA+1;
pour

{ option}

 capA=5; contentA=3; Afull is capA==contentA;JugA

 capB=2; contentB=2; Bfull is capB==contentB;JugB

 valid1 is !Afull ; valid4 is contentB != 0;
 valid7 is valid1 && valid4;

Environ-
ment

 Definition set Action setEntity
name

Chapter 3: Abstract Definitive Modelling

86

The grouping of definitions into entities and the informal classification of entities in

Figure 3-6 il lustrate a general feature of applying definitive principles in the representation of

state. Subsets of definitions can be extracted from a script and interpreted as representing a

particular feature (e.g. Button1 in the Jugs interface) or broader aspect (e.g. the interface

elements) of the entire state. Such a subset can be interpreted in isolation from the model, subject

to the modeller providing the appropriate context (see for example the line drawing extracted

from the Car History model in Section 3.2.3, as depicted in Figure 3-12). We shall refer to the

aspects of state of the Jugs model identified in Figure 3-6 in the review of definitive models in

the next section.

In Figure 3-6, the classification of JugA and JugB as referring to entities and relationships

in the external referent is a matter of interpretation. On the one hand, the definition of JugA has

more to do with an external observable than the Scout points that determine the position of the

windows that display the jugs on the screen. On the other hand, JugA can also be viewed as an

essential part of the internal model that determines the state of the screen. The two interpretations

for JugA relate to the external and internal semantic relations respectively (cf. Figure 2-12) and

they accordingly reflect the respective perspectives of a user and a programmer.

Giving a sharp characterisation of observables in the ADM artefact is problematic when

we consider that the fundamental semantic mechanism operating in MWDS (cf. Figures 1-5 and

2-11) is matching of experiences. As the overlap between the internal and external semantic

relation in Figure 2-12 shows, it is possible to blur the distinction between points and lines as

declared and defined in the DoNaLD script and the corresponding points and lines on the

computer screen (cf. Section 2.2.1). This issue relates to the difficulty of declaring a boundary for

an ADM artefact: consider for instance, the way in which the bottom of the jug A becomes

identified with the valve in the Jugs-and-Door variant of the Jugs artefact. It is important to note

the contrast between the fluid classification of observables in Figure 3-6 and the more robust

classification of observables to be introduced in Chapter 5. As will be further discussed in

Chapter 5, this is a consequence of the ‘artificial’ boundary we impose upon an ADM artefact

when viewing as a device, and the restrictions we put upon interaction with it in appropriate or

near-appropriate use.

Chapter 3: Abstract Definitive Modelling

87

3.2 Illustrating the ADM framework

The discussion of definitive models in this section has two purposes. It il lustrates the diverse and

broad ways to apply MWDS in constructing definitive models with reference to the ADM

framework proposed in the last section. It also gives more background on the practical use of

(d)tkeden as a tool for building an ADM artefact and the technical issues this raises. The models

in this section can be divided into four categories according to characteristics of their

construction and the perspective of the modeller. They deal with:

• observation and interpretation in single-agent modell ing;

• comprehension of state in multi -agent modell ing;

• multi -agent modell ing for the internal semantic relation;

• open and closed interaction.

The il lustrative models supply practical examples of all aspects of agency that can be

supported within the ADM framework (cf. Section 3.1). Roles of the modeller as an agent include

an architect, teacher, mathematician, game designer and user interface designer. The models

demonstrate different perspectives of the modeller as an external agent or a participant. They also

reflect different purposes, such as exploratory modell ing, instrument building and product design.

Different perspectives and purposes can be represented in the modeller’s interaction with a single

model and the modeller’s perception of the model can change in accordance with his/her

evolving experience.

3.2.1 Observation and interpretation in single-agent modelling

In this section we will discuss how a definitive script can be used to represent an internal

semantic relation in which the observables in the internal referents are geometric entities such as

line, point and circle, and also how these can have very different interpretations in the external

semantic relations (cf. Figure 2-12). The focus is on constructing geometric models based on a

single-agent perspective, where the agents, in this case, are an architect and a mathematician. The

virtues of using definitive scripts in representing geometric entities for an architect who wants to

design a room (the Room Viewer model) and a mathematician who needs to explore his/her

mathematical theory (the Lines model) will be discussed.

In both models, a DoNaLD script plays a crucial role in representing the inter-relationship

and dependency between geometric entities. For instance, a line is defined with reference to its

endpoints – relocating an endpoint will indivisibly affect the state of the corresponding line (cf.

Chapter 3: Abstract Definitive Modelling

88

Figures 2-6 and 2-14). A similar use of dependency in geometric modell ing for other

applications, such as Wyvill ’ s interactive graphics [Wyv75] and L.E.G.O [FPR85, FP88], has

already been discussed in Chapter 1.

The Room Viewer model – Definition-based geometric representation

The Room Viewer model { Room90} uses a DoNaLD script to represent an architect’s viewpoint

on designing a room. As depicted in Figure 3-7, the room consists of a door, a table with a lamp

on it, a desk with a drawer and a cable connected to the lamp. DoNaLD has data types such as

integer, point, line, circle, shape and label (cf. Section 2.1.2) to serve as a line-drawing tool for

the architect to design the room. Line drawings are displayed on the DoNaLD default screen

(bottom left { 0,0} , top right { 1000,1000}) in accordance with their definitions.

Definitive variables in the model create references that directly represent the architect’s

view on designing the room. These references are different from traditional procedural variables

(meaningful only during the execution of a program) and declarative variables (statically defined,

like mathematical variables, independent of program execution). Definitions are used to create

associations between values of variables in the script that reflect the architect’s interpretation of

these variables and expectations about how they are linked in interaction. This means that, by

interacting with the model we can identify the real world entity represented by particular

variables. This contrasts with the way in which the external interpretation of procedural and

declarative variables is typically established by convention.

Figure 3-7: A screenshot of the Room Viewer model and its script

%donald
point NW, NE, SW, SE # the 4 corners of room
line N1, N2, S, E, W # the 3 walls of room
openshape door # plus 2 walls and the door
within door { … }
openshape table # the definition of the table
within table{
 point NW, NE, SW, SE, centre
 SW = centre-{ width div 2,length div2}
 centre = (~/SE + ~/NW) div 1.5 …
}
openshape lamp # the lamp is on the table
within lamp{ centre = ~/table/centre …}
openshape desk # a desk with a drawer
within desk{
point NW, NE, SW, SE, centre
line N, S, E, W
 SW = ~SW+{ 15,15} …
 openshape drawer # a drawer inside the desk
 within drawer{ NW= ~/NE … }
} …

Chapter 3: Abstract Definitive Modelling

89

Features of the model

The modeller, who acts as a room designer, conceives the room as containing some furniture by

using lines to represent the boundary of the room and geometric displays to represent the

furniture in the room. Defining lines as dependent on their pair of endpoints can help in

comprehending scripts since in some contexts constructing lines in this way is consistent with the

way people conceive the structure of the line.

