
Chapter 5: Representing state and behaviour in MWDS

132

�
 ���������
	��
��������� 	����
�����
��� ���
�������! #"$�%��� & ' ()

As described in the introduction to the thesis, this chapter sets out to il lustrate how MWDS can

be viewed (controversially) as providing an alternative and unorthodox picture of the relationship

between the world and our representation of it. In the experience of the author, such an

alternative viewpoint is natural for the modeller engaged in MWDS. This leads the author to

conceive the distinction between MWDS and traditional computer-based modell ing (for example,

in respect of openness, and experiential character) as fundamental rather than as a matter of

degree. This is potentially a source of controversy for sceptical readers – one that becomes even

more pronounced in Chapter 6, where such a fundamental distinction is presumed.

Representing state is a key concern in MWDS. The discussion in this chapter addresses the

connection between state and behaviour in MWDS. By introducing the concept of an ADM

device and a program device, it is possible to explore the link between MWDS and traditional

modelli ng of state and behaviour. The ADM device and the program device are compared and

contrasted with reference to four aspects of state – Situational, Explicit, Mental and Internal –

that are of concern when we use and interact with a device. The two principal case studies in this

chapter relate to:

• a simple program (‘Jugs’) , originally developed for the BBC micro-computer by R.

Townsend [Town], that has been widely used in schools;

• a CSP specification for a chocolate vending machine introduced by C. A. R. Hoare

[Hoare85],

which are respectively used to explore the explicit and internal, and the situational and mental

aspects of state.

Chapter 5: Representing state and behaviour in MWDS

133

5.1 Open-development and closed-world views on devices

Traditional programming, whether declarative or procedural, focuses on the representation of

actions and behaviours. State is defined with reference to behaviour. MWDS is not like

traditional programming. It is more closely related to building a physical artefact. A definitive

script itself represents a state not behaviour. Behaviour in a definitive context is understood to

refer to a predictable, reliable pattern of state changes that can be repeated many times. When we

construct a definitive model, behaviours are associated with patterns of interaction that occur at

the discretion of the modeller. However, there may be no behaviours associated with definitive

scripts that are developed with exploratory creative model buil ding in mind.

To compare a definitive model with a traditional program, we need to make an ontological

shift, whereby we regard a program as it executes on a computer as a physical artefact that

generates observables that can be experienced by the user. Even after this shift in perspective, a

definitive model is quite unlike a traditional program, which is designed with a specific function

in mind. Such a program reflects a ‘closed-world’ model of the requirement; it is concerned with

behaviour and interactions which are circumscribed and preconceived in advance by modellers

who have a good understanding of what users want. In this sense, the term ‘device’ is used to

refer to a physical artefact that is conceived as ‘program-like’ (whether or not it is computer-

based). In particular, we shall refer to a traditional program that is being viewed as a physical

artefact as a ‘program device’ .

The characteristics of a typical device are listed in the first column of Table 5-1. There are

specific modes of use within which the behaviour of the device and of its user follow standard

patterns and the interpretation of state changes is preconceived. These can be described in terms

of the ‘circumscribing observables’ that characterise its use. These circumscribing observables

may refer to internal and external features of the device and to factors associated with the

situation and the user’s understanding of the situation. The set of circumscribing observables

defines a boundary surrounding normal use of the device. Since the device is designed for general

rather than merely personal use, the set of circumscribing observables is defined in an abstract

and objective manner.

Characteristic Typical devices ADM artefacts

Specific modes of use
� �

Chapter 5: Representing state and behaviour in MWDS

134

Standard patterns of behaviour
� �

Standard user interaction patterns
� �

Standard interpretations for state change
� �

Clear identifying boundary
� �

An objective observational context
� �

Table 5-1: Contrasting the characteristics of typical devices and ADM artefacts

Table 5-1 contrasts the characteristics of devices and ADM artefacts. Though the

characterisation in the table is flexible, it reflects a genuine distinction. The characteristics of a

device cannot be completely circumscribed. It has properties that are not considered in standard

use and it can be used in ways outside the scope of its specification. For instance, an analogue

watch can be used as a paperweight or used in conjunction with the sun for direction finding. As

ill ustrated in Chapter 3, ADM artefacts can have all the characteristics specified in Table 5-1.

Such examples il lustrate the shift from ‘closed’ user-artefact interaction (i.e. interaction

conforming to the user manual) to ‘ open’ user-artefact interaction (i.e. adaptive use involving

interaction with the artefact not anticipated by the designer) and vice versa (cf. [BRWW01]).

The shift from closed to open interaction relies upon the user’s imagination. The shift from open

to closed interaction relies upon the modeller’s discretion. A device is constrained from being

open by optimisation and its embodiment in the physical world. An ADM artefact cannot be

optimised to a specific function without compromising its quality as a construal. How efficient a

device can be depends on what physical properties we can identify in the world. How flexible an

artefact can be depends on how faithfully we can construe its interaction with the world.

From an abstract viewpoint, the distinction between devices and ADM artefacts resembles

the distinction between a traditional objectivist view of cognition and experiential cognition, as

described by Benyon and Imaz [BI99] (after Lakoff [Lakoff88]) in connection with their research

into the conceptual foundations of representations used in HCI and software engineering:

“… experiential cognition emphasizes the role of both bodily and sociocultural
experience in characterizing concepts and in the human imaginative capacity for
creating concept and modes of rationality that go well beyond any “mind-free”
external reality.”

“Experiential cognition is an approach to understanding what meaning is to
humans. The traditional objectivist view of cognition sees it as the algorithmic
manipulation of abstract symbols that provide internal representations of an external
reality.”

Chapter 5: Representing state and behaviour in MWDS

135

It also reflects the distinction between the sense-making activities that are attributed to these two

views of cognition as explained in [BI99] as follows:

“Traditional views of cognition see meaning coming from the association of
symbols with external objects, whereas experiential cognition sees meaning coming
from the application of “imaginative projections” to some basic concepts, these basic
concepts being meaningful because of their roles in bodily experience.”

The traditional objectivist view of cognition is similar in spirit to the traditional view of

software engineering: when we begin to build a device, we go through a process of negotiation

between users’ requirements and software limitations which is generally done through a paper-

based design. In contrast, experiential cognition has more in common with experimentally-based

design which directly builds a prototype for a device, then modifies and refines it.

The discussion in Chapter 3 has shown that ADM artefacts are very rich and broad. In

modelli ng a device, they can take account of all possible aspects, including the internal factors,

such as mechanisms and interfaces, and external factors, such as the situation and the user’s

mind. However, in order to make the comparison between MWDS and traditional ways of

studying the development and use of devices possible, we need to restrict the observation and

interaction with an ADM artefact so that it has the characteristic properties of devices identified

in Table 5-1. The term ‘ADM device’ will be used to refer to an ADM artefact that is restricted in

this way by exercising the modeller’s discretion.

