
Chapter 4: MWDS as an activity

114

�
 � � � � �����
	 ����
�������
��

This chapter discusses MWDS as a modelling activity with reference to a timetabling case study.

The modelling activity is viewed from two complementary perspectives:

• as developing an instrument (the ‘Temposcope’) to give semi-automatic support to the

timetabler [BWM+00];

• as constructing an interactive situation model (ISM) [Sun99] that embodies the

modeller’s growing understanding and experience of the timetabling scenario.

The qualiti es of MWDS in respect of interaction, comprehension, discovery and extension are

also described.

4.1 A case study in MWDS

In this section, we shall describe the practical use of MWDS in solving a real timetabling

problem, viz. the timetabling of the third year project presentation in Computer Science at

Warwick. The timetabling involves scheduling project orals for 125 students of Computer

Science (CS) and Computer and Business Studies (CBS). Each oral is allocated a 40-minute

timetable slot, and the timetable runs from Monday to Friday. On each day, the first available slot

starts at 9 AM and the last at 5 PM so that at most 13 slots are available. During the last two

academic years, the timetable has been constructed by a departmental administrator with the

support of a computer-based instrument – the ‘ Temposcope1’ – that has been developed using

MWDS [BWM+00]. The Temposcope can simultaneously serve two complementary functions:

supporting the cognitive model of the human timetabler working without computer assistance for

1 An instrument for Timetabling with Empirical Modelling for Project Orals

Chapter 4: MWDS as an activity

115

matching, and providing state representations for automatic and semi-automatic timetabling

activities.

Determining whether there is a feasible solution to a timetabling problem is an NP-

complete problem [Gar79]. In part for this reason, practical research into timetabling has been

principally directed at finding sub-optimal solutions using special-purpose techniques for

constraint satisfaction. The basic strategy has been to assign penalties to undesirable conditions

associated with each potential solution and to use optimisation and search techniques in

combination to locate solutions with low penalty cost. This has the advantage that it can take into

account both hard constraints (e.g. a member of staff cannot attend two presentations at the same

time) and soft constraints (e.g. a member of staff in an external department should be assigned to

consecutive slots where possible) [CRF94]. The trends in computer-supported timetabling reflect

a growing concern with the broader human context; timetabling is no longer regarded solely as an

abstract algorithmic problem, but as integrating data capture, data modelling, data matching,

report generation and the storage of timetabling results [OptiWeb, ScheWeb].

 MWDS offers an approach to satisfying timetable constraints that arguably supplies a

better balance between manual and automatic activities. The aim of using the Temposcope is to

support more intimate human-computer co-operation [BWM+00]. The primary objective is to

construct an artefact that can embody the timetabler’s knowledge of specific problem situations

as they arise, rather than to automate powerful algorithmic methods. The phases in the

construction of the Temposcope are broadly similar to those that accompany the development of

a scientific instrument (cf. the discussion of the development of the microscope in [Hac83]).

They address three principal issues: confirming that the instrument is operating as intended;

ensuring that the instrument is properly situated in an appropriate environment, and becoming

famili ar with the most effective ways to use the instrument.

4.1.1 Constructing the data model

In MWDS, framing the problem or situation in terms of observable, dependency and agency is

the essential key. Everybody has his/her own perspective on solving a problem. Some people can

identify more dependencies in the solution of a problem than others. Using definitions to specify

dependencies explicitly, rather than just specifying the dependencies implicitly by using

procedural code, may make the model more flexible and comprehensible in use.

Chapter 4: MWDS as an activity

116

 Dependencies are determined by our explanations for what we observe. The dependencies

that are considered initially in the timetabling problem are those intrinsic to the problem, not

those associated with a specific technique for solution. Timetabling is viewed as ‘defined by

certain observables and dependencies’ . Conventional programming does not attempt to capture

these observables and dependencies explicitly. Despite this, the observables and dependencies are

of such primitive importance that modelling by definitions can usefully precede the conception of

any methods of solution to the timetabling problem.