The model evolves gradually through an architect or the user or the designer’s interaction

with it. They can adjust and refine the design of the room on-the-fly by redefining definitive

variables either by changing their values or their definitions. Many aspects of what they observe

in a real-world situation can be represented directly in the definitive script. By interpreting the

script in Figure 3-7, we see that the designer can use the DoNaLD openshape feature to group

the furniture, for instance the desk with its drawer. The openshape door is similar to the Door

model discussed in Section 2.1.3. The architect defines the position of the furniture with

reference to the four corners of the room represented by SE, NE, NW and SW as shown in the

script in Figure 3-7. For instance, the position of the table is defined in terms of the ~/SE and

~/NW variables, which are the South-East and North-West corners of the room.

By referring to observable names and tracing the dependencies in the definitions, the script

is quite straightforward to understand. The designer can redesign the room and reposition the

furniture through redefining relevant variables. For instance, initially the position of the lamp

(represented by the circle and hexagon) depends on the position of the table (represented by a

square), when moving the table, the lamp is also moved. If the designer’s view changes to have

the lamp on the desk instead, the following redefinition is required:

/lamp/centre = /desk/centre

There is hierarchical dependency in the script in Figure 3-7. A dependency network diagram (cf.

Figure 2-2) can be drawn for this script to help in understanding the dependency between

observables.

In some respects, grouping components by using dependency in this model is similar to

the grouping feature in the MSWord drawing util ity. Selected drawing objects can be grouped

and treated as a single object. A dependency between the proportions of the selected objects is

established so that we can resize, move and delete the group object. This dependency is limited to

serve such specific purposes, whilst using a dependency in MWDS is more flexible and open.

Chapter 3: Abstract Definitive Modelling

90

The Room Viewer model is not just a static line drawing, but also offers scope for the

designer or user to explore it interactively in an experimental way. By redefining variables and

observing and interpreting the response to this interaction, he/she can understand the internal

representation of the model. The fact that the internal semantic relation (cf. Figurer 2-12(a)) is

easily interpreted plays a crucial role where interaction associated with the external semantic

relation is concerned. The script together with its display can represent an agent perspective on

the room design. The script can be viewed as representing the room as a geometric symbol and as

representing atomic transformations that can be applied to the symbol. The room can be

transformed through redefinition in ways that correspond closely to the idealised patterns of

change associated with opening a door, or moving a table. For instance, a minor modification of

the script that involves introducing a new definition of the form:

shape rotdoor
real angle
rotdoor = rot(door, door/hinge, angle)

makes it possible to model the movement of the door more realistically. The Room Viewer

model has also been extended to take account of more realistic observation and interaction in

other ways. For instance, 3D Room models, one featuring video-game style graphics, and the

other building in laws of motion and mechanics, have been developed by Carter [Carter99] and

MacDonald [Mac96] respectively (see their screenshots in Appendix B).

Variables used in the model can be viewed as representing both geometric features of the

computer display and the external entities and relationships (cf. Figure 3-6). For instance, the

point NW in the openshape table represents the North-West corner of the table as depicted on the

computer screen in Figure 3-7 and the corner of the actual table in the external referent.

The Lines model – Pure definition-based model

The Lines model {Lines91} illustrates how a definitive script can be used to represent a complex

geometrical diagram based on mathematical concepts relating to Hasse and Cayley diagrams

[GM65]. The use of a definitive script in this model is different from the Room Viewer model,

which is constructed with about 70 definitions to represent explicit real-world entities on the

computer. The Lines model depicted in Figure 3-8 is constructed with more than 400 DoNaLD

and ARCA definitive variables. Points, lines, labels and edge-coloured digraphs are defined to

express sophisticated mathematical relationships being studied by Atkinson and Beynon

[BYAB91] as experienced mathematicians. The motivation for constructing the four diagrams in

Chapter 3: Abstract Definitive Modelling

91

Figure 3-8 comes from a study of the combinatorial characteristics of simple arrangements of

lines (cf. Grunbaum [Grun72]). The definitive script used in this model can be viewed as an

interface mechanism2 [BY90] to enable a mathematician to explore and visualise the complex

relationships between lines in the arrangement.

ARCA is used to define complex combinatorial diagrams (viz. Cayley diagrams S4 and

Poset P in Figure 3-8). It has different features from DoNaLD (cf. Section 2.1.2) since its node

references are identified by indices that can be defined in terms of paths of coloured directed

edges. For instance, the ARCA definition:

ix2 = a_S4.b_S4{ix1};

identifies ix2 as the index of the node in the Cayley diagram S4 that is reached from the node

with the index ix1 by following first an edge of colour b_S4 (in this case, green) and then an

edge of colour a_S4 (in this case, red). Thus, if ix1 is 1, then ix2 is 20 and if ix1 is 2, then ix2

is 7. In contrast, DoNaLD is used to define points and lines explicitly (cf. Arrangement A and

Poset P' in Figure 3-8) without referencing abstract connections such as are associated with the

edges of a combinatorial diagram.

Both ARCA and DoNaLD have features that allow variables of complex type, such as

diagrams and shapes, to be defined both component-by-component or using a single definition.

For instance, compare the definition of the openshape variable door with the definition of the

shape variable rotdoor in the Room Viewer model. Features of this nature are needed to

address such issues as when it is appropriate to define the components of variables of a complex

type independently. Consider, for instance, the status of the ‘redefinition’ :

rotdoor/hinge = {10,50}

which presents a problem similar to that of updating through a view in a relational database (cf.

[Denn91], p. 92). In DoNaLD, the declaration of variables as shape and openshape

determines the way in which they can be defined. In ARCA, the mode of definition of variables

of complex type is itself defined using an auxili ary definitive notation (cf. [Mez87]). The use of

this feature is il lustrated in the declaration of the variable poset of type diagram in Figure 3-8.

2 The term ‘ interface mechanism’ is apt because it expresses the resemblance to a mechanical linkage that reliably
and instantaneously transmits state change from one place to another

Chapter 3: Abstract Definitive Modelling

92

The Lines model illustrates the subtlety of the visualisation process associated with the use

of a definitive notation. The diagrams that appear on the screen are approximate representations

of a family of lines that the script describes in an idealised manner. The implementation of

DoNaLD can be interpreted with reference to an ADM artefact (cf. Figure 3-4): the points and

lines in an openshape are translated by Eden definitions and associated display actions that

respectively form the definition and action sets of an ADM entity. This means that the numerical

values associated geometric entities are specified by formulae rather than by a procedural

assignment. This gives an unusual character to the geometric variables in the DoNaLD script:

they can represent idealised points and lines in the sense that the accuracy of their computer

representation can be dynamically altered without compromising continuity in the perception of

state.

Figure 3-8: A screenshot of the Lines model and its script

Features of the model

• The definitions in the script in Figure 3-8 represent abstract mathematical relationships in

terms of the complex connections amongst points and lines. In the script, there is always a

counterpart for a DoNaLD variable in its internal referent on the computer display and in its

external referent in the mind of the mathematician. For instance, variables A1 through A4

represent the four left-hand endpoints and B1 through B4 represent the four right-hand

endpoints of l1 through l4 in Arrangement A. These points are defined in terms of six real-

valued variables a12, a23, a34, b12, b23 and b34, which are key variables of the model.

