Chapter 4: MWDS as an activity

4 MWDS as an activity

This chapter discusses MWDS as a modelling activity with reference to a timetabling case study.

The modelling activity is viewed from two complementary perspectives:

» asdeveloping an instrument (the * Temposcope’) to gve semi-automatic support to the
timetabler [BWM+00];

e as constructing an interactive situation model (ISM) [Sun99] that embodies the
modeller’ s growing understanding and experience of the timetabling scenario.
The qualities of MWDS in resped of interaction, comprehension, discovery and extension are

also described.

4.1 A case study in MWDS

In this sction, we shall describe the practical use of MWDS in solving a real timetabling
problem, viz. the timetabling of the third year projed presentation in Computer Science at
Warwick. The timetabling involves sheduling projed orals for 125 students of Computer
Science (CS) and Computer and Business Studies (CBS). Each adl is allocated a 40-minute
timetable dot, and the timetable runs from M onday to Friday. On each day, the first avail able dot
starts at 9 AM and the last at 5 PM so that at most 13 dots are available. During the last two
academic years, the timetable has been constructed by a departmental administrator with the
support of a computer-based instrument — the ‘ Temposcope®™ — that has been developed wsing
MWDS [BWM+00]. The Temposcope @an simultaneously serve two complementary functions:

supporting the cognitive model of the human timetabler working without computer assstance for

 An instrument for Timetabling with Empirical Modelling for Project Orads

114

Chapter 4: MWDS as an activity

matching, and providing state representations for automatic and semi-automatic timetabling
activities.

Determining whether there is a feasible solution to a timetabling problem is an NP-
complete problem [Gar79]. In part for this reason, practical research into timetabling has been
principally directed at finding sub-optimal solutions using spedal-purpose techniques for
constraint satisfaction. The basic strategy has been to asggn penalties to undesirable conditions
asociated with each potential solution and to use optimisation and search techniques in
combi nation to locate sol utions with low penalty cost. This has the advantage that it can take into
account both hard constraints (e.g. a member of staff cannot attend two presentations at the same
time) and soft constraints (e.g. a member of staff in an external department should be assgned to
consecutive slots where possble) [CRF94]. The trends in computer-supported timetabling refled
agrowing concern with the broader human context; timetabling is no longer regarded solely as an
abstract algorithmic problem, but as integrating data capture, data modelling, data matching,
report generation and the storage of timetabli ng results [OptiWeb, ScheWeb].

MWDS offers an approach to satisfying timetable constraints that arguably supplies a
better balance between manual and automatic activities. The dm of using the Temposcope is to
support more intimate human-computer co-operation [BWM+00]. The primary objective is to
construct an artefact that can embody the timetabler’ s knowledge of specific problem situations
as they arise, rather than to automate powerful algorithmic methods. The phases in the
construction of the Tempascope are broadly similar to those that accompany the devel opment of
a scientific instrument (cf. the discusson o the development of the microscope in [Hac83)).
They address three principal issues. confirming that the instrument is operating as intended;
ensuring that the instrument is properly situated in an appropriate environment, and becoming

famili ar with the most effective ways to use the instrument.

4.1.1 Constructing the data model

In MWDS, framing the problem or situation in terms of observable, dependency and agency is
the esential key. Everybody has his’her own perspedive on solving a problem. Some people @n
identify more dependencies in the solution of a problem than ahers. Using definitions to spedfy
dependencies explicitly, rather than just specifying the dependencies implicitly by using

procedural code, may make the model more flexible and comprehensiblein use.

11t

Chapter 4: MWDS as an activity

Dependencies are determined by our explanations for what we observe. The dependencies
that are considered initially in the timetabling problem are those intrinsic to the problem, not
those associated with a specific technique for solution. Timetabling is viewed as ‘defined by
certain observables and dependencies’. Conventional programming does not attempt to capture
these observables and dependencies explicitly. Despite this, the observables and dependencies are
of such primitive importance that modelling by definitions can usefully precede the conception of
any methods of solution to the timetabling problem.

The basic observables in timetabling are refleded in the input data fil es. Examples of these

are represented by the following definitions extracted from the data model:

. room =[“104", “327", “313", “LL1", “4447;

.DA_AV =]

. AB_AV =[17,18,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42];

. SBR_AV =[7,8,9,10,11,12,29,30,31,32,33,34,35,36,37,38,39,40];

. DIKTJA_AV is union(DJK_AV, TIA_AV);

. datal = [Al-Khaburi”, “Ali", “How secure is a secure website?”, “CBS”", “DA”", “AB”, “SBR"];

. data2 = [“Anand’, “Aradhana”, “Impact & utilisation of the internet in Indian companies”, “CBS”,
“YM”, “MCK”, “AB];

~NOoO O, WNBE

Listing 4-1: Examples of definitions from the data model in the Temposcope

The data records at lines 6 and 7 specify the name of a student, the title of his’her project, their
department and the initials of his’/her supervisor, assessor and moderator respectively. Allocating
a student to a dot in the timetable also commits his’her supervisor and assessor to attend the
presentation at this time. Slots are numbered from 1 to 65 and staff unavail ahility is defined by a
list of dotsas iownin lines 2, 3and 4. In this context, DA_AV, AB_AV and SBR_AV (inline
2, 3and 4) respectively refer to the members of staff withinitials DA, AB and SBR.

The timetabli ng requirements have been revised since the model was originally devel oped.
The model was initially designed for scheduling arals in 90 time dlots eadch lasting 30 minutes.
Moderators were also expected to attend presentations. Appropriate changes to the model are
relatively easy to make becuse of the versatility of data representation using definitive scripts.
Thisisillustrated in line 5, where the variable DJIKTJA_AV refers to the unavail ability of two
staff members who are jointly supervising a projed, which in this case is the union of the

unavail abiliti es of DJK_AV and TJA_AV.