The basic observables in timetabling are reflected in the input data files. Examples of these

are represented by the following definitions extracted from the data model:

1. room = [“104”, “327”, “313”, “LL1”, “444”];
2. DA_AV = [];
3. AB_AV = [17,18,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42];
4. SBR_AV = [7,8,9,10,11,12,29,30,31,32,33,34,35,36,37,38,39,40];
5. DJKTJA_AV is union(DJK_AV, TJA_AV);
6. data1 = [“Al-Khaburi”, “Ali”, “How secure is a secure website?”, “CBS”, “DA”, “AB”, “SBR”];
7. data2 = [“Anand”, “Aradhana”, “Impact & utilisation of the internet in Indian companies”, “CBS”,

“YM”, “MCK”, “AB”];

Listing 4-1: Examples of definitions from the data model in the Temposcope

The data records at lines 6 and 7 specify the name of a student, the title of his/her project, their

department and the initials of his/her supervisor, assessor and moderator respectively. Allocating

a student to a slot in the timetable also commits his/her supervisor and assessor to attend the

presentation at this time. Slots are numbered from 1 to 65 and staff unavailabilit y is defined by a

list of slots as shown in lines 2, 3 and 4. In this context, DA_AV, AB_AV and SBR_AV (in line

2, 3 and 4) respectively refer to the members of staff with initials DA, AB and SBR.

The timetabling requirements have been revised since the model was originally developed.

The model was initially designed for scheduling orals in 90 time slots each lasting 30 minutes.

Moderators were also expected to attend presentations. Appropriate changes to the model are

relatively easy to make because of the versatilit y of data representation using definitive scripts.

This is il lustrated in line 5, where the variable DJKTJA_AV refers to the unavailabilit y of two

staff members who are jointly supervising a project, which in this case is the union of the

unavailabiliti es of DJK_AV and TJA_AV.

MWDS is essentially a situated process. Dependencies are conceived with reference to

observables and possible interactions external to the model. Thinking in a definitional way is a

matter of ‘education independent of programming’ – we can think about concepts like

observables, dependency and agency without reference to constructing computer-based models.

Chapter 4: MWDS as an activity

117

The definitions in Listing 4-2 are examples of dependency between observables associated with

data capture.

1. class is makeclass(data); /* a list of student name in the class */
2. staff is makestafflist(data, [5,6,7]); /* a list of staff */
3. AVSTAFF is makeAVSTAFF(staff, avail); /* a list of availability of staff */
4. avx is map(proj2_1, [avstud], class]; /* a list of availability of student */
5. ASS is makeASS(class); /* a list of student and his supervisor and assessor */
6. NPX is map(count, ASX); /* number of students allocated to each staff */
7. ASX is map(proj1, [ASS], staff); /* list of student names allocated to each staff */
8. asx is map(proj2, [ASS], staff); /* list of supervisor and assessor allocated to student */
9. data is [data1, data2, data3, ..., data119]; /* a record of all students */

Listing 4-2: Examples of definitions from the data capture in the Temposcope

In making the model, the modeller includes those observables that are significant from the

perspective of somebody making a timetable. The above definitions demonstrate how such

observables can be expressed by using dependencies2. For instance, in line 1, class is the

collection of student names (i.e. [Al-Khaburi Ali, Anand Aradhana, ..]) in the timetable; it

depends on data, so that changing the value of data will affect class, staff and the other

definitions automatically.

The key concern addressed by the above dependencies is whether staff and students are

available in the specified slots. However, in the spirit of MWDS, it is not appropriate to say that

this is the only concern; the modeller always has discretion to add new observables to reflect

other considerations that are not formally captured by the notion of a ‘working timetable’ . For

instance, the distance travelled between sessions for a particular member of staff may be

considered (e.g. in case of a disabili ty). When thinking of ‘ someone making a timetable’ from a

MWDS perspective, we are not mainly concerned with procedures, but with states. In particular,

the focus is typically on the timetable as a partially completed assignment of students to slots,

and a provisional assignment of staff to students. It is the emphasis on states rather than

procedures that allows us to take richer observables into account.

The above discussion il lustrates one aspect of a general principle of MWDS: the use of

definitive scripts as a data representation does not commit the modeller to specific design

decisions. For instance:

2 the cryptic choice of variable names in this model is due to the original developer, and is an issue to be
addressed in future development.