%donald
viewport CONFIG
real a12,a23,a34,b12,b23,b34
point A1,A2,A3,A4,B1,B2,B3,B4
line l1,l2,l3,l4 # the 4 lines in Arrangement A
A1=Oa # Oa is a reference point, sc is a fixed value
A2=Oa+{ 0,a12 div (a12+a23+a34)*sc
… # A1-A4 are left-hand endpoints of l1-l4
l1=[A1,B1] # B1-B4 are right-hand endpoints of l1-l4
…
viewport POSET # Poset P’
real r12,r23,r34,r13,r24,r14 # Y-coordinates for 6 points in P’
int x12,x23,x34,x13,x24,x14 # X-coordinates for 6 points in P’
r12,r23,r34=a12 div b12,a23 div b23,a34 div b34
r13=(a12+a23) div (b12+b23)
…
x12=1+Z123+Z124 # Z123 defines the order of the
x13=1+(1-Z123)+Z134 # intersection of l1-l3 and l1-l2
… # from left to right
%arca
mode poset = ‘ab’ –diag 6;
mode a_poset = col 6;
for int 0 : i = 1 to 6 do

mode a_poset{ i} = int 0
od

a12

a23

a34

Chapter 3: Abstract Definitive Modelling

93

The definitions of A1 through A4 and B1 through B4 reflect the interpretation of these six

variables, which are such that a12, a23 and a34 (respectively b12, b23 and b34) are

proportional to the distances between A1 and A2, A2 and A3, and A3 and A4 (respectively

B1 and B2, B2 and B3, and B3 and B4) respectively. Changing the value of one of these key

variables results in repositioning the intersection points of the four lines and indivisibly

affects the display of all four diagrams. In a traditional approach to mathematical

visualisation, the abstract mathematical concept is typically first expressed in terms of

abstract calculation, then subsequently given a visualisation. In contrast, in MWDS in the

Lines model, the analysis of mathematical concepts is closely linked to the construction of

the geometric display.

• The interpretation of definitions in the Lines script is more complicated than it is for the

Room Viewer model. Some definitions (such as those of l1, l2, l3 and l4) are straightforward

to interpret, but some represent more abstract concepts. For instance, z123 represents the

ordering of intersection points between the lines l1, l2 and l3. The interpretation of this

definition is: z123 = 1 if and only if, reading from left to right, l1 intersects l2 before l1

intersects l3.

• A group of definitions can represent a specific concept required in the model. For instance,

the variables A1 through A4 and the variables z123, z124, etc. represent two such groups.

We can generate generic definitions and interpretations for such groups, as discussed in

[Rung97]. Alternatively, the Lines script can be interpreted based on its dependency

network, so that the hierarchical relationships between variables are displayed. For instance,

X23 is defined with reference to other variables as follows:

X23 = 2-z123+Z234
z123 = if r12<r23 then 1 else 0 Z234 = if r24<r23 then 1 else 0
r12 = a12 div b12 r24 = (a23+a34) div (b23+b34)
r23 = a23 div b23

All of the key variables will appear at the leaves of such a dependency network diagram.

Different ways of organising the script can reveal diverse interpretations.

• Experiments involving the extension and elaboration of scripts play a major role in the

development of definitive models. A script is incrementally redefined and modified whilst

observing how state changes in a stimulus-response manner. Extensions and modifications

corresponding to different views can be made at any time. For instance, a new view can be

Chapter 3: Abstract Definitive Modelling

94

introduced into the Lines model that extends the user interface to assist comprehension of the

external semantic relation by introducing dynamic annotation (cf. Figure 7-8).

• The Lines model was originally developed for arrangements of four lines. It is diff icult to

display the appropriate Cayley diagram when the number of lines is greater than 4, but the

mathematical concepts and relationships behind the model can apply to arrangements of

arbitrary size. As explored in [Rung97, ModelWeb], generalisations of the Arrangement A

and Poset P' diagrams have been constructed and used to study arrangements with up to 9

lines. The details of the technique used for script generation will be discussed in Chapter 7.

The Lines model has il lustrated how to use definitions (with no procedures or functions) to

represent line drawings in which their patterns of change correspond to the abstract mathematical

concept. The interpretation of the internal semantic relation (cf. Figure 2-12(a)) involves

understanding the mathematical concept. A group of definitions is regarded as a passive agent,

which acts through the propagation of state changes. Observable is used to represent a referent

(cf. External entity-relationship model in Figure 3-6) in relation to the mathematician’s

conception and observation. This is different from a traditional approach that typically makes use

of a control loop to manipulate with variables in calculating the output.

Summary of Section 3.2.1

A comparison of the Room Viewer and the Lines models highlights the need for radically

different kinds of internal and external semantic relations. The interpretations of the DoNaLD

line drawing as a room in Figure 3-7 and of the ARCA Cayley diagram in Figure 3-8 engage the

modeller’s mind in totally different ways. In the external referent for the Room Viewer model,

the key observables are physical real-world objects and their attributes. In the external referent

for the Lines model, the key observables are abstract mathematical relationships amongst

idealised geometric entities. These two kinds of external semantic relation demand different

qualiti es of the internal semantic relation. In effect, the computer has to play the role of different

instruments in supporting different mental activities, and this motivates the design and use of

different definitive notations.

3.2.2 Comprehension of state in multi-agent modelling

In this section we contrast two ways of using an ADM artefact to model a multi -agent scenario

with respect to two definitive models concerned with classroom interaction and railway accident

Chapter 3: Abstract Definitive Modelling

95

scenarios. The modeller projects him/herself into different agents’ roles involving in the situated

model (cf. Figure 3-5).

The Classroom Interaction model – simulation

The Classroom Interaction model { Class95} has been developed to simulate the interaction

between pupils and the teacher in a classroom, so that student teachers can use it as a simulation

to learn about the behaviour of pupils. The factors involved in the interaction between the teacher

and the pupils and amongst the pupils themselves were studied and analysed by Emma Davis

[Davis95] in consultation with Steve Russ and Sean Neill , an educational psychologist at the

University of Warwick. The pupils’ behaviour is to be affected both by the interaction given by

the user (who acts as a teacher) and by fellow class members [Davis95]. The factors that

influence the pupils’ behaviour include the personal values and personali ty of the pupils and the

social behaviour of each pupil . The model offers the feature that the student teacher can

experimentally assign different values to the parameters that are deemed to affect the behaviour

of each pupil and observe his/her behaviour, as depicted in Figure 3-9.

Figure 3-9: A screenshot of Classroom and pupil ’ s behaviour decision diagram

Features of the model

• Definitions in the script serve to represent the state of mind of the teacher and of each pupil

and the relations, such as the influence of the teacher over the pupils, the influence of the

pupils over the teacher and the influences of surrounding pupils on each pupil. Through

redefinitions and triggered actions, the pupils’ actions are simulated concurrently. The

mediation of interaction by definition is different from an object-oriented approach that uses

message passing as a communication medium between objects.