In the rest of this chapter, we take up the two agendas suggested by the previous

paragraph: a comparison between the internal construction of traditional devices and ADM

devices; and the application of ADM artefacts in studying the design and use of traditional

devices in their broader context, taking account of mental and situational factors. These two

agendas respectively relate to the internal and the external semantic relations associated with a

device as depicted in Figure 2-12.

Four aspects of state in the study of devices

These two agendas above are discussed with reference to four aspects of state – Situational,

Explicit, Mental and Internal – that are defined based on the way that we use or interact with a

device (cf. Figure 5-1). As discussed in [BRWW01], these four aspects are relevant in both

closed user-artefact interaction and open user-artefact interaction. They are specified as follows:

• Explicit state corresponds to the visible state of the device;

Chapter 5: Representing state and behaviour in MWDS

136

• Situational state is related to knowledge of the real-world context in which the device is

being used and to which the device refers;

• Mental state takes account of the user’s knowledge and expectations about interaction

with the device when interpreting its current state and conceiving its possible transitions

of state;

• Internal state is related to the internal representation or mechanism inside a device. In

normal use, it may not have to be considered unless or until we realise that there is a

conflict in the relationship between the device and its referent.

Figure 5-1: The four aspects of state in using a device (adapted from [BRWW01])

As in [BRWW01], these four aspects of state are ill ustrated with reference to a digital

watch. Explicit state is what we can see by looking at the watch. If we observe the explicit state

of a device in isolation from other aspects of state, we may misinterpret the state of the device.

For instance, by looking at the watch, it is sometimes hard to tell whether we are observing the

current time (i.e. if the watch is in ‘display current time’ mode) or the alarm time (i.e. if the

watch is in ‘display alarm time’ mode). The situational aspect of state typically supplies the norm

for device use. For instance, when the user sets the watch to ‘stopwatch’ mode to record the time

taken to run a race, he/she has to observe features of the external situation in addition to

observing the watch. Mental state refers to knowledge complementary to the explicit state that

has to be carried in the user’s mind to make sense of the device’s behaviour. For instance, the

user expects that if he/she presses a button X once in the current time mode, the watch will

display the alarm time that is currently set. The internal state of the digital watch is concerned

with test and repair. The internal state of the watch is not usually accessible to the user.

Situational state
Mental state

Internal
state

E
xp

lic
it

st
at

e

The device

The situation

The user

Chapter 5: Representing state and behaviour in MWDS

137

Figure 5-2: Situational, Explicit and Mental aspects of state in digital watch use (adapted
from [BRWW01])

The three primary aspects of state (viz. Explicit, Situational and Mental) are typically

specific to each instance of use, and have to be simultaneously apprehended by the user

[BRWW01]. For instance, when using a watch to count pulse rate, the user puts the watch into

the countdown mode (registered as mental state), sets the duration to one minute (consulting the

explicit state) and counts pulses (referring to the situational state) until the watch beeps

(establishing an explicit state and confirming the expectation associated with the mental state).

A device is normally designed with a concept of appropriate use in mind. This will be

framed in the ‘ user manual’ for the device in terms of idealised observables related to the primary

aspects of state. For example, a digital watch user who has just arrived in Tokyo from London

will need to know how to reset the time on the watch to Japanese time. The designer expects the

user to be able to read the current time on the watch (an explicit state), to know the time in Tokyo

(a situational state) and to have some recipe in mind (a mental state) for changing the watch to an

appropriate mode (cf. Figure 5-2). The uses of a device are conceived and documented with

reference to common types of abstract observation relating to explicit, situational and mental

state that are determined by the nature of the device. A prescription for use in terms of abstract

observation is not in itself sufficient for practical situated use. For instance, a digital watch is

designed to be used in different time zones and this kind of use will be documented in the user

manual with reference to the current time (an ‘abstract’ observable), but this does not tell the user

Mental
aspect of

state

Situational
aspect of

state

Explicit
aspect of

state

Chapter 5: Representing state and behaviour in MWDS

138

how to determine the time in Tokyo. There are two ways in which ADM artefacts can be used to

study devices:

• constructing ADM artefacts that model devices: An example of such use is depicted

in Figure 5-2, where the model of digital watch is as discussed in Chapter 3. Another

example is the model of the original Jugs program [Town] depicted in Figure 2-5, which

can also be interpreted as a model of a device. This use of an ADM artefact focuses on

internal and explicit aspects of state associated with the internal semantic relation (cf.

Figure 2-12(a)). This is discussed in more detail in Section 5.3.1 with reference to the

relationship between MWDS and traditional programming techniques such as data

structures, flowcharts and the Model-View-Controller architecture.

• developing an ADM artefact to support the construction and to explore the situated

use of a device: Examples of such development are depicted in Figure 5-2 and Figure 5-

5, which respectively model the situated use of a digital watch and the Jugs program.

This use of an ADM artefact focuses on mental and situational aspects of state associated

with the external semantic relation (cf. Figure 2-12(b)). This is discussed in more detail

in Section 5.3.2 with reference to the relationship between MWDS and specification

techniques such as the use of CSP, use-case analysis and the Z-notation.

In thinking about representations for interactive systems design, it is usual to make a

distinction between explicit representations, such as models and artefacts, and implicit

representations that involve interpretation on the part of the user, and rely upon assumptions

about his/her background, role and culture [BI99]. This distinction echoes the traditional

distinction between what is viewed as empirically given and what is viewed as the product of

rational construction. In MWDS, as explained in Sections 1.6 and 2.1, the association between

the model and its referent is mediated experientially. What matters in establishing this association

is what is observable – that is, what can be directly apprehended by the modeller – whether or not

this apprehension involves interpretation. By this criterion, features of an ADM artefact that

require sophisticated understanding on the part of the modeller (such as the English annotations

on the buttons in the Jugs model in Figure 2-5, the graphical presentation of the months of the

year in Figure 2-9 and the Thai transliterations of numbers in Figure 2-16) are potentially

regarded (depending on the modeller) as part of the explicit state. On this account, MWDS can be

seen as involving a shift in perspective on what is empirically given similar to that proposed by

Willi am James in his ‘Radical Empiricism’ [James96, Bird86].