Chapter 4: MWDS as an activity

118

• the model can take account of additional and provisional constraints (e.g. a CBS student

may require one assessor from Computer Science and one from Business, or a member

of staff may be unable to make a firm commitment to availabilit y);

• significant design decisions can be postponed (e.g. the choice of algorithms for

timetabling to be implemented (if any) and of processes for data input (if any) remains

open, and can be decided at a later stage);

• new modes of observation can stil l be taken into account (e.g. the availabilit y of staff

member might be specified with respect to 30-minute slots rather than 40-minute slots,

and the basic data model derived from external database tables).

The flexibil ity of the data model stems from two sources:

• the modell ing activity embraces partially defined timetabling entities, and the structure

of data is derived during the development of the model;

• the data model as defined (cf. Listing 4-1) can be derived by dependency from other

alternative or more primitive data representations, and alternative or more complex data

representations can likewise be derived by dependency from the existing data model (cf.

Listings 4-1 and 4-2).

The previous discussion has addressed the role of data modelling based on dependency in

the Temposcope. The next section will discuss the processes of data matching, report generation,

the storage of timetabling result and the interface of the system based on using this underlying

data model. This involves interpreting the state of the timetable in respect of some of the key

concerns of the timetabler.

4.1.2 Developing the interface

The Temposcope aims to provide an interactive environment to help in searching for a solution to

the project oral timetabling problem and to help the user to gain insight into the space of possible

solutions. The user acts as a ‘super agent’ who can decide an appropriate slot for a student.

Visualisation has an essential role here to help the user make the decision. At the current stage of

development, the Temposcope has a visual interface that is limited to displaying information

about the staff involved in assessing a specific student. A graphical user interface involving

hundreds of Scout windows is included to facilitate the interaction of the user with the model

Several reporting functions are provided to help the user to trace the state of the timetable

during his/her interaction. These are implemented via the Eden string variables MSG and msg

Chapter 4: MWDS as an activity

119

that are maintained by dependency and record details of the current status of all the staff

members and all the students respectively. Relevant functions are checking whether a staff

member is double booked, a student is either not scheduled or is scheduled for more than one

slot, or a staff member is unsuitably scheduled. These functions are built on the basis of the

definitions of the data model defined previously. For instance, the variable d_X holds the list of

staff who are double booked. The definitions in Listing 4-3 refer to observables that have a

significant role in the process of constructing the interface for the Temposcope.

1. TT is TT_from_timeTable(timeTable); /* the assignment of students to slots */
2. SLX is map(proj2, [join(ASS,TT)],staff); /* the assignment of staff to slots */
3. slx is map(proj2, [TT], class); /* the list of slots assigned to students in class */
4. d_X is combine(dblebk_X, [staff, SLX]); /* the list of staff who are double booked */

Listing 4-3: Examples of definitions for developing the interface in the Temposcope

The variable timeTable records the slot and room to which each student has been allocated in the

following way:

writeln(timeTable);

[[[“Al-khaburi Ali”, “104”],[“Bang Sung”, “313”], [“Barett Ian”, “007”]], [[]], [[…]], …]

In this list of lists, the first entry is the list of student-room pair allocated to slot 1 etc. This

contrasts with TT, which is a list of pairs of the form [student-name, slot-number]. The presence

of variables associated with different forms of representation of the same observables, and the

use of definitions similar to that at line 1 in Listing 4-3 to transform one representation into

another, is a common feature of MWDS. This feature reflects the rich observations of the referent

that can be involved in the definitive model. For instance, the data representation in the variable

timeTable directly reflects the way in which timetabling information is entered and displayed

through the interface. On entering timetabling information, the user selects a room, then a

student, then a slot. In displaying this information, there is a direct correspondence between the

list of slots and the geometric representation of these slots. In contrast, the variable TT is adapted

for representing internal dependencies between data such as appear at lines 2 and 3 in Listing 4-3.

Figure 4-1 depicts the Temposcope in use. As depicted in Figure 4-1, when a room (in this

case 327) and a particular student (in this case is Adrian Clarke) is selected, the three staff

members assigned to this student are highlighted (in this case SAJ, SGM and MAR), and the

slots that lie in the union of the unavailability of the supervisor and assessor (in this case SAJ

and SGM) are highlighted in red.