PUPIL

MemoryPersonal
Characteristics

Colleagues’
behaviour

Teacher
(a user)

Praise, Punish,
and Teach

writing, reading,
payingAttention,
sleeping,
talking, teasing,
misbehaving,
question

Task: No Task,
payAttention,
discuss,
writtenExercise,
read

Class

Chapter 3: Abstract Definitive Modelling

96

• The Classroom Interaction model is explicitly implemented as an ADM artefact. The two

main agents in the model are the teacher and the pupils. The role of the teacher is played by

the user. Two main ADM entities are introduced: Pupil, which represents a pupil agent, and

Class, which represents the classroom environment. In the model, there is one teacher but

several pupils (cf. Figure 3-9). The diagram in Figure 3-9 summarises the factors that

determine the pupil ’ s behaviour. These include the kind of instruction currently in progress

(e.g. No Task, pay Attention etc.), the current activities in which pupils are engaged (e.g.

writing, reading etc.), the responsive action from the teacher (e.g. praise, punish) and the set

of pupil ’ s personal characteristics (e.g. name, abili ty, sociabili ty, risk taking etc.). The

teacher can manually assign a value in the range 1 to 10 to each characteristic of the pupil .

• The LSD account in Listing 3-1 describes the observables required for each agent and their

classification. The modeller projects herself on different agent roles to specify such

observables (cf. Figure 2-19). The LSD account for the Agent Pupil in Listing 3-1 can be

interpreted as stating that each Pupil has state observables that capture his/her properties,

such as name, ability and activity and oracle observables that represent factors under the

control of other agents, such as instruction and teacherActivity. Based on this LSD account,

the adm specification in Listing 3-2 is developed. The entity Class in Listing 3-2 determines

the general environment of the classroom, including the interfaces through which the teacher

interacts. The entity Pupil describes the definitions and actions used to model a pupil ’ s

behaviour. This adm definition is automatically translated into Eden script by a translator

developed by Y. P. Yung and P-H. Sun so that the model can be run using the tkeden tool.

As discussed in Section 2.2, an LSD account is very broad and open-ended to interpret. The

adm definition in Listing 3-2 is just one example of how the account can be interpreted in the

adm.

• A feature of the Classroom Interaction model is the use of mechanisms based on cost-benefit

analysis in constructing the behavioural model of the pupils. Part of the motivation for the

case study was to investigate whether classical models of animal behaviour [Daw95] could

be applied in the classroom context.

Chapter 3: Abstract Definitive Modelling

97

Listing 3-1: LSD account for Classroom Interaction

Listing 3-2: The adm definition for Classroom Interaction

The model illustrates how – in principle – the roles of human agents can be embodied in

an ADM artefact. The way in which interaction is represented by a set of definitions together

with a set of actions in the Class and Pupil entities is il lustrated in Listing 3-2. The transitions

that result from agent action are triggered by redefinitions. The actions performed by one agent

may affect others’ behaviours through propagation. The LSD analysis is used in this model to aid

the modeller to interpret and document observables from an internal agent viewpoint and the adm

definition is then derived from the LSD account.

The Railway Accident model – Distr ibuted definitive model

Agent Teacher{
STATE

activity
observing
awareness
strictness
memLegth
teacherInstruction
teacherMemory

ORACLE
pupilActivity

DERIVATE
pupilCharacteristics
numberWorking

HANDLE
location
activity
memory

}

Agent Pupil{
STATE

name
ability
activity
pupilMemory
subjectInterest
sociability
riskTaking
attentionSeeking
memLength

ORACLE
instruction
teacherActivity
teacherObserving
colleaquesActivity

HANDLE
activity
memory

}

%adm
entity Class(){
definition
 numActivityAvail=8, classID=0, classSize=6, ...
action
 iClock==taskCompletionTime print(“First class guard”)
 -> task=noTask; payAttentionColour=”darkSeaGreen1”; ... iClock==...
}
entity Pupil(_id){
definition
 name{_id}=_id, activity{_id}=payingAttention, conscientiousness{_id}=medium,
 subjectInterest{_id}=medium, ...
action
 (((teacherActivity==praise)||(teacherActivity==punish))&&(teacherObserving==[classID])&&(classActivity!=0))
 -> pastResults{_id}[|classActivity|]=insertAtFront(pastResults{_id}[|Activity|],[|teacherActivity|],,e,Length{_id});
 ...,
 (((teacherActivity==praise)||(teacherActivity==punish))&&(teacherObserving==[classID])&&(classActivity==0))
 -> ...
}
startClock=0; state = “atStart”;
...
Class(); Pupil(1); Pupil(2); ...

Chapter 3: Abstract Definitive Modelling

98

The Railway Accident model { Rail99} il lustrates how it is possible to distribute different

observational viewpoints to several workstations. Definitive scripts can be sent across the

network and each machine maintains its state by running its own dependency maintenance

system. The model enables us to simulate a railway accident that occurred in the Clayton Tunnel

in 1861. Our simulation is based on an account by Rolt in [Rolt82] and is summarised in Box 1 in

Appendix B.

Figure 3-10: Screenshots of the Railway Accident model running on different machines

The perspectives of the key personnel involved in the accident scenario, together with a

global view, are displayed in Figure 3-10. Each person is modelled as an LSD agent following an

LSD account for the model that was developed by Sun [Sun99] to capture and classify each

agent’s observables and take account of issues of perception. A set of definitions and actions is

developed to represent the role and viewpoint of each of the agents. As depicted in Figure 3-11,

what each agent observes is influenced by many factors such as the position of an agent and the

position of trains etc. relative to the observer. The agents can interact with each other and their

environment by redefining the variables which they are privileged to change. Redefinitions are

transmitted across the network and, as a result of the automatic updating caused by redefinitions,

Global View

Killick1

Killick2

DriverT1 DriverT2 DriverT3

Chapter 3: Abstract Definitive Modelling

99

the state relating to each agent changes and the visualisation reflecting the agent’s view is

redisplayed.

There are typically discrepancies between the viewpoints of the different human agents

due to delays in the transmission of definitions. The global view, which is maintained at the

server of the client-server network, is updated to reflect the state-changing actions performed at

every client workstation so that, in some sense, it can be construed as giving a comprehensive

picture of the overall state. This is one view of what comprehension of state might mean, but it is

inadequate when all the different – possibly inconsistent – viewpoints are taken into account. An

alternative view is that of an external observer of the entire distributed model. In some sense, this

is the more authentic notion of comprehension of state for the railway model.

Features of the model

• In executing the model, the roles of the various agents can be played by different human

participants at the appropriate workstations. For instance, with reference to Figure 3-11, the

roles of the drivers of the trains T1, T2 and T3 depicted in the global view are played by the

participants DriverT1, DriverT2 and DriverT3 respectively, whilst the role of the signalman

Killi ck is shared between two participants Killi ck1 and Kill ick2. Each participant interprets

the situation and takes action according to the state as he/she observes. For instance, Killi ck1

will set the telegraph to ‘occupied’ when he/she sees a train entering the tunnel and will

determine the precise time at which the signal is sent.