Chapter 5: Representing state and behaviour in MWDS

139

The special qualit ies of an ADM artefact in representing devices in design and use stem

directly from the fundamental role played by the observable. In MWDS, ‘what can be directly

apprehended by the modeller’ is the central focus for attention and exploration. Through

experience, ‘what can be directly apprehended by the modeller’ can evolve as what at first

requires ‘off-line’ interpretation becomes immediate and explicit. Through projection and

experiment, the modeller can identify what is – as if – directly apprehended by other agents. The

implications of this are that modell ing a device can potentially take account of failures and

defects, and that modell ing the use of the device can go beyond the designer’s stereotype of

idealised use to take account of richer real-world observables from the situations and subjective

characteristics of the users, both separately and in combination.

5.2 The SEMI aspects of state in MWDS

For a device, the way that SEMI aspects of state are related is precise and circumscribed to reflect

the designer’s abstract conception of its use. Users normally interact with the device in a precise

way based on the written manual. Closed-world modelling of the device only supports interaction

that is rigid and bounded. This is because it is built and optimised to meet a precise and

predefined specification. In open development of an ADM device, the possible interaction is

more open-ended and gives flexibility to adjust and refine the characteristics of the device and its

users. Because the boundary of an ADM device is established by the modeller’s discretion, it still

has interactive and experience-based characteristics. This gives scope for richer exploration of

the SEMI aspects of state associated with the device.

The four aspects of state and their different qualiti es are discussed and clarified in this

section with reference to extensions of the Jugs model as depicted in Figures 2-5 and 3-6. For this

purpose, imagine (Scenario 1) that the original Jugs program [Town] is being used by pupils in a

standard way. From the initial state depicted in Figure 5-3, the objective for the pupil i s to get

one unit of liquid by a sequence of jug operations. For instance, a suitable sequence of operations

is:

Fill A; Pour; Fill A; Pour; Empty B; Pour; Fill A; Pour.

The teacher is able to specify a new problem by changing the capacities of the jugs and the target.

Internal and Explicit aspects of state

Chapter 5: Representing state and behaviour in MWDS

140

The internal and explicit aspects of state are directly associated with the physical characteristics

of a device. The designer’s conception of a device refers to observables – possibly abstract rather

than realistic – that represent its internal state. In developing a definitive model of a device, there

are counterparts for these observables in the script. Normally the internal state should be hidden

from the users. It can be interpreted as state that is recorded inside the device.

Figure 5-3 represents the Jugs model viewed as an ADM device (‘ the Jugs device’) : if we

interact with the model in a restricted way (i.e. by pressing the interface buttons), it serves

precisely the same function that an implemented program meeting the specification for ‘ jugs’

does [Town]. We can compare the use of the Jugs device in Scenario 1 with that of the Jugs

program.

Where the Jugs program is concerned, the internal state is recorded in procedural

variables. In contrast, the internal state of the Jugs device is recorded in the extract of the script

labelled Internal in Figure 5-3. Such an internal representation is closely related to the designer’s

view of the internal state of the Jugs program. In the Jugs device, there is scope to change the

internal state in a way that does not affect the explicit state of the model or the functionali ty of

the model that is exercised in Scenario 1. For instance, if the teacher wishes to supply new values

for capA and capB so that the target 1 is still appropriate, the modeller can introduce these

definitions:

n is 2*k+1; capA is 5*n; capB is 5*n+2; k=0;

Alternatively, to ensure that randomly chosen values of capA and capB still lead to a solvable

problem, the modeller can introduce the single definition:

target is gcd(capA, capB);

These show the flexibility for adapting the Jugs device for more specialised use and to enrich its

internal mechanism.

Note that someone who explores the Jugs device (cf. Figure 2-10) may not be aware of

internal changes of this kind until he/she hits upon the right interaction (e.g. redefining k). For the

explorer, understanding the semantics of the Jugs device involves privileges to interact associated

with an expectation that may or may not be realised.

The explicit state of a device is directly connected to the visualisation or appearance of the

device. It corresponds to state as perceived from the viewpoint of an external observer. Users

always apprehend a device from its explicit state. For example, the explicit state of the Jugs

Chapter 5: Representing state and behaviour in MWDS

141

device is depicted in Figure 5-4. When both jugs are initially empty (cf. Figure 5-3), and the user

clicks on the Fill B option, the explicit state of the Jugs device is changed to the state depicted in

Figure 5-4(a). In fact, this click invokes the internal agents init_pour and pour to change the

value of the internal observable contentB, which sequentially affects the explicit state of the

Jugs device.

Figure 5-3: A screenshot of the Jugs device with its script (for internal and explicit)

The dependency between the explicit and the internal state of the model is established by

the definitive script labelled Explicit in Figure 5-3. Changing the internal observable capB

automatically affects the explicit state of the model as depicted in Figure 5-4(b).

Figure 5-4: Explicit state for the Jugs device

Note that in the script in Figure 5-3, the colour of the liquid is treated as a component of

the explicit state that is defined independently of the internal state of the model. This can be

interpreted as meaning that the colour of the liquid is not a circumscribing observable of the

device: assigning a new colour to the liquid does not affect the functionali ty of the device. This

(a) (b)

 The user clicks on
Fill B

capB=10;

%eden
capA = 5; capB = 7;
Afull i s capA==contentA;
Bfull i s capB==contentB;
valid1 is !Afull ;
valid2 is !Bfull ;
valid3 is contentA !=0;
…
%eden
cA is repeatChar(‘~’, widthA*contentA);
jugA is repeatChar(‘/’,2*capA+2+widthA);
cB is repeatChar(‘~’, widthB*contentB);
jugB is repeatChar(‘/’,2*capB+2+widthB);
%scout
wcontentA = {

frame: ([wcapA.frame.3.nw+{1.c,-contentA.r},contentA,widthA])
string: cA
bgcolor: “yellow”

};
…

Internal

Explicit

Chapter 5: Representing state and behaviour in MWDS

142

ill ustrates the designer’s idealised view of the circumscribing observables, which presumes that

the user sees the level of the liquid regardless of its colour (cf. Figure 3-3 where no colour is

involved).

Mental and Situational aspects of state

The representations of the internal and explicit aspects of a device are objective in nature. They

reflect directly the designer’s conception of the device and its identifying boundary (cf. Table 5-

1). Nothing here reflects the state of mind of the user. In contrast, the representations of the

mental aspect of state of a device are related to what users perceive, and are more controversial

and potentially more subjective. The mental aspect of state is concerned with the state that the

user projects upon the device when interacting with it, and the way that he/she then interprets and

conceives the current state and consults expectations about the possible next states. It can be

regarded as state as conceived by users.

Presumptions about the mental model of the user are an essential part of device design. As

the discussion of the Digital Watch model in [BRWW01] ill ustrates, the user may only be

famili ar with one part of the mental model for the device as conceived by the designer. Effective

ways of studying the mental aspect of state are significant for device design because it is

generally hard to tell what is going on in the user’s mind.