Chapter 4: MWDS as an activity

120

As is shown in the terminal window in Figure 4-1, the user can consult the status of an allocation

by consulting the report variables MSG and msg. For instance, as shown in Figure 4-1, SGM is

double booked in slot 4.

Figure 4-1: A screenshot of running the Temposcope

An essential feature of this model is the use of virtual agents to generate definitions for a

large number of Scout windows in the model. Because MWDS tends to represent an entity and

all it s associated observables explicitly, the reproducing of similar scripts is often unavoidable.

The basic mechanism for using a virtual agent named VAname involves entering definitions in a

new context in dtkeden that is framed by special commands as follows:

>>VAname

enter definitions here

>>

The effect of these commands is to generate a set of definitions that is derived from the

definitions entered by prefixing all variables that occur in them by the string ‘VAname_’ . An

additional feature, il lustrated in Figure 4-2, involves the indirect specification of a virtual agent

name by reference to the value of a string variable (cf. temp2 and LISTBUTTON_NAME in

Figure 4-2).

Unavailable slots for this selected
student

Chapter 4: MWDS as an activity

121

Figure 4-2: Illustrating automatic script generating with virtual agents

Listing 4-4: Script extract generated by the technique described in Figure 4-2

In the Temposcope, virtual agents are used to generate all the principal components of the

display interface, such the bank of student buttons, the bank of staff buttons and the array of

timetable slots. For this purpose, virtual agents are used in a nested manner, as ill ustrated in

Figure 4-2, which displays the definitions used to generate the bank of staff buttons in Figure 4-1.

A generic definition is first formulated and stored in the file listbutton_x2.s, this file is then

included in the file listbutton.s in different virtual agent contexts associated with the names of

staff members, and the content of this file is in turn interpreted in the context of a virtual agent

named ‘staffSelect’ . As a result, a similar set of definitions and actions is generated for each

window (cf. Listing 4-4).

The process of generating scripts with a virtual agent described above circumvents the

tedious job of manually reproducing a set of similar definitions. However, it may be diff icult for

><temp2
%eden
temp = ~temp1;
%scout
integer x1, y1, x2, y2, myValue;
window w;
string myCaption, myBgColor, myFgColor;
w = {

frame: ([{x1, y1}, {x2, y2}])
type: TEXT
string: myCaption
border: 1
sensitive: ON
bgcolor: myBgColor
fgcolor: myFgColor

};
…

li stbutton_x2.s

><LISTBUTTON_NAME
%eden
myName = ~LISTBUTTON_NAME;
mylist = ~LISTBUTTON_LIST;
…
for(i=2;I<=myList#;i++){

~tempi = i;
~temp2 = myName// “_” //myList[I];
…
include(“listbutton_x2.s”);

…

li stbutton.s…
/*staff list*/
LISTBUTTON_NAME = “staffSelect”;
LISTBUTTON_LIST = [“starting”];
LISTBUTTON_CAPTION = LISTBUTTON_LIST
…
LISTBUTTON_ENABLED = 1;
Include(“listbutton.s”);
…
/*student list */
…

interfaceTT.s

…
window staffSelect_DA_w = {
 frame: [{staffSelect_DA_x1, staffSelect_DA_y1}, {staffSelect_DA_x2, staffSelect_DA_y2}])
 type: TEXT
 string: staffSelect_DA_myCaption
 border: 1
 sensitive: ON
 bgcolor: staffSelect_DA_myBgColor
 fgcolor: staffSelct_DA_myFgColor
};
…

Chapter 4: MWDS as an activity

122

the modeller to comprehend the script from its specification in Figure 4-2 without executing the

model. This is because definitions are generated on-the-fly and interpreted as if they were

explicitly entered by the modeller. In particular, the definitions generated from Figure 4-2 are

explicitly stored and maintained in the executing model.

With reference to a discussion of instruments immediately prior to Section 4.1.1, the

model building activity described so far corresponds to the design and construction of an

instrument. The first phase of building a text-based model to represent observables and

dependencies is analogous to the preliminary experimental work of the engineer in identifying

the principles on which the instrument will be based. The introduction of primitive visualisation

and interface mechanisms to enable the modeller to access the data model is analogous to the

construction of primitive components from which the prototype instrument can be assembled.