• Sun’s LSD account on which the model is based reflects realistic common sense assumptions

about the capabilit ies of the agents in the accident scenario. For instance, Killi ck cannot see

the speedometers of the trains or the state of the telegraph in the signal box at the opposite

end of the tunnel, and can only change the status of specific artefacts associated with his

signal box. There is a subtle relationship between these capabilit ies and the capabiliti es of the

participants who play the roles of these agents. For instance, the visualisation of the model is

such that a train disappears from the screen instantly when it enters the tunnel, whereas in

reality its presence might stil l be evident from smoke and noise. Factors such as the speed of

reaction of the participants might also be more or less realistic. The physical layout of the

workstations in the distributed simulation is also significant. For instance, in practice, the

workstations have typically been configured in such a way that the participants have more

knowledge of the global situation (e.g. about the locations of trains and the intentions of

Chapter 3: Abstract Definitive Modelling

100

other agents/participants) than is realistic. An alternative way to exercise the model would

involve placing the participants in different rooms to eliminate some unrealistic elements in

the communication.

Summary of Section 3.2.2

The Railway Accident model demonstrates different aspects from the Classroom Interaction

model since it exploits ‘participatory theatre’ (as discussed in connection with Agentsheets in

Chapter 1) by distributing scripts and scenarios amongst players so that they can decide when and

how to act. The role of human decision-making and interaction is significant. In contrast, the

Classroom Interaction model is more concerned with simulating autonomous agents interacting

with each other. Only a single user is involved in interacting with the model (i.e. changing the

value of parameters and observing the effect). Taking together, the two models il lustrate a wide

variety of perspectives on comprehension of state.

3.2.3 The internal semantic relation

A major theme of MWDS is using a script to represent state as experienced or perceived by the

modeller. The modeller can take the role of an external agent (such as a designer or user), or

project him/herself into the role of an internal agent, perhaps to implement it automatically.

Observables always reflect their internal counterparts in the model, external counterparts in the

situation or both. The discussion of the two definitive models in this section will demonstrate the

use of definitions to represent user data (the Car History model) and actions to represent user

interaction (the Generic User Interface model) from the modeller’s perspective.

The Car History model

The Car History model { Car94} is one of the most elaborate definitive models built to serve an

application. It combines data storage similar to that conventionally recorded in a relational

database such as ORACLE with temporal information. The model is concerned with recording

two kinds of data about cars:

• abstract data, such as possible car types, car brands and details of which parts are

compatible with a given model of car;

• data about specific cars owned by the user, such as registration plate numbers and details

of when particular car parts are changed, as this develops over time.

Chapter 3: Abstract Definitive Modelling

101

The discussion below focuses on the data model used to record the abstract data about

cars. This relates to the six pre-defined cars (viz. Ford_Escort, Ford_Orion, Ford_Fiesta,

Ford_Granada, FIAT_Regata and FIAT_Uno) shown in Listing 3-3. Each car can have a

different style: saloon, estate, convertible, sports and van. The complete model provides features

for the user to record the history of each car they have owned, from its first purchase to its current

status. The user can interact with the model in various pre-defined ways, for example, to view a

car, to create a new car with different options (e.g. with a new registration number or with an old

number plate) and to record all changes in a log book. Definitive scripts are used to capture the

data and their relationships, and to control the visualisation of the model.

Features of the model

• The script used to represent data in this model serves a similar function to a database. A

simple list data structure is used to record all the data in a way that generalises the table in a

relational database system (cf. Figure 3-11). The variable cars in Listing 3-3 resembles a

table in the database that contains six car types (cf. Figure 3-11), each of which is

represented by using the name of the car-type (e.g. “ Ford_Escort”) in conjunction with the

Eden list variable identified by this name (e.g. Ford_Escort). The same pattern of script is

also used in recording data about models, exhausts and engines. Representing the data with

definitive scripts in this way allows flexibili ty to add relationships between data. For

instance, we might use the definition:

fe_exhaust is fo_exhaust;

 to indicate that the Ford_Escort and the Ford_Orion have the same exhaust.

Listing 3-3: Script to record details of cars

• As shown in Listing 3-3, each variable such as Ford_Escort, fe_model and fe_exhaust

represents data with reference to other variables in a hierarchical manner. For instance, with

reference to Figure 3-11, if we want to look for the components of Fe_BOSAL, which

represents one option for a Ford_Escort exhaust, we need to consult the value of feB_clps

and feB_mnt as well . The name of the variable refers to the sort of data that it represents.

Data represented in this form is open to extension in the same way that we can modify the

cars is [“Ford_Escort”, Ford_Escort, “Ford_Orion”, Ford_Orion, “Ford_Fiesta”, Ford_Fiesta,
 “Ford_Granada”, Ford_Granada , “FIAT_Regata”, FIAT_Regata, “FIAT_Uno”, FIAT_Uno];
Ford_Escort is [“model”, fe_model, “exhaust”, fe_exhaust, “engine”, fe_engine, “rest”, fe_rest];
Ford_Orion is [“model”, fo_model, “exhaust”, fo_exhaust, “engine”, fo_engine, “rest”, fo_rest];
Ford_Fiesta is [“model”, ff_model, “exhaust”, ff_exhaust, “engine”, ff_engine, “rest”, ff_rest];
fe_model is [“Mk1”, Mk1, “Mk2”, Mk2];
Mk1 is [[“saloon”, [1,1,1,1,1,1,1,1,1,1,1,1]], [@], [@], [“sports”, [1,1,1,1,1,1,1,1,1,1,1,1]], [@]];

Chapter 3: Abstract Definitive Modelling

102

file structure in a Unix system. Variables can be assigned to depend on other variables so that

the structure of the data dependency changes.

Another distinctive feature of the script in this model is that the data stored in the variables

also defines the visualisation of the model of a car. For instance, the value of the variable

Mk1 in Listing 3-3 is the list [1,1,1,…,1] which defines the line drawing for this car type and

style, as depicted on the left in Figure 3-12.

Figure 3-11: The data representation diagram for a specific car (i.e. Ford_Escort)

• The structure of line drawings for displaying the car with different styles such as saloon,

sports and convertible is very distinctive. The DoNaLD openshape car is defined, as a

template, so that the display of various car styles is determined by changing the value of

definitions in the openshape. By redefining some variables (representing properties of the

car such as wheelnut, cartype and door), the display of the conventional car is changed to the

convertible car, as depicted in Figure 3-12. This technique is similar to the use of templates

in PIC [Kern82], and to the use of parametric geometric modelling tools [SM95]. The script

can be exercised in isolation from the model. It can also be reused in other models. The

parameters used in the script for displaying a car are as shown in Figure 3-12.

 fe_BOSAL “ck Mk1 Mk2” “ front all” “middle all ” “ rear all” feB_clps feB_mnt

 fe_CBO

 fe_Walkers

 fe_Bainbridge

 “ front Mk1” “ front Mk2” “middle all ” “ rear Mk1 Mk2” feC_clps feC_mnt

 “ ck all ” “ front Mk1” “middle Mk2” “ rear Mk2” feW_clps feW_mnt

 “ front Mk1” “ rear Mk2” feBa_clps feBa_mnt

 feB_clps feB_mnt feC_clps feC_mnt feW_clps feW_mnt feBa_clps feBa_mnt

 “ front all”

 “middle all ”

 “ rear Mk1”

 “middle all ”