The mental state attached to users cannot be directly exposed. Even random interactions

with a device may coincidentally appear to be sensible. In order to ‘ understand’ the mental state

of the user, we typically need to set up different scenarios for uses of the device. For instance, if

we get rid of the white-on-black colour of the invalid buttons, as shown in Figure 5-5(b), we may

probe the mental state of the users by observing and recording the pattern of their interactions.

From this change to the device, we can assess whether the user’s interaction with the Jugs device

is merely based on choosing available options or is based on his/her perception of the status of

the jugs from the visualisation. For instance, we would like to be able to reveal the fact that Jug A

is full , but users think Fill A is a valid option. A further modification of the Jugs device might

involve translating the text on the buttons into Thai and/or rearranging the order of the buttons on

the display. This might indicate whether the user understands the concept ‘ jug A is full ’ and can

interpret the words ‘Fill A’ .

The modifications of the Jugs device discussed above are easy to make (cf. Figure 5-5(b)

because the device is realised as an ADM artefact. The simplicity of the redefinition required

Chapter 5: Representing state and behaviour in MWDS

143

reflects the fact that the modeller’s construal of the device is captured in the scripts and agents of

the artefact. Modifying the device is unlike modifying the Jugs program by editing and

recompiling in that it respects the continuity of the modeller’s perception (cf. Section 3.1). In

particular (cf. Figure 5-5(a) and (b)), other aspects of state, such as the current level of liquid in

the jugs, are unaffected.

Figure 5-5: Changing the Jugs model to illustrate the mental state

The way in which we are representing mental state in this context is closely associated

with the way in which an explorer apprehends state through experiment. With reference to Figure

2-10, the explorer is shaping the situation so that there are patterns of interaction to reflect the

target mental state. In addition to shaping the situation by modifying the device, the modeller can

also introduce an extra agent. For instance, by adding extra scripts to monitor the number of

inappropriate interactions made by the users, we can be more confident about how well the user’s

mental state matches the state of the artefact. If we have confidence in such interpretation, the

Jugs device may be extended to report the user’s mental state before selecting the option as

depicted in Figure 5-5(c) and the associated script labelled Mental.

The last aspect of state considered in this context is related to the use of the device in

different scenarios or situations. When people design a device, they conceive potential situations

and associated circumscribing observables within the boundary of normal use. In any actual

%eden
mentalvalid1 is (bgcolor_wmenu1==“white”)? “Jug A is not full” : “Jug A is full” ;
mentalvalid2 is (bgcolor_wmenu2==“white”)? “Jug B is not full” : “Jug B is full” ;
mentalvalid5 is (bgcolor_wmenu5==“white”)? “There is liquid in one jug and the jugs are not both full” : …;

Mental

(a) (b)
 %scout
 invalid_fg=”black”;
 invalid_bg=”white”;

(c)

Chapter 5: Representing state and behaviour in MWDS

144

scenario in which the device is used there are other observables in the situation apart from

circumscribing ones. For instance, imagine (Scenario 2) that the Jugs program is being used in a

context where the time allowed for selecting a button is limited (cf. Figure 5-6). In this case, the

observable timeout – outside the boundary of normal use of the Jugs program – is significant.

Figure 5-6: The Jugs device with the time constraint

The representation of a device by an ADM artefact enables us to extend the model into a model

of the device in situated use. For instance, Figure 5-6 shows how the script for the Jugs device

depicted in Figure 5-3 can be extended to represent its use in Scenario 2.

Modelling the use of a device in this way can help the designer in exploring its situated

use. It makes it possible to study qualitative aspects of a user’s interaction (e.g. concerning the

colour of the liquid and the speed of update in the Jugs device). It can also promote creativity and

suggest possible variants of the device.

Figure 5-7: Distributed use of the Jugs device (taken from [Sun99])

%eden
/* timeset is the time that the user clicks */
proc stamptime: input { timeset = tn[1]; count=0; }
proc time: tn {count++;}
/* timeout, if the user does not interact within 1 minute*/
timeout is (count>=60)? 1: 0;
valid1 is !Afull && !timeout;
valid2 is !Bfull && !timeout;
valid3 is … Situational

Chapter 5: Representing state and behaviour in MWDS

145

By way of ill ustration, Figure 5-7 depicts the use of the Jugs device in a distributed

environment developed by Sun [Sun99]. The observables used by the teacher in monitoring the

interaction of each student with the device are included in the model.

By way of further ill ustration, Figure 5-8 depicts a variant of the Jugs device model in

which the liquid in the jugs evaporates according to the temperature. In this situation, we have to

reconsider the possible options for interacting with the device. The inclusion of Pour A and Pour

B options is necessary since a state in which ‘Jug A is not full ’ and ‘Jug B is not full ’ at the same

time, as shown in Figure 5-8(b), can now be reached. Such an extension is significantly easier

than modifying the original Jugs program would be since such states are already defined in the

Jugs device and are modelled independently of any particular behaviour.

Figure 5-8: The Jugs model with the evaporating liquid

The next section revisits the two agendas proposed in Section 5.1: comparing the structure

of traditional devices (as represented by classical programs) with that of ADM devices; and

comparing the design and use of a traditional device (as represented by program specification and

requirements analysis) with the development and use of the corresponding ADM device. These

two agendas, to be addressed in Sections 5.3.1 and 5.3.2, are respectively concerned with the

internal and external semantic relations of a device (cf. Figure 2-12). Section 5.3.1 focuses on the

explicit and internal aspects of state and Section 5.3.2 on the situational and mental aspects of

state.

5.3 ADM devices and program devices

As has been illustrated in the discussion of the Jugs device above, when modell ing a device with

definitive scripts, we take account of both its circumscribing observables and other observables in

its operational context. The circumscribed patterns of interaction amongst the device, the user

and the environment are embedded in an open-ended ‘space for agent action’ , such as is depicted

in Figure 2-17. The boundary around the use of the ADM device is virtual and is established by

(a) (b)

Chapter 5: Representing state and behaviour in MWDS

146

the modeller’s discretion. Whereas the space supports exploratory interaction, the behaviour of

the device is associated with agent interaction that is managed so as to follow reliable patterns

and maintain orderly observational contexts. For instance, the possible interactions of the user

and the response of the Jugs device in Figure 5-3 are predictable and there is no possibil ity that

the buttons move around the screen or that the liquid evaporates.

The computational framework for MWDS depicted in Figure 2-17 identifies the ADM

device as a construal of the interactions amongst the device, the user and the environment. The

ADM device captures state as experienced by the modeller and the modeller’s view is significant

in representing and interpreting state. Because MWDS respects the continuity of the modeller’s

perception (cf. Sections 3.1 and 5.2), design and use can be interleaved without interference, and

the role of the modeller is more aptly characterised as ‘designer-user’ rather than ‘designer-

exclusively-or-user’ (cf. [BRWW01]).