MWDS is essntialy a situated process Dependencies are conceived with reference to
observables and posshble interactions external to the model. Thinking in a definitional way is a
matter of ‘education independent of programming — we @n think about concepts like
observables, dependency and agency without reference to constructing computer-based models.

11€

Chapter 4: MWDS as an activity

The definitions in Listing 4-2 are examples of dependency between observables associated with

data capture.

1. class is makeclass(data); /* a list of student name in the class */
2. staff is makestafflist(data, [5,6,7]); /* a list of staff */
3. AVSTAFF is makeAVSTAFF(staff, avalil); /* a list of availability of staff */
4. avx is map(proj2_1, [avstud], class]; /* a list of availability of student */
5. ASS is makeASS(class); /* a list of student and his supervisor and assessor */
6. NPX is map(count, ASX); /* number of students allocated to each staff */
7. ASXis map(projl, [ASS], staff); /* list of student names allocated to each staff */
8. asxis map(proj2, [ASS], staff); /* list of supervisor and assessor allocated to student */
9. datais [datal, data2, datag3, ..., datall9]; /* arecord of all students */

Listing 4-2: Examples of definitions from the data captur e in the Temposcope

In making the model, the modell er includes those observables that are significant from the
perspective of somebody making a timetable. The above definitions demonstrate how such
observables can be expressed by using dependencies”. For instance, in line 1, class is the
collection of student names (i.e. [Al-Khaburi Ali, Anand Aradhana, ..]) in the timetable; it
depends on data, so that changing the value of data will affect class, staff and the other

definitions automaticall y.

The key concern addressed by the above dependencies is whether staff and students are
avail able in the specified slots. However, in the spirit of MWDS, it is not appropriate to say that
this is the only concern; the modeller always has discretion to add new observables to reflect
other considerations that are not formally captured by the notion o a ‘working timetable’. For
instance, the distance travelled between sesgons for a particular member of staff may be
considered (e.g. in case of a disahility). When thinking of ‘someone making a timetable’ from a
MWDS perspective, we are not mainly concerned with procedures, but with states. In particular,
the focus is typically on the timetable as a partially completed assgnment of students to dots,
and a provisional assgnment of staff to students. It is the emphasis on states rather than

procedures that all ows us to take richer observablesinto account.

The above discusson illustrates one aspect of a general principle of MWDS: the use of
definitive scripts as a data representation does not commit the modeller to spedfic design

decisions. For instance:

2 the cryptic choice of variable names in this model is due to the original developer, and is an issue to be
addressed in future devel opment.

Chapter 4: MWDS as an activity

» the model can take account of additional and provisional constraints (e.g. a CBS student
may require one assessor from Computer Science and one from Business or a member

of staff may be unable to make a firm commitment to avail abilit y);

» dggnificant design decisions can be postponed (e.g. the doice of agorithms for
timetabling to be implemented (if any) and o processes for data input (if any) remains

open, and can be decided at a later stage);

* new modes of observation can till be taken into acwunt (e.g. the avail ability of staff
member might be spedfied with respect to 30-minute slots rather than 40-minute dots,
andthe basic data model derived from external database tables).

The flexibility of the data model stems from two sources:

» the modelling activity embraces partially defined timetabling entities, and the structure
of datais derived during the development of the model;

» the data model as defined (cf. Listing 4-1) can be derived by dependency from other
aternative or more primitive data representations, and alternative or more complex data
representations can likewise be derived by dependency from the existing data model (cf.
Listings 4-1 and 4-2).

The previous discusson has addressed the role of data modelling based on dependency in
the Temposcope. The next section will discussthe processs of data matching, report generation,
the storage of timetabling result and the interface of the system based on using this underlying
data model. This involves interpreting the state of the timetable in respect of some of the key

concerns of the timetabler.

4.1.2 Developing the interface

The Tempaoscope aimsto provide an interactive environment to help in searching for a solution to
the project oral timetabling problem and to help the user to gain insight into the space of possble
solutions. The user acts as a ‘super agent’” who can decide an appropriate slot for a student.
Visualisation has an esential role here to hel p the user make the dedsion. At the arrent stage of
development, the Temposcope has a visual interface that is limited to dsplaying information
abou the staff involved in assessng a spedfic student. A graphical user interface involving
hundreds of Scout windows is included to facilitate the interaction of the user with the model

Several reporting functions are provided to help the user to trace the state of the timetable

during hig’her interaction. These are implemented via the Eden string variables MSG and msg

11€

Chapter 4: MWDS as an activity

that are maintained by dependency and record details of the current status of al the staff
members and all the students respectively. Relevant functions are checking whether a staff
member is double booked, a student is either not scheduled or is scheduled for more than one
dot, or a staff member is unsuitably scheduled. These functions are built on the basis of the
definitions of the data model defined previously. For instance, the variable d_X holds the list of
staff who are double booked. The definitions in Listing 4-3 refer to observables that have a

significant rolein the process of constructing the interface for the Temposcope.

1. TT is TT_from_timeTable(timeTable); /* the assignment of students to slots */
2. SLXis map(proj2, [join(ASS,TT)],staff); /* the assignment of staff to slots */
3. slxis map(proj2, [TT], class); /* the list of slots assigned to students in class */

4. d_Xis combine(dblebk_X, [staff, SLX]); /* the list of staff who are double booked */
Listing 4-3: Examples of definitions for developing the interface in the Temposcope

The variable timeTable records the sl ot and room to which each student has been allocated in the
following way:

writeln(timeTable);
[[[*Al-khaburi Ali", “104"],["Bang Sung”, “313"], [‘Barett lan”, “007"] 1, [1, [[.--1] --]

In this list of lists, the first entry is the list of student-room pair alocated to dot 1 etc. This
contrasts with TT, which is alist of pairs of the form [student-name, slot-number]. The presence
of variables associated with different forms of representation of the same observables, and the
use of definitions similar to that at line 1 in Listing 4-3 to transform one representation into
ancther, is a common feature of MWDS. This feature reflects the rich observations of the referent
that can be involved in the definitive model. For instance, the data representation in the variable
timeTable directly reflects the way in which timetabling information is entered and displayed
through the interface. On entering timetabling information, the user selects a room, then a
student, then a dot. In displaying this information, there is a direct correspondence between the
list of slots and the geometric representation of these dots. In contrast, the variable TT is adapted

for representing internal dependencies between data such as appear at lines2 and 3 in Listing 4-3.