 “ rear all”

 “ front all”

 “middle all ”

 “middle all ”

 “ rear all”

 “ front all”

 “ rear Mk1”

 “middle all ”

 “ rear Mk1”

 “middle all ”

 “ rear all”

 A definitive variable

 An explicit value

 Mk1
 Mk2

 “ saloon” “sports” “van”
 “saloon” “sports”

 fe_model

 fe_engine

 fe_exhaust

 fe_rest

Mk2 Mk1

fe_BOSAL Fe_CBO fe_Walkers fe_Bainbridge

“GMC” “Ford”

“Ford”

model

engine

exhaust

rest

 fe_model

 fe_engine

 fe_exhaust

 fe_rest

 fo_model

 fo_rest

 fo_exhaust

 fo_engine

 ff_model

 ff_engine

 ff_rest

 ff_exhaust

 Fr_model

 Fr_engine

 Fr_exhaust

 Fr_rest

 Fu_model

 Fu_engine

 Fu_exhaust

 Fu_rest

 fg_model

 fg_engine

 fg_exhaust

 fg_rest

cars
 Ford_Escort Ford_Orion Ford_Fiesta Ford_Granada FIAT_Uno FIAT_Regata

Chapter 3: Abstract Definitive Modelling

103

Figure 3-12: Transforming a car from a saloon to a convertible

• The manipulation and ordering of display windows is based upon the variable layout, a

triggering variable that records the list of windows in the current display. When the value of

layout changes, the display of the windows will be updated automatically with reference to

this list.

The Car History model il lustrates very rich data organisation. The record of the car, the

display of the car and the data store for the car are defined using complex inter-related variables.

Using definitive scripts to represent the data and its data structure il lustrates a flexible and open-

ended means for defining the data to reflect the modeller’s viewpoint. The structure of the data

can be adapted easily to suit the user’s needs. For instance, the lists that define fe_model and

fe_exhaust can be extended to take account of the arrival of a new model or of an additional

supplier for an exhaust.

Figure 3-13: The use of Eddi in the Car History model

The Car History model was developed prior to the implementation of the definitive

notation Eddi for relational tables. No modification of the data model other than the addition of

the script listed in Figure 3-13 is needed in order to make use of Eddi to display the data store for

a car in a tabular form. This enables us to use relational queries to help in understanding and

interpreting the data.

%donald
rrdoor=0
rrwin=0
fntwn=0
cartype=3

%donald
rrdoor=1
rrwin=1
fntwn=1
cartype=1

%eddi
CARS(CARTYPE char);
%eden
func projcar{

para carlist;
auto result = [];
while(carlist!=[]{ result // [[carlist[1]]]; shift(carlist); shift(carlist); };
return result;

};
cars is [“Ford_Escort”, Ford_Escort, …];
CARS0 = CARS; CARS is CARS0 // projcar(cars);

Chapter 3: Abstract Definitive Modelling

104

The Generic User Interface model

The Generic User Interface model { GUI96} is an application that features the agent-oriented

construction of user interfaces. The modeller aimed to exploit the characteristics of definitive

scripts as a framework for agent action in constructing user interface applications. The principles

behind this use of MWDS are ill ustrated in a simple form in Agentsheets [AgentWeb], where

agent actions take the form of redefinitions in a spreadsheet-like space of cells (cf. Figure 1-4). In

such a model, simple actions can generate rich behaviours because of the many different

interpretations that a redefinition can have in the context of different definitive scripts.

Two generic user interface applications are developed, both of which have loose specific

goals (as is part of the nature of an ADM artefact). The themes behind these two applications are

‘ timeline record’ and ‘f orm design’ . They are very open-ended in character and can be used (or

modified for use) in diverse applications. These two models illustrate how the principles of

MWDS can be elaborated to extend the expressive power of the Scout definitive notation to

include features similar to Visual Basic [DDN99] and Java Swing [ELW98].

Features of the Timeline Record model

• The Timeline Record application was originally developed with a view to applying MWDS

to the maintenance of historical records relating to the artefacts (pictures, photographs,

documents and objects) in a museum or library. A screenshot of the application is depicted in

Figure 3-14. The three rectangular regions in the display represent timeline records on which

the user can specify time intervals, each represented by a bar on the record, by using the

mouse and menu buttons in combination. A file of information can be associated with each

time interval. The application allows the user to define timelines, specify and modify the

time intervals, and edit and retrieve the information in the associated files.

• In the model, several automatic internal agents involved in managing the user interaction

with the application are identified (cf. Figure 3-14). These agents serve characteristic roles;

they include Select (the recorder of the user’s options), Sensor (the sensor on a timeline

record), and Info (the reporter of the information). Each of these agents is implemented in a

different way. Select is associated with the bank of mode buttons. Sensor is associated with

the sensitive Scout windows representing timeline records. Info is associated with the Eden

showinfoscr action listed below. Select sets the observable mode according to button

selection. Sensor returns information about the timeline record, the position and the index of

Chapter 3: Abstract Definitive Modelling

105

the bar with which a mouse click is associated. The way in which these agents operate

reflects the modeller’s perspective on the user’s requirements, and is characteristic of the

generic user-interface application.

By way of ill ustration, in the current state of the application depicted in Figure 3-14, the

INFORMATION button is selected so that the value of the variable mode is set to info.

When the user clicks on a timeline record, agent Info is invoked by the triggering variable

record. In fact, all agents (e.g. NewRec, New etc.) are invoked but only the agent Info takes

action because of the value of mode. The agent Info will consult the agent Sensor associated

with the selected record and bar to determine which file is being selected by the user. The

following script defines a triggered action for the agent Info:

 proc showinfoscr: record{
 if (mode==info){

 if (record==prs1) ftomr1(inr1()); else
 if (record==prs2) ftorm2(inr2()); else
 if (record==prs3) ftomr3(inr3());

}
}

 /* prs1 indicates that the mouse is pressed on timeline record 1 etc. */

In the script above, the procedure ftomr1() (respectively, ftomr2() and ftomr3()) retrieves

the file associated with the bar indexed by inr1() (respectively, inr2() and inr3()) to

determine the right information to display. A similar technique is used in constructing the

other agents (e.g. New, NewRec etc.).

• The model illustrates a distinctive technique for using a definitive script to update the

DoNaLD script that represents a bar. Such updating is used when introducing a new bar and

moving or resizing an existing bar. The technique is exempli fied in the following script:

 proc r1drawbox{ /* procedure for manipulating a bar on timeline record 1*/
auto x, l
 x = $2; /* the position on the record of the bar selected by the user */
 l = $3; / * the offset of the mouse click in the bar: default value length of the bar */
 barnswno = $1;
 barnlenno = $1;

 `barnsw`[2] = x; `barnlen` = l; /* the back quotes (“ ` “) are used to convert */
 } /* a string to a variable name*/
 barnsw is “_bar”//str(barnswno)//”_SW”;
 barnlen is “_bar”//str(barnlenno)//”_Length”;

The definitions barnsw and barnlen are used as templates to hold a set of Eden

counterparts (e.g. _bar1_SW, _bar2_SW, _bar1_Length) for DoNaLD variables with

similar name. When the values of barnswno and barnlenno change, the values of the

strings barnsw and barnlen are also changed. The back quotes (cf. Section 2.1.2) are used

Chapter 3: Abstract Definitive Modelling

106

to turn string variables to Eden variables. For instance, if barnswno has the value 1, the

value of the variable _bar1_SW will be assigned to the value of x, and the DoNaLD line

bar1 will be displayed with this corresponding value.