In an ADM device, the state is represented by a network of observables in a

comprehensible fashion. In construing the behaviour of a device, the modeller needs to explore

its relation to the user and the environment by experiment. This experimental activity can be

imitated by interacting with the ADM device. Relevant observables can be extracted as sub-

networks and probed to determine their values and inter-relationship.

The dependency in an ADM device is well suited to representing the intimate relations

amongst the SEMI aspects of state depicted in Figure 5-1. For instance, consider the scenario in

which the device is a digital watch and the situation is that the watch is one minute slow. When

the user resets the time as recorded internally by the watch, this simultaneously affects the

display of the watch and the user’s view of the status of the watch. Conceptually, one action

indivisibly affects the internal state, the explicit state and the mental state. In this way, the ADM

device supplies a holistic view.

5.3.1 Explicit & internal aspects of state in ADM and program devices

Internal and explicit aspects of state of a device respectively relate to the internal representation

and functionali ty, and the external appearance and interface. The discussion of these two aspects

of state is prior to that of mental and situational aspects because, when interacting with a device,

we are first concerned with exploring the device in isolation. This involves understanding the

internal semantic relation (cf. Figure 2-12(a)).

Chapter 5: Representing state and behaviour in MWDS

147

The internal representation of a program device is closely connected with the choices of

programming paradigm; each paradigm has its own distinct characteristics for framing the

solution to a problem. There are broadly two kinds of programming paradigm: those that are

concerned with modell ing the problem situation and those that focus on explicitly specifying

solutions. For instance, logic programming and object-oriented programming involve modell ing

the problem situation by using logical predicates and object abstractions. In contrast, procedural

programming specifies a problem solving process in terms of a sequence of procedural actions. In

this thesis, MWDS has previously been compared with other paradigms for domain modell ing

(cf. the discussions relating to Figures 1-5, 1-6 and 5-2 and the Digital Watch model in Chapter

3). From this point onwards, we shall focus on the relationship between MWDS and

programming in its narrow sense.

It is characteristic of a device that it does not require a rich model of its operational

context. It is only designed to serve a particular purpose and only needs to take account of its

circumscribing observables within the boundary of normal use. This is parallel to the way that a

procedural program is developed from a program specification (such as flowchart or pseudo

code) that addresses its pre-identified requirements. The issues of efficiency and optimisation are

prominent concerns in this kind of programming. Devices are often built from pre-existing

components; this is similar to the way procedural programs are constructed using standard

algorithms that are optimised to deliver preconceived functionality.

We can interpret an ADM device as a prototype for a program device. It expresses the

relationships between abstract circumscribing observables that have to be maintained in normal

use. For instance – when it is viewed as a device – the original Jugs program has to maintain the

relationships between observables that represent the internal and explicit aspects of state depicted

in Figure 5-3. Note that the ADM device is a prototype rather than a conventional input-output

specification; experiential issues (such as the speed of the screen update and how the state is

apprehended by the user) are significant.

In this section, we shall focus on comparing ADM devices with procedural program

devices. Procedural program devices have the essential characteristics of the classical von

Neumann computer as an artefact. Such program devices only support very primitive kinds of

observation and action. These reflect the nature of the stimulus-response behaviour associated

with machine code primitives, such as retrieving data from and storing data to locations,

decoding the operation code of an instruction, fetching the next instruction or branching. Data

Chapter 5: Representing state and behaviour in MWDS

148

structure provides a means to organise data and manage interaction with data so that – subject to

treating complex values as atomic – the effect of richer observation can be reduced to such

primitive observation. It allows observation and action that involves evaluation and assignment

of complex aggregates of primitive values. Both observation and action follow a fixed recipe

prescribed by the data type of the variables being read or assigned.

The execution of a program device can be conceived in terms of the model for agent action

in Figure 2-17. There is one agent, viz. the interpreter of the machine instructions. The

observables for this agent are the sequence of machine instructions, the program counter, data

locations, registers and their contents. The next action of the agent is determined by the program

counter. The organisation of the instructions and data is closely prescribed since the interpretation

of the instructions proceeds sequentially and essential constraints need to be met before an

instruction is meaningful. The data representation in the program device does not adequately

reflect the richness of human observation. Consider, for example, how a quadtree data structure is

used to represent graphics, or sorted list is used to reduce the comparison of real-world entities to

numerical comparison of indices. To overcome this problem, we limit the interaction with the

device to well -engineered stable elements of the situation (cf. reliable paths in Figure 2-17),

restrict the nature of the task to be performed by the user, and build data structures to exploit

these constraints (cf. the way in which the organisation of a library enables us to access a book

without needing to consult its observable characteristics in detail).

The preceding discussion of the machine as an agent is only justified if the processing of

data structures is physically expressed in the program device in an appropriate way. The

manipulation of data structures can only be viewed as observation and action if operations on

complex values are ‘atomic’ and is suitably embodied in the explicit state for interpretation by

the user. For instance, in a typical animation, the screen should have an appropriate resolution

and refresh rate, and complex data structures should be totally evaluated before updating the

screen. These are implicit assumptions that are typically made by programmers when interpreting

a program as a device (cf. the experientially mediated internal semantic relation in MWDS

depicted in Figure 2-12(a)). The Model-View-Controller (MVC) architecture [Olsen98],

initially designed to support the multi -windowed interactive Smalltalk-80 interface, is an

informal framework for managing the relationship between explicit and internal aspects of state

that is particularly well -suited to the design of a program device.

Chapter 5: Representing state and behaviour in MWDS

149

The display and interfaces of a program device – the explicit aspect of its state – are built

on top of its internal state. They provide a visual presentation of internal state and interfaces for

the user to interact with the program device. To some extent, the relationship between internal

and explicit state is expressed in a traditional program specification, which prescribes the pattern

of user interactions corresponding to the requirement. The explicit state also involves an

embodiment of the internal state that can only be addressed in the design and implementation

phase.

Within MWDS, the data representation directly reflects observables in the external

referent and the relationships amongst them (cf. Figure 1-5). This resembles the way in which a

relational database can be seen as a data model of part of the real world in which the organisation

is interested [Cart95]. In the relational database, the design of the tables is guided by the

functional dependencies between data described in Codd’s relational model [Codd70]. A

relational table can be viewed as a form of data structure; it is not only meant to correspond (as a

set of tuples) to a family of physical objects, but also (as a relational scheme) to the abstracted

ideal of one kind of object [Kent78]. The nearest counterpart of the table in MWDS is an ADM

entity without actions.