Figure 4-1 depicts the Temposcope in use. As depicted in Figure 4-1, when aroom (in this
case 327) and a particular student (in this case is Adrian Clarke) is selected, the three staff
members assigned to this student are highlighted (in this case SAJ, SGM and MAR), and the
dots that lie in the union of the unavailability of the supervisor and assessor (in this case SAJ

and SGM) are highlighted in red.

119

Chapter 4: MWDS as an activity

Asis shown in the terminal window in Figure 4-1, the user can consult the status of an all ocation
by consulting the report variables MSG and msg. For instance, as iown in Figure 4-1, SGM is
double bookedin slot 4.

= screen =
Staff Da BB SBRYM MCK MST SK AT SGM MAR Rooms 104 BETNNNNS yo.oage Timetable Reset
AM EGW RSL CGEM MSP_JES TJA GREN WMB RAP 313 LL1 Board Timetable Reset
RN PUG NONE MLe [SSMEMIDIETI TIADT KH DJK LAG 007 444 Staff Buttons not active
THEC
sz 9:00-9:40 9:40-10:20 10:20-11:0011:00-11:4011:40-12:2012:20-1:00 1:00-1:40 1:40-2:20 2:20-3:00 3:00-3:40 3:40-4:20 4:20
Mor atkinso 104
slots Baty 51 007 I Terminal
1-13 elacke 327 window Edit Options Help
Tue Information for staff member AT =
5lots stk o etk o
14-26 ~ SGM 15 doublebooked in [4]C SLX = [4,4]3
Information for staff member SGM
Vod bk kA
Slots Information for staff member MaR -
bk kA
27-39 o
Thur Ash Joh 104 Anand & 104
Slots
40-52
— Unavailable slots for this selected] =¥
Slots
e student |
Al-Khaburi AliAnand Aradhanahsh John T F Atkinson Paul Bano Sung G Banks Geoffrev
Functions Berrvman Birch Helen E Elawlock Bodsworth Boot_Andrew J Bowes Branddit Rebjg Brown Browning
New TT Eutler James Cairns George Canohell Zoe ECarlev Simon Caudle RichardChambers Chan Man T8 SISEEENREREEEN 0l]lins Ds
Dennv NicholasDhanial AwnashEdwards Gavin Edwards Paul MEdvvean LowenaElding Daniel Evans Simon R Eveleich Ferousson
SaveAll Fraser Thomas Garnham Sam Giles NicholasGoudoe MatthewGuw Neil Haboood Chloe Hainsworth Hemren-LarssonHarrison g
SaweTT Hinds Hines Anthonv Hoohin Paul E Holdsworth Howard Paul ~ Hull Simon R Hunter Andrew Hussain Bibi Jenkins i
Loadall Jordanous Annakamali RussellXeeble Paul R Keen Eneller Enichts Lzu Tan Chi Lawverick Lee T K L]
LoadTT Loo Jian § Lumb Simon & Macdermott Magson Daniel Maher Thomas JMcCormack Milner John D Moisseenkov Moriaria AvneeNo
Nio andv Nuttall Alex I0‘Connor Mark 0°Learv Ong Siew P Ottner Morag Pano Chee M Park Hvouno K Patel Krishna P
Pearce Sarah LPinknev Golin Roberts Rooers Glaire Ross Philin S Rowe Salmon Sanare Scott Kieran P Si
Seved Saiiadi Sharo David P Shecherd DavidSmith Duncan &Souibb Jamie PTailor Viiay BTang Wing ¥ Tavlor Paul A Tawloc Tt
Thomas Iain W Tordeff Tucker Walker Robert Watson RussellWells John & Weston Dawid JWicks Colin D Veoh Christina

Figure 4-1: A screenshot of running the Temposcope

An esentia feature of this model is the use of virtual agents to generate definitions for a
large number of Scout windows in the model. Because MWDS tends to represent an entity and
al its asociated observables explicitly, the reproducing o similar scripts is often uravoidable.
The basic mechanism for using a virtual agent named VAname involves entering definitions in a

new context in dtkeden that is framed by special commands as foll ows:

>>VAname
enter definitions here

>>

The effed of these commands is to generate a set of definitions that is derived from the
definitions entered by prefixing all variables that occur in them by the string ‘VAname_’. An
addtional feature, illustrated in Figure 4-2, involves the indired spedfication o a virtual agent
name by reference to the value of a string variable (cf. temp2 and LISTBUTTON_NAME in
Figure 4-2).