The refinement of the user interface and rehearsal of the use of the model is analogous to the

creation of the first complete prototype. At its current stage of development, the Temposcope has

the characteristics of a useful instrument whose qualiti es have been appreciated by the

departmental administrator. However, in its current form, it is far from being a finished

instrument. For instance, the reporting variables MSG and msg still resemble the primitive forms

of interaction that are characteristic of an instrument at an early stage of its development.

4.1.3 Using the instrument

MWDS supports activities that are more general than programming. Programming is instructing a

computer to carry out a recipe. By comparison, MWDS promotes the concept of ‘ the computer as

instrument’ proposed in [BCH+01]. The use of an instrument typically involves a close and

continuous engagement between the user and the computer. Ideally, the user’s interaction with

the computer should have an experimental quali ty that gives immediate feedback, so that the user

can assess whether he/she is heading in the right direction. Such an activity has a form of domain

or problem analysis as an essential ingredient. The way in which dependencies, functional

abstractions, actions and visualisation are exploited should ideally be dictated in an interactive

way by the results of this analysis.

The Temposcope provides an interactive environment for the modeller to create a model

that can be shaped to suit the specific timetabling context and for the user to explore and exploit

the model in parallel. Whereas conventional programming typically aims to implement the

solution to a well-understood problem, MWDS typically involves finding the solution and

Chapter 4: MWDS as an activity

123

understanding the problem at the same time. The Temposcope itself does not find a solution to

the timetabling problem so much as assist the timetabler to explore and observe factors that

influence the likely quali ty and disposition of solutions.

The concept of ‘ place-and-seek’ proposed by Paechter [PLCP94] may be simulated

manually by the user in order to solve the timetable problem. The user can select a plausible slot

for a student; check whether it is appropriate and, if not, try another plausible slot. This process

can be observed in Figure 4-3, where the user is deciding an appropriate slot for a student (in this

case Sam Garnham). The shaded slots indicate those that are not possible for the student

because the supervisor or the assessor have declared themselves unavailable. The user can choose

an un-shaded slot to which no student is yet allocated and this choice will meet the hard

constraints. If students have already been allocated to an un-shaded slot, the user has to check

that neither the supervisor nor the assessor has been assigned as a supervisor or assessor to

another student timetabled in that slot. In Figure 4-3, it can be seen that, at present, the staff

member MCK is inappropriately allocated at slot number 27 and 54. The user has to reallocate

students in these slots to eliminate the clashes for MCK from the timetable. The availabilit y of

staff may be changed and redefined on-the-fly. The model automatically updates the state of the

timetable and will report the effect at the request of the user. The user can then try to reschedule

the orals within the relevant slots appropriately.

The Temposcope model is eff icient in terms of allowing redefinitions, maintaining

dependencies between observables and giving a greater level of user interaction with the system.

Whereas a conventional approach only gives limited information about the reasons for scheduling

decisions, and typically aims to produce the schedule automatically without the user’s

intervention, the Temposcope user has open-ended access to the internal state of the model when

making and evaluating decisions about allocating orals to slots. The user’s access to the internal

state of the model also means that the model can be readily adapted to suit different perspectives

and meet different needs as they arise. For instance, when the user is about to schedule a student

to a slot to which some students are already allocated, the user needs to determine all staff

members who, as supervisors and assessors, are already assigned to that slot: this information can

be derived from the observables ASS (cf. Listing 4-2) and TT (cf. Listing 4-3) by a dependency

that can be framed as a new definition. The experience gained from interacting with, and

extending, the model in this kind of way can lead to the discovery of new systematic techniques

for finding solutions.

Chapter 4: MWDS as an activity

124

Figure 4-3: The Temposcope – an interactive timetabling model

Methods of solving the timetabling problem correspond to systematic ways of navigating

around the space of partial timetables. Any computer algorithm that constructs timetables

incrementally is interpretable in terms of navigating the space. Many computer algorithms might

use clues or systems that the human timetabler would find inconvenient (e.g. it is not necessarily

appropriate to enter students in alphabetic order). In general, the aim of MWDS is to allow a

computer and a person to co-operate in the navigation towards a successful timetable. In this

context, there may be observables appropriate to the timetable which give useful heuristics about

how to make progress in timetable construction. For instance, a good strategy for timetabling

might be to count the number of possible allocations currently available for each student, and

subsequently choose to schedule the oral of a most tightly constrained student. The timetabler

would not ordinarily be able to observe the identities of such students directly, but this could be

made available via the definition of an appropriate observable. This illustrates how the

Temposcope, as an interactive machine that maintains some essential constraints or facts about

Current selected student

MCK is not ok!