The action of the agent Move, as it applies to bar 1 on the timeline record 1, illustrates a

principle similar to that used in Agentsheets. The counterpart of the dependencies in an

agentsheet are expressed in the definitions of the DoNaLD script for the openshape bar1.

The agent action takes the form of a redefinition, in this case, of the South-West corner of

bar 1, upon which the location of the bar depends. The procedure r1drawbox() generates the

appropriate redefinition according to which bar and what option has been selected by the

user. The agent move can be given a simple LSD specification: it has as its oracles the

observables the current mode, record index, bar index and mouse press and release positions

and has the South-West corner of the appropriate bar as a handle.

 Figure 3-14: A screenshot of the Timeline Record model

• The model can be used in a variety of ways. It can serve as a diary, as depicted in Figure 3-

10, or it can be used as an interactive reference to record the history of Kings and Queens of

England, as discussed in [ModelWeb]. The model can be easily modified to work in

conjunction with other models. For instance, a timeline could be used to record the display

mode of the Digital Watch model (cf. Figure 3-17) over a period of time.

Features of the Form Design model

• The Form Design model was developed after the Time Record model and its implementation

was based on reusing the techniques for agent construction discussed previously. This

Timeline record
Agent Sensor

Mode buttons
 Agent NewRec
 Agent New
 Agent Delete
 Agent DelAll
 Agent Info
 Agent Move
 Agent Resize

Information
input box
Agent Info

Agent Select

Chapter 3: Abstract Definitive Modelling

107

application is simpler than time recording. The internal agents in this case represent text

boxes, a picture box and mode buttons. Each text box can be moved around the design space

and text written on each box can be assigned to be fixed text (i.e. not editable) or data text

(cf. Figure 3-15(a)). We can also specify whether text is to be interpreted as numerical or

string data.

• In this application, on selecting option i mode, and then selecting a text box, the variables in

the defining script for the text box, together with their current values, are displayed in the

panel below the design space (cf. Figure 3-15(b)). This gives access to meta-information

about the text box. This feature enables the user to point and click at the screen to gain

information about the implementation of the text boxes. This extension is similar to special-

purpose script extension such as is discussed in Section 7.2.1.

Figure 3-15: (a) Screenshots of the form design application, (b) using i option

• As in the Timeline Recording application, this application can be adapted for use in a variety

of ways. For instance, by including a small additional script, the application can be used to

translate a basic vocabulary or to check the spell ing of words [ModelWeb]. It can also be

used to monitor how many times the user clicks on each option button. By way of

ill ustration, introducing the following script will count the number of times that the user

select the ‘FIX TEXT’ option:

fprs=0;
proc cntfprs: fixbut_mouse_1{

if(fixbut_mouse_1[2]==4){
fprs = fprs+1;
w2str = str(fprs);

}
 }

Design space

Text boxes

Chapter 3: Abstract Definitive Modelling

108

Summary of Section 3.2.3

The Generic User Interface model demonstrates different aspects from the Car History model in

representing the internal components. In the Car History model, variables and dependencies are

used to represent the data and their relationships. The major concern is on structuring the internal

data-dependency model, in this case the car database. In contrast, the Generic User Interface

model focuses on the representation of the automatic internal agents required in user-interface

applications. With reference to the structure of an ADM artefact (cf. Figures 3-5 and 3-6), each

internal agent is represented by an ADM entity: a set of definitions together with a set of actions.

3.2.4 Open and closed interaction

This section il lustrates two contrasting motivations for building an artefact. The Monotone

Boolean Function model has been developed to support research into planar monotone circuits,

and the interaction throughout the model building has had an open-ended and exploratory

character. The model is unfinished and further extension and adaptation is envisaged in

conjunction with projected future research. The Digital Watch model was originally developed

from the statechart representing its interface introduced by Harel in [Har92]. It ill ustrates the use

of MWDS to model a device as an ADM artefact (cf. Chapter 5); the model is designed with

reference to pre-specified and well -analysed patterns of state change. The model is also

‘complete’ in the sense that all the functionality associated with normal use of a digital watch is

captured. The presentation of the ADM artefact is also such as to promote closed interaction,

even though the scope for open interaction still exists.

The Monotone Boolean Function (MBF) model

The MBF model { MBF99} has been developed to visualise an algorithm that determines whether

or not the input MBF3 is planar computable and, if it is, construct an appropriate planar circuit as

depicted in Figure 3-16. The criterion for testing planar computabilit y and constructing the

circuits was introduced in [BB87], from which the algorithm used in the MBF model is drawn.

The model can be divided into two complementary parts. We first determine whether or

not a given MBF is planar computable. Where appropriate, we then compute and draw the

corresponding circuit for it. To determine whether a given MBF f is planar monotone

3 A monotone boolean function is a logic function containing only ‘and’ and ‘or’ logic gates.

Chapter 3: Abstract Definitive Modelling

109

computable, the function f has to be transformed into its conjunctive4 and disjunctive5 normal

forms. These two normal forms are computed using two functions, the Prime Implicant Function

(PIF) and the Prime Clause Function (PCF). Visual representations of these normal forms, as

they apply to the MBF:

f = (a ∧ (b ∨ (c ∧ d)) ∨ (b ∧ d ∧ e)

appears in the top left hand corner of Figure 3-16.

Figure 3-16: A screenshot of the MBF model

The essential principle of the algorithm to determine whether f is planar monotone

computable involves introducing fragments of planar monotone circuit such as that depicted in

Figure 3-16. Provided that the gaps in the visual representation of PIF and PCF – as indicated by

the numerical labels in Figure 3-16 – are appropriately configured, the introduction of such a

fragment generates new boolean functions to replace the original inputs that are at least as

computationally useful in that they can stand in for the input in any computation that returns f.

The construction of such functions to improve upon the original inputs is indivisibly associated

with ‘ fill ing the gaps’ in the visual representation. An MBF is planar monotone computable if

and only if all gaps in the visual representations of PIF and PCF can be fill ed in this way.

4 A function is written in form of ∧(x(∨ x)*)

G1

G7

base

level

interval

Stage 1

Stage 2

Stage 3

Chapter 3: Abstract Definitive Modelling

110

Features of the model

The criterion for planar monotone computabili ty of a given MBF f can be expressed using a

definitive script of the form:

Allset is initAllset(f); evalAllset is findTF(Allset);
ClauseF is collectTF(evalAllset, “F”); PCF01 is subset(ClauseF, 0);
ImplicantT is subset(evalAllset, “T”); PIF01 is subset(ImplicantT, 1);
PIF is BitToIndex(PIF01,1); PCF is BitToIndex(PCF01,1); planar is IsPlanar(PIF, PCF);

/* f is a given MBF and Allset initiates a list for all possible permutations for f. ClauseF and ImplicatT
represent the sets of intermediate values for computing PIF and PCF */

Listing 3-4: The script for computing whether a given MBF is planar computable

The visual representations of PIF and PCF are derived from this script by adding appropriate

Scout and DoNaLD definitions.