12C

Chapter 4: MWDS as an activity

; ><LISTBUTTON_NAME F
[*staff list*/ |nta'fa.ceTT.S %eden || gbuttons

LISTBUTTON_NAME = “staffSelect”; myName = ~LISTBUTTON_NAME;
LISTBUTTON_LIST = [“starting”]; mylist = ~LISTBUTTON_LIST;

LISTBUTTON_CAPTION = LISTBUTTON_LIST < ...
for(i=2;I<=myList#;i++){

LISTBUTTON_ENABLED = 1; ~tempi = i;
Include(“listbutton.s”); ~temp2 = myName// “_" [/myList[l];
[*student list */ include(“listbutton_x2.s");

A

><temp2 ’—*—‘

temp = ~templ,;

%scout

integer x1, y1, x2, y2, myValue;

window w;

string myCaption, myBgColor, myFgColor;
w = {

frame: ([{x1, y1}, {x2, y2}])
type: TEXT

string: myCaption

border: 1

sensitive: ON

bgcolor: myBgColor
fgcolor: myFgColor

Figure 4-2: Illustrating automatic script generating with virtual agents

window staffSelect_DA_w = {
frame: [{staffSelect_DA_x1, staffSelect_DA_y1}, {staffSelect_DA_x2, staffSelect_DA_y2}])
type: TEXT
string: staffSelect_ DA_myCaption
border: 1
sensitive: ON
bgcolor: staffSelect_DA_myBgColor
fgcolor: staffSelct_DA_myFgColor

Listing 4-4: Script extract gener ated by the technique described in Figure 4-2

In the Tempascope, virtual agents are used to generate all the principal comporents of the
display interface such the bank of student buttons, the bank of staff buttons and the array of
timetable dots. For this purpose, virtual agents are used in a nested manner, as illustrated in
Figure 4-2, which displays the definitions used to generate the bank of staff buttonsin Figure 4-1.
A generic definition is first formulated and stored in the file listbutton x2s, this file is then
included in the file listbutton.s in dfferent virtual agent contexts associated with the names of
staff members, and the content of this file is in turn interpreted in the context of a virtual agent
named ‘staffSelect’. As aresult, a similar set of definitions and actions is generated for each

window (cf. Listing 4-4).

The process of generating scripts with a virtual agent described above drcumvents the

tedious job of manually reproducing a set of similar definitions. However, it may be difficult for

121

Chapter 4: MWDS as an activity

the modeller to comprehend the script from its gedfication in Figure 4-2 without executing the
model. This is because definitions are generated on-the-fly and interpreted as if they were
explicitly entered by the modeller. In particular, the definitions generated from Figure 4-2 are
explicitly stored and maintained in the exeauting model.

With reference to a discusgon of instruments immediately prior to Section 4.1.1, the
model building activity described so far corresponds to the design and construction o an
instrument. The first phase of building a text-based model to represent observables and
dependencies is analogaus to the preliminary experimental work of the enginee in identifying
the principles on which the instrument will be based. The introduction of primitive visualisation
and interface mechanisms to enable the modeller to access the data model is analogous to the
construction of primitive comporents from which the prototype instrument can be assembled.
The refinement of the user interface and rehearsal of the use of the model is analogous to the
creation o the first complete prototype. At its current stage of development, the Tempascope has
the characteristics of a useful instrument whose qualities have been appreciated by the
departmental administrator. However, in its current form, it is far from being a finished
instrument. For instance, the reporting variables MSG and msg still resemble the primitive forms

of interaction that are characteristic of aninstrument at an early stage of its development.

4.1.3 Using the instrument

MWNDS supports activities that are more general than programming. Programming is instructing a
computer to carry out aredpe. By comparison, MWDS promotes the concept of ‘the mmputer as
instrument’ proposed in [BCH+01]. The use of an instrument typically involves a close and
continuaus engagement between the user and the computer. Ideally, the user’s interaction with
the computer should have an experimental quality that gives immediate feedbadk, so that the user
can asesswhether he/sheis heading in the right direction. Such an activity has a form of domain
or problem analysis as an essential ingredient. The way in which dependencies, functiona
abstractions, actions and visualisation are exploited should ideally be dictated in an interactive

way by the results of this analysis.

The Tempaoscope provides an interactive environment for the modeller to create a model
that can be shaped to suit the spedfic timetabling context and for the user to explore and expl oit
the model in perallel. Whereas conventional programming typically aims to implement the

solution to a well-understood problem, MWDS typically invoves finding the solution and

Chapter 4: MWDS as an activity

understanding the problem at the same time. The Tempaoscope itself does not find a solution to
the timetabling problem so much as asdst the timetabler to explore and doserve factors that

influence the likely quality and disposition of solutiors.

The concept of ‘place-and-seek’ proposed by Paechter [PLCP94] may be simulated
manually by the user in arder to solve the timetable problem. The user can select a plausible slot
for a student; chedk whether it is appropriate and, if not, try another plausible dot. This process
can be observed in Figure 4-3, where the user is deciding an appropriate slot for a student (in this
case Sam Garnham). The shaded slots indicate those that are not possble for the student
becuse the supervisor or the assessor have dedared themselves unavail able. The user can choose
an un-shaded dot to which no student is yet allocated and this choice will meet the hard
congtraints. If students have already been all ocated to an un-shaded dot, the user has to chedk
that neither the supervisor nor the assessor has been assgned as a supervisor or assessor to
anather student timetabled in that dot. In Figure 4-3, it can be seen that, at present, the staff
member MCK is inappropriately all ocated at slot number 27 and 54. The user has to reallocate
students in these dots to eliminate the dashes for MCK from the timetable. The avail ahility of
staff may be dhanged and redefined on-the-fly. The model automatically updates the state of the
timetable and will report the effect at the request of the user. The user can then try to reschedule
the orals within the relevant dlots appropriately.

The Temposcope model is efficient in terms of allowing redefinitions, maintaining
dependencies between observables and gving a greater level of user interaction with the system.
Whereas a conventional approach only gives limited information about the reasons for scheduling
decisions, and typically aims to produce the schedule automatically without the user's
intervention, the Temposcope user has open-ended accessto the internal state of the model when
making and evaluating dedsions about allocating arals to slots. The user’s accessto the internal
state of the model also means that the model can be readily adapted to suit different perspectives
and meet different needs as they arise. For instance, when the user is about to schedule a student
to a dot to which some students are already allocated, the user needs to determine all staff
members who, as supervisors and assessors, are already assgned to that dot: this information can
be derived from the observables ASS (cf. Listing 4-2) and TT (cf. Listing 4-3) by a dependency
that can be framed as a new definition. The eperience gained from interacting with, and
extending, the model in this kind of way can lead to the discovery of new systematic techniques

for finding solutions.