Staff members required for this student

Chapter 4: MWDS as an activity

125

the final year project oral timetable, can offer a framework within which to develop automatic

and semi-automatic timetabling algorithms.

4.2 Characteristic features of MWDS

MWDS emphasises the direct representation of the state in a situation by an artefact rather than

symbolic representation. Because of the close correspondence between observables in the artefact

and observables in the referent, MWDS supports interactive and experimental activities. The term

‘ interactive situation model’ (ISM) was introduced by Sun (cf. [Sun99], [BCSW99], [BCRS99])

to describe an artefact developed in this way. The model of the timetable that is generated by

using the Temposcope, as discussed above, can be alternatively viewed as an ISM for project oral

timetabling.

Various modell ing activities, such as interaction, comprehension, discovery and extension

are essentially involved in constructing an ISM. All these activities both shape and are shaped by

the external semantic relation and combine interpreting and understanding the ISM script with

modelli ng activity that is observation-oriented and experimentally-based.

4.2.1 Interaction

Interactivity is one of the most significant features of MWDS, since the user, in the role of a

super agent, can arbitrarily change the state of the model on-the-fly. Redefining a script can

correspond to changing the state of the model and subsequently to changing the modeller’s

personal perception of the model. The modeller typically interacts with the model in order to

explore its features, comprehend its internal and external representation, refine and modify it to

reflect the evolving referent and experiment with it to meet subjective criteria. The way in which

the semantics of definitive models is developed (cf. Figures 1-5, 2-10 and 2-11) means that

MWDS can manifest particular qualiti es in interaction as described below:

• It supports exploratory experiment (similar to the ‘ what-if’ feature in spreadsheets) that

is useful when we need to comprehend and investigate the internal semantic relation

associated with a script or confirm expectations about patterns of change.

• The acceptabilit y of the model can be determined by the situation in mind. The content

of the script is determined by the real-world situation.

Chapter 4: MWDS as an activity

126

• Subjective judgements are supported, as when (e.g.) in geometric design or interface

design, we find a satisfactory shape or appearance by ‘what looks good’ , or the

timetabler rearranges the allocation of students to slots until he/she is satisfied.

MWDS also offers a very open environment, so that the user can interact freely with the

model or make a change to a single detail of the script. There is no right or wrong way to interact

with the model. Every experience or interaction counts in MWDS. In addition, the user can

always restore the previous state of the model. Some definitions may not be useful or oriented to

the target but they may be meaningful in relation to gaining experience and interpreting the

results of experiment.

In MWDS, the referent can evolve all the time. It may be affected by changes in

environments, situations and personal experiences and perspectives. An example of a real-world

state that evolves and changes most of the time is a database application, since data needs to be

extended and refined with the passage of time. A definitive script has open-ended characteristics

to be redefined or modified without circumscription. In an unsettled world, we do not want a

model that is fixed and hard to change. In Cooper’s view, the inflexibility of many programs

stems from the significant difference between the cognitive model of a user and that of the

builder of a program [Coop99]. MWDS offers a way to construct sophisticated computer-based

artefacts whose behaviour can – in principle – be customised, reprogrammed and reinterpreted by

the user, and whose responses can be adapted to the user and the situation.

MWDS aims to provide an experimental environment in which the developer and the user

can interact broadly with a model that is flexible to change. For instance, simple changes to the

definitions in the Timetable model can lead to changes in the model behaviour, as is ill ustrated in

the following scenarios:

• Initially, the duration of each slot is 30 minutes, but this is then changed to 40 minutes.

A function convert18unto13avail that converts a binary sequence of length 90

representing availabili ty over 30 minutes slots from Monday to Friday into a similar

binary sequence of length 65 for 40 minute slots can be implemented. The Timetable

model is adapted to its new context by substituting convert18unto13avail(DA_AV) for

DA_AV in the definition of avail , which is the key observable from which information

about staff availabili ty is derived.