The circuits for the planar computable MBF can be constructed dynamically according to

the choices of gap to be fil led as specified interactively by the user. Figure 3-16 il lustrates how

the circuit is constructed on the basis of these choices. In the figure, the user has already fil led

gap 5 and 1 in that order, and is just about to fill gap 2. The set of definitions for the line drawing

of the circuit is generated dynamically corresponding to the user’s input.

The execute(“…”) command (cf. Section 2.1.2) is used to generate and interpret scripts

dynamically. For instance, the following action illustrates how a script to declare and define the

points that lie in the gaps (cf. Figure 3-16, where there are eight such points G1, G2, …, G8) is

generated and passed to be executed:

proc FillGap: fillgap{
 if (fillgap==1) {

 execute(“%donald\n”//DeclarGap());
/* DeclarGap() generates a declaration for the points G1, G2, … */

 DonGap=genDonGap(GapPIF,GapPCF); execute((“%donald\n”//DonGap); …
 /*genDonGap() generates definitions for G1, G2 */

}
}

The above triggered action generates definitions of the following form:

point G1, G2, G3, G4, G5, G6, G7, G8
G1 = {(pointG1! –1) * interval, level*2} + base
G2 = {(pointG2! –1) * interval, level*3} + base

5 A function is written in form of ∨(x(∧ x)*)

Chapter 3: Abstract Definitive Modelling

111

where pointG1! refers to an Eden variable that represents the index of the input variable that is

vertically aligned with the point G1, and the observables interval, level and base are as

indicated in Figure 3-16.

The MBF model is a study of what is possible in principle and il lustrates aspirations for

the modell ing that are currently beyond reach. It is a partially successful attempt to integrate

model-building with the kind of open-ended and exploratory activities that occur in mathematical

research. The author – as the model builder – did gain understanding of the underlying algorithm

through developing the model. Before MWDS of this nature can be usefully integrated with

mathematical research, building the model would have to be significantly easier than conducting

the research without the computer support.

During the development of the model, some problematic issues with the current definitive

tool emerged. For instance, it is hard to eliminate definitions from the model once they have been

introduced. Some definitions representing visual elements still exist in the model, but they are

made invisible by displaying them outside the current view.

The modeller adopted various roles as an external agent in constructing the model. She

first built an initial model to understand the algorithm to determine planar monotone

computabili ty. This involved developing the script in Listing 3-4, in which there is no

visualisation, in an exploratory manner. She later took up the role of the designer of an

application to help the user to understand how the circuit constructed based on the choices of the

gaps to be fil led. This involved adding the visualisation at the top left of Figure 3-16 (Stage 1)

and the user interface below (Stage 2). Her perspective then shifted to developing automatic

agents to dynamically generate the display for the circuit and to support the richer interaction

needed (e.g.) to determine which gaps can be fil led and to specify which gaps to fill (Stage 3).

Note that this interaction is supported through the Eden input window (cf. Figure 3-16) and not

by a graphical user-interface. The model building il lustrates a typical progression from manual

interaction through the input window interface to graphical user interaction with automatic

internal actions.

The Digital Watch model

The Digital Watch model { Digital92} depicted in Figure 3-17 il lustrates how definitive scripts

can be used to model a device. As Figure 3-17 shows, the model has two components. The right

hand side of the figure displays the actual physical behaviour of the digital watch together with

Chapter 3: Abstract Definitive Modelling

112

an analogue clock. On the left hand side is the display of the statechart that describes the

principal functionali ty of the watch. The user can interact with the digital watch (on RHS) and

observe the way in which this interaction is interpreted in the statechart (on LHS). For instance,

Figure 3-17 displays a situation in which the actual time is just after 1:45 PM (as indicated on the

analogue clock) and the user is in the process of setting the alarm. The statechart is accordingly in

the t-min state within the up-alarm state within the displays state.

Figure 3-17: A screenshot of the Digital Watch model

Features of the model

• The model can be useful in the design of the mechanism of the digital watch in that the

designer can have a user’s view during its development. When designing the watch, both the

internal mechanism and external output for the user need to be understood. Definitive scripts

are used in the model to represent both the actual physical watch (for the user) and

visualisation of its internal state (for the designer). These two distinct representations are

linked to each other by dependency. By having scripts representing the state of the model,

the user who interacts with it freely can observe the behaviour and mechanism inside through

stimulus-response patterns.

The model shows that definitive scripts can be used to implement interactive statecharts (i.e.

changing the states of the watch reflects the change of the state in the statechart

interactively). The internal state of the watch (observed by the designer) is represented

through the statecharts. The choice of the buttons pressed by the user will affect the state of

the statecharts and their visualisation.

Chapter 3: Abstract Definitive Modelling

113

• Harel’s statechart concept [Har87] is a particularly subtle mode of closed-world state

representation. The power of definitive representation of the state is il lustrated by the fact

that the Digital Watch model (comprising 700 definitions) captures the entire state of the

statechart together with the complete model of the functionality of the digital watch and the

analogue clock. What is more, the true scope for interaction with the definitive model is not

represented by the functionali ty that can be accessed through the interface depicted in Figure

3-17 alone. As will be discussed in more detail in Chapter 5, the functionali ty of the digital

watch as a device is derived by restricting the much richer interaction with the definitive

model which is possible via the (d)tkeden input window. This interaction through the input

window reflects the modeller’s construal (cf. Figure 2-17) of the relationship between the

digital watch, analogue clock and statechart which supplies the basis for the model building.

• The Digital Watch model can be viewed as an ADM artefact in which the entities include the

components of the statechart in Figure 3-17, viz. main, power, light, alarm-st etc. Such an

artefact can be derived from an LSD account [ModelWeb] in which these components

feature as agents. Under this interpretation, the current state of the statechart represents the

set of currently instantiated entities or equivalently the set of currently active agents.

Orthogonality in the statechart is then associated with agents acting concurrently. For

instance, within the alive state of the statechart, the agents main(), light(), alarm_st() and

chime_st() are active concurrently. Depth in the statechart is similarly associated with the

different roles that each agent can play. For instance, the displays() agent can play the roles

of the agents time(), date(), update() etc., where update() can itself play the roles of t-min(),

min(), sec() etc. We can interpret the statechart not only as specifying rigid patterns of state

change that match the machine-like interpretation of an ADM artefact depicted in Figure 3-4,

but also as restricting the entity instantiation to a static pattern.

Summary of Section 3.2.4

The MBF model is developed in an exploratory manner without any predefined or well-designed

structure. It is incrementally refined and cultivated according to changes in the modeller’s

perspective and experience. In contrast, the Digital Watch model is conceived with a well -

designed structure based on Harel’s statechart. The patterns of state-change inside the model are

more rigid and structured. Although these two models are developed with fundamentally

different orientations towards open and closed development, they are both open and flexible in

character. This is because they are constructed using MWDS.