122

Chapter 4: MWDS as an activity

=| Tkeden: Command History BEE Tkeden(serverd: Input window ==
Save Find Close File Wiew Type Accent Send Help Interrupt

w(MSG): Enter EDEM Statements:

~studentSelect_x42_w_mouse_1 = [1,4,0,78,7] ; "

~studentSelect_x42_w_mouseClick = TRUE; O REE)

~studentSelect_w42_w_mouse_1 = [1,5,256,78,7]; writelninza);

~studentSelect_x32_w_mouse_1 = [1.,4,0,86,E]:

~stugentSe1ect_xSZ_w_muuseCHCK[= TRUE;]

~studentSelect_»32_w_mouse_1 = [1,5,256,86,6]; em i i

~studentSelect_x42_w_mouse_1 = [1,4,0,82,E]; Staff m bers reqUIreCI for this student —

~ctudentSalact wd? w mnnserlick = TROF- e - . - v

= e screen. [-]
Staff D& AE SEEN MBK&‘ISJ SE AT SGM"‘MAR Rooms 104 ae7 Message Screen Redraw

AN RGYW RSL GRM MSF JES TJA GEN WME EAP 313 LL1 El ++% puailahill
%c PWE NONE M.e SAJ] DJETI TIADIEH DJE LAG o7 444 Timetable Fesd

Slots 9.00-9.:40 9:40-10:20 10:20-11.0011:00-11:4011.40-12:2012:20-1.00 1:00-1:40 1.40-2.20 2:20-3.00 3.00-3:40 3
Mon Ash Joh 313 Barrett 313 Banks 6 313 Dhanjal 104 Hinds 5 104G
Slots Bowes G 327 Habgood 327 Ottner 327 Lim Lia 313 Park Hy 3130
1-13 Futtall 104 Payne C 327 Berryma 327K
Tue Cairns 104 Harriso 313 Brown © 313 Howard 3E270e Nies 104 McGorma 313 H
Slots 0'Leary 313 Magson 327Lumb 51 327 Jordano 313 P
14-26 Holdswo 327 Hines & 327

Thur Smith O 313Lee ¥ K 313 0ng Sie 104 Pearce 104 Anand A 327 Elding 327 Brandon 313Birch H 327 Ferguss 327
Slots Carley 32?Garnham 327 Edwards 327 Beaven 313Pang Ch 313 Wells J 313 Pinkney 327
40-52

Roherts 104 Thomas 327 Lau Yan 444

Wed
Slots
27-39

Fri
Slots
53-65
MCK is not ok!
Functions i Eirch Helen E EBlavlock Eodsworth B f f
Wew TT Butler Jemes Cairns Georae Camobell Zoe ECarlev Simon C Window Edit Options / Help
Derry NicHolasDhanial AvnashEdwards Gavin Edwards Paul ME
Savenll Fraser Thimas Giles NicholasGoudae MatthewG b
SaveTT Hinds i thony Hoohbin Paul E Holdsworth Information for staff member Y
Loadall Jordanoug AnnaKaw@ll FussellEeeble Paul R Keen K R
LoadTT Loo Jia@'s Simon A& Macdermott Magson Daniel M MCK unavailable in [27.54]1
Hio Andy Muttall Alex I0°Connor Mark 0'Leary Information for staff member MCK
Pearce $a LPinknev Colin Rﬁbeﬁtsd dRouiﬁs Claire R ettt o o
Sheoherd DavidSmith Duncan &S|y ynavailable in [20,33]
Current se ected student [fucker Valker Robert W\l 1ntoppation for staff member MST
kA =

Figure 4-3: The Temposcope —an interactive timetabling model

Methods of solving the timetabling problem correspond to systematic ways of navigating
around the space of partial timetables. Any computer algorithm that constructs timetables
incrementally is interpretable in terms of navigating the space. Many computer algorithms might
use clues or systems that the human timetabler would find inconvenient (e.g. it is not necessarily
appropriate to enter students in alphabetic order). In general, the aim of MWDS is to allow a
computer and a person to co-operate in the navigation towards a successful timetable. In this
context, there may be observables appropriate to the timetable which give useful heuristics about
how to make progress in timetable construction. For instance, a good strategy for timetabling
might be to count the number of possible alocations currently available for each student, and
subsequently choose to schedule the oral of a most tightly constrained student. The timetabler
would not ordinarily be able to observe the identities of such students directly, but this could be
made available via the definition of an appropriate observable. This illustrates how the

Temposcope, as an interactive machine that maintains some essential constraints or facts about

124

Chapter 4: MWDS as an activity

the final year projed oral timetable, can offer a framework within which to develop automatic
and semi-automati ¢ timetabli ng algorithms.

4.2 Characteristic features of MWDS

MWDS emphasises the dired representation o the state in a situation by an artefact rather than
symboli ¢ representation. Because of the dose crrespordence between observables in the artefact
and observablesin the referent, MWDS supports interactive and experimental activities. The term
‘interactive situation model’ (1SM) was introduced by Sun (cf. [Sun99], [BCSW99], [BCRS99])
to describe an artefact developed in this way. The model of the timetable that is generated by
using the Tempascope, as discussed above, can be alternatively viewed asan I1SM for projed ora

timetabling.

Various modelling activities, such as interaction, comprehension, discovery and extension
are esentially involved in constructing an I1ISM. All these activiti es both shape and are shaped by
the external semantic relation and combine interpreting and understanding the ISM script with

modelli ng activity that is observation-oriented and experimentall y-based.