Because MWDS emphasises the representation of observables, it generally implements the

internal state of the model as a side-effect of developing the explicit state. The explicit state of a

model can often be considered as determined by observables in the external referent. For

instance, in the Room Viewer model (see Chapter 3), the script is derived from obvious visual

features such as corners, doors and walls in the room. The Scout and DoNaLD definitive

notations are designed to specify the visual state of the model, and generate an internal

representation that is directly linked to the explicit state of the model via dependency. The

internal and explicit aspects of state are kept consistent in this way. In particular, changing the

internal state will automatically affect the explicit state. This approach to implementing the

explicit state can be helpful in giving the user or the modeller a comprehensible view of the

current internal state. Where a visual feature has an associated interaction, the use of Scout can

supply an interface to dictate the protocol by which the user can alter the state [BY90]. Consider,

for instance, the mechanism for opening and closing the door in the room viewer.

MWDS can also be used effectively when developing explicit state to match given internal

state. The multiple views of a model that can be conveniently specified using the MVC

architecture, can also be easily implemented with a definitive approach. This is because the

Chapter 5: Representing state and behaviour in MWDS

150

internal state is represented by a definitive script and the various display representations that are

based on diverse interpretations of the internal state can be connected by introducing new

dependencies into the script. The principle is similar to the introduction of views in a relational

database, but is generalised in this context to address different visual representations of the data

(cf. Figure 2-9).

The way in which MWDS deals with observation and action provides a different

perspective on the machine as an agent. MWDS induces activity at the machine level that is

different in character from that described by the orthodox use of data structures. It also gives

prominence to matters of indivisibility in machine execution. For instance, in the implementation

of Eden, maintaining dependencies in a network of definitions takes precedence over all other

kinds of machine processing. Whereas a traditional procedural program processes a data structure

following a fixed recipe and separates the data representation from the program control, in

MWDS, the dependencies dynamically determine the recipes by which variables are read or

assigned and so connect the data representation with the program control. For this reason, the

mechanism for implementing a device used in MWDS is more faithful to the way we construe

observations and actions. This mechanism is oriented towards the representation of physical state

rather than abstract algorithms or behaviours.

In MWDS, rich observations can be represented by combining dynamic definitions with

structured data using hierarchical data dependency. For instance, in the Car History model (cf.

Listing 3-3 and Figure 3-11), the possible cars are represented by the following set of definitions:

cars is [“Ford_Escort”, Ford_Escort, “Ford_Orion”, Ford_Orion, “Ford_Fiesta”, Ford_Fiesta, …];
Ford_Escort is [“model”, fe_model, “exhaust”, fe_exhaust, “engine”, fe_engine, …,];
fe_model is [“Mk1”, Mk1, “Mk2”, Mk2];

This script can be interpreted as a dynamic data structure that represents the data stored in the

model together with the dependencies between the data. Each definition is a list of data variables

together with their associated identifiers. When evaluated, each definition can be regarded as a

table similar to a table in a relational database system (cf. Figure 3-11), but the structure of the

table is not fixed.

The difference between data representation in traditional programming and MWDS is

depicted in Figure 5-9. A definitive script represents data as a collection of discrete observables

dynamically linked by dependency. In a traditional program, the data is stored in a more rigidly

structured fashion so that it can be referenced systematically by the program control.

Chapter 5: Representing state and behaviour in MWDS

151

 Figure 5-9: Data representation in (a) a traditional program, and (b) MWDS

Illustrating internal and explicit state in ADM and program devices

Illustrative example 1

MWDS represents internal state directly in that each variable is the counterpart of an observable.

Each state of a definitive model can be interpreted and comprehended by the modeller. The

internal and explicit states are typically indivisibly linked and correspond to each other state-by-

state. The accessible internal states of a program device are determined by the available

procedures and the predefined user control. For instance, in the Jugs device, we can set the

content of jug A to the value 14 (cf. Figure 5-10(b)). In contrast, in the program device, we can

only assign the content of jug A to 14 in passing (e.g. by emptying and fill ing jug A). In addition,

if a state is not within the scope of the normal behaviour of the program device (e.g. if contentA

exceeds capA), it is inaccessible.

Figure 5-10: The Jugs model: (a) conventional, (b) definitive approach

We can get insight into the different ways in which an ADM device and a program device

link internal and explicit states by modifying the Jugs device. Figure 5-10(a) shows a ‘rogue’

(a) (b)

Data array

Program control

read
update

hp1 is (elt1>elt2) && (elt1>elt3)
(a) (b)

 elt2 is 23
elt3 is 8

elt4 is 98

elt1 is 29

elt1 is elt2*elt3

Depends on

Redefinition

Chapter 5: Representing state and behaviour in MWDS

152

variant of the Jugs device that has characteristics typical of procedural program devices. In

Figure 5-10(a), a while-loop is used to update the level of the liquid in the jugs directly. When we

interrupt the process of filling jug A, the explicit state does not correspond to the internal value of

contentA. The objective of this procedural implementation is to save computation by reassigning

of contentA only when jug A has been filled. This may increase the speed of updating the

display, and does not cause problems in normal use, but the relationship between the internal and

explicit states is not preserved.

In contrast, the explicit state of the Jugs device model in Figure 5-10(b) directly

corresponds to the internal state of the device. Even when the device is interrupted, the internal

and explicit states are consistent and correspond to the state that is obtained by directly assigning

the appropriate value to contentA.

Illustrative example 2

In this section, we consider variants of the Jugs device that illustrate the significance of the

internal semantic relation (cf. Figure 2-12(a)) where the functionality of the device and the

capabilities of the user and the computer are concerned.

We first consider the scenario where we are not concerned with the number-theoretic

problem underlying the Jugs device (cf. Figure 5-11 without the optional status string). In

MWDS, we can try to represent the state of an artefact as realistically as possible. The Jugs

device can be adapted to make the animation of filling, emptying and pouring the liquid more

realistic. For this purpose, each unit layer of the liquid is defined by a line of pixels as depicted in

Figure 5-11(a).

Figure 5-11: The Jugs device: (a) pixel per unit display, (b) pixel per 2 units display

(a) (b)

Optional status string

Chapter 5: Representing state and behaviour in MWDS

153

In Figure 5-11(a), if the capacity of Jug B increases to 300, the computer display may not

be able to cope with it. At this stage, we may have to scale down the visualisation and as a result

of this we cannot have a state-by-state correspondence between the internal and explicit state any

more. Figure 5-11(b) shows a variant of the Jugs device where the display of the liquid is updated

whenever contentB increases by two. The visualisation is updated intermittently as a result of

the redefinition of variable contentBO, defined as contentB/2. In this context, the

correspondence between the explicit and internal states is one-many.