Chapter 4: MWDS as an activity

127

• The staff members that are assigned to each student can be changed by redefining

observables such as data1, data2, data3 etc. For instance, the supervisor for the student

Sam Garnham can be changed from SBR to MCK by the following redefinition:

data[ixstud(“Sam Garnham”)][5] = “MCK”

where data is as in Listing 4-2, ixstud() returns the index of a named student in the list

data, and the 5th element of this list represents his supervisor. This redefinition may lead

to conflicts with previous allocations. For instance, MCK may be double booked. The

user may need to consult the report variables and try to correct the unsatisfactory slots.

• In the Temposcope, the staff availabili ty can be changed dynamically by redefining a

particular variable. This is il lustrated in Figures 4-4(a) and 4-4(b), where redefining the

availabilit y of staff member WMB automatically updates the visual display of possible

available slots for the student Sam Garnham, for whom WMB is the assessor. As shown

in Figure 4-4, after this redefinition there are more possible available (i.e. non-shaded)

slots for this student. This can be regarded as a ‘what-if’ exploratory experiment.

Figure 4-4: (a), (b) Changing the availability of the staff member

Extensive interaction with an ISM provides the platform for deeper activities, such as

comprehension, discovery and extension.

Chapter 4: MWDS as an activity

128

4.2.2 Comprehension

MWDS using (d)tkeden provides features, such the query commands, the access to the history

and to scripts as classified by their underlying definitive notations, and command line editing and

retrieval (cf. Section 2.1.2), which facilit ate the user’s interaction with the model. The

dependency maintenance system offers a run-time stimulus-response feature. These features help

the user to make redefinitions and to understand their effects.

By changing definitions in the model and observing the consequences, the user can

comprehend the behaviour of the model. Experiment can be a way to discover or confirm the

interpretation of a definition. For instance, changing the availabili ty of the staff (as shown in

Figure 4-4) will affect the possible allocated slots for a student who has SBR as a supervisor or

assessor. By observing the change and querying the availabili ty of these two staff members, we

can learn that the shaded slots are determined by the union of unavailabilit y of these two staff

members. A change in the availabili ty of staff in a real-world situation often affects the state of

the timetable being built . When an ISM accurately reflects behaviour in the real world situation,

the user may be better able to understand the real-world phenomenon through interacting with the

model.

Definitive scripts can support a large variety of ways of designating or identifying

observables. This is of interest in connection with Kent’s observation about designing and

evaluating a computer-based data model [Kent78]:

“In order to design or evaluate the naming facilities of an information system, it
helps to be aware of the variety of ways in which we designate things.”

By way of ill ustration, in the context of the definitive Room Viewer model depicted in Figures 2-

6 and 3-7, there are a number of variables that reference the door of the room in different ways.

They include: the DoNaLD openshape door, which contains the features such as the hinge and

the lock, the DoNaLD line door/door, which could be viewed as representing the door in

isolation from the normal context supplied by its hinge and lock, and the ‘equivalent’ Eden

variables _door and _door_door, which are respectively associated with the abstract structure of

the door and the scalar attributes of the door (such as its dimensions and position) detached from

their visualisations. In MWDS, dependency is the feature that gives integrity to such diverse

representations of a ‘ single’ object.

Chapter 4: MWDS as an activity

129

The situated and interactive nature of an ISM provides modes of reference complementary

to ‘naming and designating things’ . We may be able to identify the DoNaLD line door/door as it

appears on the display as representing a real door because of its location relative to the other

features of the real room to which it refers. Alternatively, we may be able to recognise the

DoNaLD line door/door as representing a door because of the way that it is observed to behave

in ‘normal’ interaction with the model. In this interpretation, both the character of the interaction

and the context for the interaction are significant. For instance, in recognising the line as a door,

it is helpful if its motion is ‘ continuous’ rather than discrete (cf. the introduction of the DoNaLD

shape rotdoor in Section 3.2.1). It is also significant that the other features in the DoNaLD line

drawing in Figure 3-7 can be interpreted as items of furniture etc. Other issues of designation also

become relevant as a side-effect of the interactive nature of the Room Viewer model in Figure 3-

7. The line drawings in Figures 2-6(a) and (b) are interpreted as referring to a door rather than a

switch since the script includes the boolean variable open rather than on.