4.2.1 Interaction

Interactivity is one of the most significant features of MWDS, since the user, in the role of a
super agent, can arbitrarily change the state of the model onthe-fly. Redefining a script can
correspond to changing the state of the model and subsequently to changing the modeller's
personal perception of the model. The modeller typically interacts with the moddl in arder to
explore its features, comprehend its internal and external representation, refine and modify it to
reflect the evolving referent and experiment with it to med subjedive aiteria. The way in which
the semantics of definitive models is developed (cf. Figures 1-5, 210 and 2-11) means that

MWDS can manifest particular qualiti es in interaction as described bel ow:

» It supports exploratory experiment (similar to the ‘what-if’ feature in spreadsheds) that
is useful when we need to comprehend and investigate the internal semantic relation

asciated with a script or confirm expectations about patterns of change.

» The acceptability of the model can be determined by the situation in mind. The content
of the script is determined by the real-world situation.

12t

Chapter 4: MWDS as an activity

* Subjedive judgements are supported, as when (e.g.) in geometric design o interface
design, we find a satisfactory shape or appearance by ‘what looks good', or the
timetabler rearranges the all ocation of students to slots until he/sheis satisfied.

MWDS also offers a very open environment, so that the user can interact freely with the
model or make a change to a single detail of the script. Thereis no right or wrong way to interact
with the model. Every experience or interaction counts in MWDS. In addition, the user can
always restore the previous gate of the model. Some definitions may not be useful or oriented to
the target but they may be meaningful in relation to gaining experience and interpreting the

results of experiment.

In MWDS, the referent can evolve al the time. It may be affeded by changes in
environments, situations and personal experiences and perspectives. An example of a real-world
state that evolves and changes most of the time is a database appli cation, since data needs to be
extended and refined with the passage of time. A definitive script has open-ended characteristics
to be redefined o modified without circumscription. In an unsettled world, we do not want a
model that is fixed and hard to change. In Cooper’s view, the inflexibility of many programs
stems from the significant difference between the cognitive model of a user and that of the
builder of a program [Coop99]. MWDS offers a way to construct sophisticated computer-based
artefacts whose behaviour can —in principle — be customised, reprogrammed and reinterpreted by

the user, and whose responses can be adapted to the user and the situation.

MWDS aims to provide an experimental environment in which the developer and the user
can interact broadly with a model that is flexible to change. For instance simple changes to the
definitions in the Timetable model can lead to changes in the model behaviour, asisill ustrated in

the following scenarios:

» Initialy, the duration of each dlot is 30 minutes, but this is then changed to 40 minutes.
A function convertl8untol3avail that converts a binary sequence of length 90
representing availability over 30 minutes dots from Monday to Friday into a similar
binary sequence of length 65 for 40 minute slots can be implemented. The Timetable
model is adapted to its new context by substituting convertl8untol3avail(DA_AV) for
DA_AV in the definition o avail, which is the key observable from which information
abou staff avail abili ty is derived.

12¢

Chapter 4: MWDS as an activity

The staff members that are assgned to each student can be changed by redefining
observables sich asdatal, data2, data3 etc. For instance, the supervisor for the student
Sam Garnham can be dhanged from SBR to MCK by the following redefinition:

data[ixstud(“Sam Garnham”)][5] = “MCK”

where data is asin Listing 4-2, ixstud() returns the index of a named student in the list
data, and the 5" element of this list represents his supervisor. This redefinition may lead
to corflicts with previous all ocations. For instance MCK may be double booked. The

user may need to consult the report variables and try to corred the unsatisfactory dots.

In the Temposcope, the staff avail ability can be changed dynamically by redefining a
particular variable. This isillustrated in Figures 4-4(a) and 4-4(b), where redefining the
avail ability of staff member WMB automatically updates the visual display of possble
avail able dots for the student Sam Garnham, for whom WMB is the assessor. As shown
in Figure 4-4, after this redefinition there are more posshble available (i.e. nan-shaded)

dots for this gudent. This can be regarded as a ‘what-if’ exploratory experiment.