If we try to interpret Figure 5-11(a) and Figure 5-11(b) as Jugs devices (restoring the

optional status string), we encounter problems. In Figure 5-11(b), we cannot distinguish visually

between the situation in which contentB is 100, and the situation in which contentB is 101,

when the target can be reached in a single operation. In Figure 5-11(a), the visualisation of the

liquid level cannot be easily interpreted by the user as an integer. To address this problem, we

can develop the richer visualisation as depicted in Figure 5-12. Note that we can easily adapt

Figure 5-11(a) so that it represents jugs with capacities 5 and 7 using 20 lines of pixels per unit of

liquid. A possible motivation for this modification is to make the visualisation of operations in

the Jugs device more realistic. In this context the correspondence between the explicit and

internal states is many-one.

Figure 5-12: The richer visualisation for the Jugs device in Figure 5-11

Optimisation in program devices

It is expensive – even when it is feasible – to make a device that can make rich observations of its

environment. For instance, it is hard to build a digital watch to reset the time by itself or to repeat

the alarm on observing that the user stays in bed. For this reason, synchronising the state of the

device with the state of its environment typically involves interaction between the user and the

device. This means that there is an incentive to optimise cost and efficiency by minimising the

%scout
point wconA10start={wconAend.1-widthA,
 wconAend.2-conA10};
window wcontentA10 = {

type: DONALD
box [wconA10start, wconAend]
bgcolor: “gray70”

};
window wcontentA50 = {
…
%eden
conA10 is (contentA/10)*10;
…

Chapter 5: Representing state and behaviour in MWDS

154

dependence on regular and close observation, and it is commonly the case that the state of a

device does not reflect even its circumscribing observables very closely.

In a program device, strategies for reducing observations are typically based on assigning

the values of observables rather than maintaining them by a definition. This leads to data that is

cut off f rom further observation wherever possible. Optimisation of this nature relies on the fact

that the patterns of interaction with the user are restricted and the organisation of the control and

data within the device is rigid and stable. By way of il lustration, in the context of Figure 5-10(a)

the observable contentA is only refreshed when the visualisation shows jug A to be full. This

optimisation works on the assumption that the user cannot interrupt the visualisation process and

that there is no mechanism that can change the value of capA during the update.

Listing 5-1: Converting a definitive script to a procedural program

In an ADM artefact, the scope of interaction is so broad (cf. Figure 2-17) that any

‘optimisation of observation’ undermines its quali ty as a construal. It is only when we first

identify and then rigidly impose the boundaries for interaction with the artefact that we can

introduce optimisation. We can regard MWDS as providing a very open-ended and flexible

environment within which to model the design of a device using an ADM artefact. Observables

are introduced into the model bit by bit. A model is gradually developed and it is always open to

modification. However, when the designer has identified an ADM device to represent the design

model, he/she can circumscribe the model by imposing the boundaries for interaction.

Once the boundaries for interaction are imposed, there are systematic ways of replacing

definitions by procedural constructs. For instance, using a technique introduced by Yung

[Yung96], the Eden definitions in Listing 5-1 can be replaced by the Eden functions, on the

assumption that the relevant observables are not going to be redefined.

5.3.2 Situational & mental aspects of state in ADM and program devices

The previous section has discussed the representation of internal and explicit aspects of state in

ADM and program devices. This section will discuss how the situational and mental aspects of

[Eden definitions]

Afull is contentA==capA;
valid1 is !Afull;
valid3 is contentA != 0;

[Eden functions]

func FAfull{ Afull = (contentA==capA); };
func Fvalid1{ valid1 = FAfull(); };
func Fvalid3{ valid3 = contentA != 0; };
FAfull(); Fvalid1(); Fvalid3();

Chapter 5: Representing state and behaviour in MWDS

155

state are represented in ADM and program devices. The internal and explicit aspects of state

relate to the internal semantic relation and to the design and implementation aspects of software

development. The mental and situational aspects of state relate to the external semantic relation

and to the requirements and specifications aspects of software development. The previous section

has introduced the idea of using an ADM artefact to model the design and use of a device. We

can compare this activity with the traditional approach to developing a program device.

In the traditional view of programming, the situational and mental aspects of state are

studied and predefined in the early stages of model development. This view is particularly

appropriate in the development of a program device, where optimisation to suit specific

predetermined functions is the central concern. For instance, with reference to Figure 5-2, the

model of the mental aspect of state has to be conceived before the design and implementation of

the digital watch can proceed. This is consistent with what Benyon and Imaz [BI99] identify as

the ‘elicitation metaphor’ f or requirements:

 “Elicitation suggests that requirements are mental representations to be
extracted from the users’ heads to have a complete list of requirements.”

In developing a program device, the business of asking users about their mental model is

handled in the requirements analysis. Diverse situational states for the device are set up to

correspond to users’ requirements. Various forms of specification have been devised to describe

the features and patterns of use of the device in a precise way. The purpose of a specification is to

express users’ requirements and to circumscribe the situations in which the device will be used.

The specification of the mental state of the user is to be interpreted within a preconceived

situation. For instance, in the context of Figure 5-2, we can imagine that the user is updating the

UK time on the digital watch display to correspond to the current time in Tokyo. The possible

situations for the use of the device are conceived in advance in terms of abstract observations

(e.g. ‘ current time’) and conventions for interaction. This may impose constraints on the actual

situations that arise in practical use.

It is recognised to be difficult for the designer of the device to understand the mental and

situational aspects of state from the perspective of the user. Use-case analysis [JCJO92] is an

example of a software activity intended to help a designer to comprehend what users may require

from a program device. This activity is concerned with a negotiation between what the user needs

and what the designer can/will deliver.

Chapter 5: Representing state and behaviour in MWDS

156

The behaviour of a classical program cannot be interpreted without framing the roles of

the mental and situational aspects of state in its execution. Once the program is written, the

interpretation of these roles is fixed, and does not change during execution. Preconceiving these

interpretations, and expressing them in a formal specification using notations with objectively

defined semantics, such as Z-notation [PST96], CSP [Hoare85] and WP [Dij76] has many

positive benefits where ensuring the quali ty and fitness for purpose of a program device is

concerned. Because the specification of requirements frames the boundary of normal use for the

device, it impacts on all aspects of subsequent development and use. As Spivey writes in

[Spiv88]:

“A formal specification can serve as a single, reliable reference point for those
who investigate the customers’ needs, those who implement programs to satisfy
those needs, those who test the results, and those who write instruction manuals for
the system.”