The above discussion il lustrates the richness of the concept of ‘ observable’ as it applies to

MWDS. This richness stems from the complex patterns of inter-dependency that relate the

observables associated with the definitive variables openshape door, line door/door, _door,

_door_door, open as discussed above. It also helps to account for the fact that, whereas in a

traditional procedural program it is often diff icult to connect variables with external observables,

each definitive variable in a script can plausibly represent an observable in the referent.

Designating a sensible name for a definitive variable in such a way that it corresponds closely to

an observable in the referent can help in understanding the role and significance of the variable in

the script. The experiential ingredients that support the interpretation of variables are not simply

concerned with activities such as observing interaction with line drawings, but with knowledge of

symbols and real-word domains. For instance, by reading the observable WMB_AV, as opposed

to XYZ_AV, we may directly reckon that this observable represents the availabili ty of a staff

member with initials WMB. We can further confirm the significance of this observable in the

model by querying for its value and dependency.

4.2.3 Discovery

A definitive script can be used to represent personal views, which can reflect unresolved issues

and unpredictable circumstances. The modeller observes the external situation and represent

observables with respect to their relationship that he/she perceives or conceives. The model that

Chapter 4: MWDS as an activity

130

is constructed has an open-ended character. The modeller may start with only a vague idea of the

purpose for the model. He/she has his/her own initial perspective. At the beginning of

development, the shape of the final model is unpredictable. For instance, when constructing a

geometric model such as the Room Viewer, it is hard to anticipate all useful geometric designs

and dependencies. Through interacting with the model, the developer incrementally refines the

model step-by-step and eventually is able to achieve an acceptable state for the model. The

implications of model building are not circumscribed and not predictable. For instance, an

algorithm to solve the project oral timetabling problem may or may not emerge from the

development of the Timetable model.

Objects react and respond to change throughout experimentation. The object is modified in

diverse directions by the developer or user. The ISM can be viewed as an experimental artefact

defined by a script which the developer can redefine in order to obtain a richer understanding of

the situation. Experiment leads to new discoveries. The role of an ISM resembles that of what

Gooding characterises as the construals of Faraday [Good90]. In practice, people observe and

interact with objects, learn their nature and make hypotheses. Experiments will test these

hypotheses.

4.2.4 Extension

Sets of scripts (such as the data model and data capture for the Timetable in Listings 4-1 and 4-2)

independently represent aspects of observations. They are interrelated through definitions. To

extend the model, a set of definitions, which can be totally new or just redefinitions of existing

ones, can be included in the model. By adding definitions, the state of the model is changed.

Similar, attaching new scripts can redefine existing scripts so that they are compatible with the

new ones. The model can be extended by adding new definitions which refer to observables in

the existing script. For instance, the Timetabling model has been extended so that – when it is

executed in client-server mode using dtkeden as depicted in Figure 4-5 – each staff member can

login, as a client, to the main Timetabling model, executing on the server, and submit their

availabilit y on line3. In Figure 4-5, the variable WMB_AV has been changed to reflect a change

in availabili ty. The new value of this variable, as displayed in the terminal window, is sent to the

main timetable server and the timetabler at the server can decide when to update the model.

Chapter 4: MWDS as an activity

131

Figure 4-5: A client application for a staff member to input his or her availability

The model can be extended in terms of its visualisation modes to help the user to select

suitable slots. For instance, we can write scripts to highlight the slots to which a staff member is

allocated when the user clicks on a staff button. Another example of a small extension to the

model attaches a workload weighting to each staff member according to the number of projects

they supervise, assess and moderate as follows:

staffname = “WMB”;
S is weight(staffname)[1];
A is weight(staffname)[2];
M is weight(staffname)[3];
Workload is 3*S + 2*A + M;

func weight{
para name;
auto i, s, m, a;

s=0; m=0; a=0;
for(i=1;i<=data#;i++){

if(name==data[i][5]) s=s+1;
if(name==data[i][6]) a=a+1;
if(name==data[i][7]) m=m+1;

}
return [s, a, m];

}

3 This extension was developed by Chris Keen [Keen00] as were the web-based clients through which each staff
member can update their availability via a web page.