File View Type Accept Send File Wiew Tvne Accept send
Enter EDEN Statements: Enter EDEN Statements:
WMB_AY = [9,10,11,12,19,20,37,38,39,40,41,42,43,44,45.46,47,48,.4 Il
,B82,83,84.85,86,87,88,89,90]; IWHB_P.\-" = [53.6,7.8,11,12,24,25,26,27,28,34,35, 36 40,41 ,42,43]
Staff DA BE BEREMTM MCK MSI SK AT
staff Dh &5 SEEMMYM MCE MST SK AT SGM AM RGW RSL GRM MSP JES TJA GEN ¥
AM RGW RSL GEM MSP JES TJA GREN WME EN EFWG NOWE MLe 547 DJETT TJADT EH I
EN PYG NONE MLe SAJ DJETT TJADT EH DJK THEC
pztof Slots
Q:00-9:40 9:40-10:20 10:20-11:0011.00-11.401)
Slots 9:00-9:40 9:40-10:20 10:20-11:0011:00-11:4011:4
Mon Ash Joh 313Barrett 313Barks 6 313 Dhanjal 104 Mon Ash Joh 313Barrett 313Barks G 313
slots Bowes 0 327 Hahqood 327 0ttmer 327Lim Lia 313 Slots Bowes G 327 Habgood 327 Ottner 327
1-13 Muttall 104 Payne [327 1-13 Huttall 104
Tue Cairns 104 Harriso 313 Browr| Tue Baty 5i 327 Enights 313 Cairns 104
Slots 0’Leary 313Magson 327 Lumb 5lots Guy MNei 313Butler 327 0°'Leary 313
14-26 Holdswo 327 14-26 Cafiphel 444 Holdswo 327
e wed Chamber 327
07-39 Slots Tailor 444
27-39
Thur Smith D 313Lee ¥ K 3130ng Sie 104 Pearce 104 Anand
Slots Garley 327 Garnham 327 Edwards 327 Beawan 313 Pang Thur Smith D 313Lee ¥ K 313 0ng Sie 104 Pearce 1043
40-52 Roberts 104 Thomas 327Lau Slots Carley 327 Garnham 327 Edwards 327 Beavan 313 P
40-52 Roberts 104 Thomas 327L
Fri
Slots : . .
53-65 Fri Burnett 313 Hainswo 327 Maher T 313 Brownin 313
5lots Ross Ph 327 Blayloc 444 Hawton 327 Tang Wi 327
L£3-65 Hamren- 313
Al-Fhaburi Aliadnsnd Aradhanafsh John T F Atkinso
Functions Berivman Birch Helen E Elavl];u]ci Budiwurt
Butler James Calrns George Camobe Zoe ECarlev 3 . .
Hew TT H H Al-kFhaburi Alia&nand Aradhanaish John T F Atkil
I Nicholas Dhy 1 A hEdwards G Edwracd: . !
SsveAll || wrnser Thonno ESERRSRESRRNN o lcs icholns Gondoe Functions Eerrvman Eirch Helen E Blavlock Bodg
SaveTT Hinds Hines Anthony Hoohin Paul E Holdswod New TT Butler James Cairns Georae Camohell Zoe ECarl
Loadall Jordanous AnnaKamali RussellEeeble Paul R Keen Dernnv WicholasDhanial AvnashEdwards Gawin Edwy
LoadTT Loo Jizn § Lunh Simon & Macdermott Magson I Savedll Fraser Thomas BSERRSHNSSHENGiles Nicholas Goud
11;"'0 Rﬂd‘s’ - Lg‘-‘:\]&;u gtlix Ig‘gonréor Mark g‘Learv SaveTT Hinds Hines Anthony Hoobin Paul E Hold
SEEESESa?:adl S;aruegavi\:ll; S}ﬂnesll:xei\:l DavldSrnﬂg?:lrnaD Loadall Eord?nousshnnafmlé_Russgllﬁee};le P:&l E. ﬁeen
oo Jian iman acdermo ELE |
Thonas Tain W Tordoff Tucker Palksr A LoadTT Min &rnde Minttall alex TO°Corenr Mark 0°Te

Figure 4-4: (a), (b) Changing the availability of the staff member

Extensive interaction with an ISM provides the platform for deeper activities, such as

comprehension, discovery and extension.

Chapter 4: MWDS as an activity

4.2.2 Comprehension

MWDS using (d)tkeden provides features, such the query commands, the accessto the history
andto scripts as classgfied by their underlying definitive notations, and command line editing and
retrieval (cf. Sedion 2.1.2, which facilitate the user’s interaction with the modd. The
dependency maintenance system offers a run-time stimul us-response feature. These features help

the user to make redefinitions and to understand their effeds.

By changing definitions in the mode and dbserving the @nsequences, the user can
comprehend the behaviour of the model. Experiment can be a way to dscover or confirm the
interpretation of a definition. For instance, changing the availability of the staff (as down in
Figure 4-4) will affed the possble allocated dlots for a student who has SBR as a supervisor or
asesr. By observing the change and querying the avail ability of these two staff members, we
can learn that the shaded dots are determined by the union of unavailability of these two staff
members. A change in the avail abili ty of staff in a real-world situation diten affects the state of
the timetable being built. When an 1SM accurately reflects behaviour in the real world situation,
the user may be better able to understand the real-world phenomenon through interacting with the

modd.

Definitive scripts can support a large variety of ways of designating o identifying
observables. This is of interest in connedion with Kent's observation abou designing and

evaluating a computer-based data model [Kent78]:

“In order to design or evaluate the naming facilities of an information system, it
helps to be aware of the variety of ways in which we designate things.”

By way of ill ustration, in the context of the definitive Room Viewer model depicted in Figures 2-
6 and 3-7, there are a number of variables that reference the door of the room in dfferent ways.
They include: the DoNaLD openshape door, which contains the features such as the hinge and
the lock, the DoNaLD line door/door, which could be viewed as representing the door in
isolation from the normal context supplied by its hinge and lock, and the ‘equivalent’ Eden
variables _door and _door_door, which are respedively associated with the abstract structure of
the door and the scalar attributes of the door (such as its dimensions and position) detached from
their visualisations. In MWDS, dependency is the feature that gives integrity to such dverse

representations of a‘single’ object.

12¢

Chapter 4: MWDS as an activity

The situated and interactive nature of an ISM provides modes of reference complementary
to ‘naming and designating things' . We may be able to identify the DoNaLD line door/door as it
appears on the display as representing a real door because of its location relative to the other
features of the real room to which it refers. Alternatively, we may be able to recognise the
DoNaLD line door/door as representing a door because of the way that it is observed to behave
in‘normal’ interaction with the model. In this interpretation, both the character of the interaction
and the context for the interaction are significant. For instance, in recognising the line as a doar,
it is helpful if its motion is ‘ continuaus’ rather than dscrete (cf. the introduction of the DoNaLD
shape rotdoor in Section 3.2.7). It is also significant that the other features in the DoNaLD line
drawing in Figure 3-7 can be interpreted as items of furniture d@c. Other issues of designation also
become relevant as a side-effect of the interactive nature of the Room Viewer model in Figure 3-
7. Theline drawings in Figures 2-6(a) and (b) are interpreted as referring to a doar rather than a

switch sincethe script includes the boolean variable open rather than on.

The above discusgon il lustrates the richness of the concept of * observable' as it applies to
MWDS. This richness $ems from the complex patterns of inter-dependency that relate the
observables assciated with the definitive variables openshape door, line door/door, _door,
_door_door, open as discussed above. It also helps to account for the fact that, whereas in a
traditional procedural programiit is often dfficult to connect variables with external observables,
each definitive variable in a script can plausibly represent an dbservable in the referent.
Designating a sensible name for a definitive variable in such a way that it corresponds closdly to
an doservable in the referent can help in understanding the role and significance of the variablein
the script. The experiential ingredients that support the interpretation of variables are nat simply
concerned with activiti es such as observing interaction with line drawings, but with knowledge of
symbols and real-word domains. For instance, by reading the observable WMB_AV, as opposed
to XYZ_AV, we may diredly redckon that this observable represents the availability of a staff
member with initials WMB. We @n further confirm the significance of this observable in the

model by queryingfor its value and dependency.

4.2.3 Discovery

A definitive script can be used to represent personal views, which can reflect unresolved isaies
and unpredictable circumstances. The modeller observes the external situation and represent

observables with respect to their relationship that he/she perceives or conceives. The model that

Chapter 4: MWDS as an activity

is constructed has an open-ended character. The modeller may start with only a vague idea of the
purpose for the model. He/she has higher own initial perspective. At the beginning o
development, the shape of the final model is unpredictable. For instance, when constructing a
geometric model such as the Room Viewer, it is hard to anticipate all useful geometric designs
and dependencies. Through interacting with the model, the developer incrementally refines the
model step-by-step and eventualy is able to achieve an acceptable state for the model. The
implications of model building are not circumscribed and not predictable. For instance, an
algarithm to solve the projed oral timetabling problem may or may not emerge from the

development of the Timetable model.

Objeds react and respond to change throughaut experimentation. The object is modified in
diverse directions by the developer or user. The ISM can be viewed as an experimental artefact
defined by a script which the developer can redefine in arder to dotain a richer understanding of
the situation. Experiment leads to new discoveries. The role of an ISM resembles that of what
Gooding characterises as the construals of Faraday [Good9(Q]. In practice, people observe and
interact with dbjects, learn their nature and make hypotheses. Experiments will test these

hypotheses.

4.2.4 Extension

Sets of scripts (such as the data model and data capture for the Timetable in Listings 4-1 and 4-2)
independently represent aspeds of observations. They are interrelated through definitions. To
extend the model, a set of definitions, which can be totally new or just redefinitions of existing
ones, can be included in the model. By adding definitions, the state of the model is changed.
Similar, attaching new scripts can redefine existing scripts so that they are compatible with the
new ones. The model can be extended by adding new definitions which refer to observables in
the eisting script. For instance, the Timetabling model has been extended so that — when it is
executed in client-server mode using dtkeden as depicted in Figure 4-5 — each staff member can
login, as a client, to the main Timetabling model, executing on the server, and submit their
avail ability online®. In Figure 4-5, the variable WMB_AV has been changed to reflea a change
in avail ability. The new value of this variable, as displayed in the terminal window, is sent to the

main timetable server and the timetabler at the server can decide when to ypdate the model.

13C

Chapter 4: MWDS as an activity

- Tkeden: Command History == Tkeden(client): WMB Input Window ==
Save Find Close File Wiew Accept Send Help Interrupt
~slotsTable_x11_w_key 1 = [65363,2,0,37.49]: :
~z]otsTable_x11_w_key_1 = [E5363,3,0,37.,49]: Enter EDEN Statements:
~zlotsTable w11 _w_key_1 = [65535,2,0,37,49]: [rri tenChre_avd; [A
~s]otsTable_x11_w_key 1 = [£5535,3,0,37.49]: =
~slotsTable_x11_w_key 1 = [65361,2,0,37,49]: Terminal
~slotsTable_x11_w_key 1 = [65361,3,0,37,49];)))
~s]otsTable_x11_w_key_1 = [65364,2,0,37,49]; window Edit Options Help
~slotsTable_wx11_w_key 1 = [65364,3,0,37,49];:
(| telnCWME_AND WME_AY ~> [1;
5 [9,10,11,12,19,20,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,5
A| ,70,71,72,73,74,75,76,77,78,79,80,91,82,83,54,85,86,87,86,89,90]
jaratsri@gen: [~/Models/TT-C-K/avclient]$ r
Staff DA AE SER ¥YM MCK MSI] SK AT SGM_ MAR
AM RGW RSL GEM MSP JES TJA GREN WHBEMRAP
EN PWG NONE MLe 5AJ ©DJKTJI TJADJ KH DJK LAG
THEC
Slots 9.00- 9:30- 10:00 10:30 11:00 11:30 12.00 12:30 1:00- 1:30- 2.00- 2:30- 3:00- 3.:30- 4.:00- 4.30- 5.:00- 5:30- |
9:30 10:00 -10:3 -11:0-11:3 -12:0-12:3 -1.001.:30 2.00 2.30 3.00 3:30 4.00 4:30 5.00 5:30 &:.00
Man ‘
) ll ‘
) lllllllllllllllll.
Fri - r {r r 1 & [1 [[[| [[[|

Figure 4-5: A client application for a staff member to input hisor her availability

The model can be extended in terms of its visualisation modes to help the user to select

suitable slots. For instance, we can write scripts to highlight the dots to which a staff member is

allocated when the user clicks on a staff button. Another example of a small extension to the

model attaches a workload weighting to each staff member according to the number of projects

they supervise, assess and moderate as foll ows:

staffname = “WMB”;
S is weight(staffname)[1];
A is weight(staffname)[2];
M is weight(staffname)[3];
Workload is 3*S + 2*A + M;

func weight{

para name;
autoi, s, m, a;

s=0; m=0; a=0;

for(i=1;i<=data#;i++){
if(name==data[i][5]) s=s+1;
if(name==data[i][6]) a=a+1;
if(name==data[i][7]) m=m+1,;

}

return [s, a, m];

% This extension was devel oped by Chris Keen [Keen00] as were the web-based clients through which each staff
member can update their availability via aweb page.

131