The characteristics of a program device (cf. Table 5-1) are very significant in influencing

the way it is developed through establishing the boundary for its use and optimising its design

and implementation to take advantage of this boundary. A device developed from this perspective

becomes rigid and fixed to serve a particular pre-studied situation with a pre-designed interaction

pattern. It can be used to accomplish particular pre-perceived goals and it does not allow a user to

interfere with the mechanism inside. The internals of the device become a mysterious black box

for the user, who may learn all the relevant interactions from a written manual.

The traditional approach to requirements analysis for a device puts the emphasis on

planning the user’s interaction with reference to idealised observables. In the absence of a

prototype, the designer relies on requirements elicitation that assumes that the user’s knowledge

can be articulated. In its emphasis on the significance of experience and experimentation, the use

of MWDS to construct an ADM device is closer to prototyping. Conventional prototyping and

simulation embodies explicit aspects of state of a device in ways that typically are not well -

integrated with other aspects of state. For instance, where interaction is possible, this may be

idealised in a way that only partially reflects the implicit assumptions about how this interaction

is mediated by actual observables (cf. the way that interaction in a game of Noughts-and-Crosses

is explored in [BJ94]). In contrast, MWDS tends to represent and handle the SEMI aspects of

state in parallel. The shift from a traditional empiricist to a ‘Radical Empiricist’ perspective

[James96] is important in this context – observables are not only derived from the primitive

sensory elements of experience, but can also involve more sophisticated cognitive processes

Chapter 5: Representing state and behaviour in MWDS

157

[Bey98]. Conceptual observables, such as ‘ the digital watch does not keep accurate time’ , which

are concerned with human interpretation and are not directly visible, are represented in the

implicit knowledge gained through interacting with a model (cf. Figure 2-11). Once we identify

such observables, we may also be able to introduce definitions to represent them explicitly.

MWDS casts the modeller in the role of an experimenter rather than a human robot. It

focuses on what goes on in the experimenter’s mind during his/her interaction with a prototype

device. The modeller can act as a designer or a user by adopting different perspectives on the

prototype. The modeller can explore his/her mind via interacting with the prototype. Interaction

with the prototype and the observation of stimulus-response patterns generates the

complementary knowledge about state that has to be carried in the designer’s (respectively

user’s) head to make sense of the design (respectively normal behaviour) of the prototype device.

This activity is characterised by Sun [Sun99, SRCB99] using the metaphor of ‘requirements

cultivation’ . Making the prototype device with MWDS enables us to take a broader view of

requirements. For instance, in principle, we can consider the impact that the use of devices can

have upon the mind of the user, and their broader implications for users in social, cultural or

administrative contexts [BRWW01].

As explained in Section 5.2 and illustrated in Figures 5-5(a) and (b), the way in which

MWDS respects the continuity of the modeller’s perception makes it possible to interleave design

and use without interference. This close integration between device design and use in MWDS

enables the user’s view and user’s need to be taken into account during development. Many

concerns (e.g. how the designer conveys the protocol for interaction with the device to the user,

how the user understands the designer’s intentions, and how the designer-as-user understands and

learns what is required of the device) are essentially addressed at the same time during building

and interacting with the prototype device. The user’s interaction with the model may be

monitored so as to reveal the consequences of common mistakes and misconceptions. Practical

steps that can be taken to eliminate these through redesign can be explored.

MWDS is not a methodical process but an interactive activity that involves elements of

serendipity and discovery, and there is no presumption that preconceived patterns of action will

achieved specified goals [Bey97]. The situational state that is associated with the normal use can

evolve during the development of the prototype. An experimenter can refine the existing

observables or include a new set of observables to deal with new situations as they arise. This has

been il lustrated in the Jugs model when the situation evolves so that the liquid evaporates, as

Chapter 5: Representing state and behaviour in MWDS

158

depicted in Figure 5-8. The ‘Vending Machine for Chocolate’ model (VMC) to be discussed in

the next section will be used to il lustrate how MWDS differs from traditional ways of specifying

devices in their context.

The VMC case study

Communicating Sequential Processes (CSP) is a standard technique for formal specification of

concurrent systems introduced by Hoare [Hoare85]. This section compares the CSP specification

of a simple concurrent system and a representation of the system by an ADM artefact developed

using MWDS.

The chocolate vending machine (VMC) is a well -known basic case study introduced by

Hoare to il lustrate the characteristics of CSP. Figure 5-13 depicts the VMC specification as

presented by Hoare in [Hoare85] together with a diagram to represent its associated possible

behaviours.

Figure 5-13: The CSP specification for the VMC from [Hoare85, p30]

CSP focuses on specifying the behaviour of a process with respect to communication and events.

In the VMC process, the five possible events are indicated by in2p, in1p, out1p, smchoc and

lgchoc. For instance, in2p represents ‘ the user inserts 2 pence into the machine’ . Each potential

behaviour corresponds to a sequence of events. For instance, the sequence of the events in2p,

smchoc, out1p represents the purchase of a small chocolate using a 2 pence piece. In the

specification in Figure 5-13, the possible behaviours are represented by the sequences of events

or traces associated with the variable VMC. Each trace is determined by a sequence of choices

between several currently possible events. The choice of which event will actually occur is

controlled by the environment within which the process executes. The customer of the VMC

decides what action to perform and the VMC behaves accordingly. The entire behaviour of a

VMC = (in2p → (lgchoc → VMC | smchoc → out1p → VMC) |
 in1p → (smchoc→VMC | in1p→ (lgchoc→VMC | in1p→STOP)))

STOP

in2p in1p

in1p smchoc

lgchocout1p

smchoclgchoc

Chapter 5: Representing state and behaviour in MWDS

159

complete system is represented by the trace of events associated with agents acting and

interacting with each other and with their environment. In specifying behaviour, CSP puts the

emphasis on events rather than on the agents that initiate them:

“In choosing an alphabet, there is no need to make a distinction between events
which are initiated by the object and those which are initiated by some agent
outside the object. The avoidance of the concept of causality leads to considerable
simplification in the theory and its application.” [Hoare85, p. 24].

In modell ing the chocolate vending machine using definitive scripts, our emphasis is upon

the way in which agents interact rather than on abstract sequences of events. Two kinds of

modelli ng are involved: modell ing the way in which the availabilit y of an agent action depends

on the current state, and modelling the way in which the availabilit y of an agent action is made

explicitly observable in interaction. This reflects the emphasis in MWDS on state and observation

respectively. The modelling activity is not primarily concerned with the abstract patterns of

actions, but with how such patterns can be construed to emerge within the general framework for

agent action depicted in Figure 2-17. In this context, it is essential to consider many factors that

are discounted in the CSP account, such as the physical properties of the machine, how reliably

the machine responds to the user’s action, and the physical capabilit ies of the user to interpret and

manipulate the state of the machine. This enables us to explore the implications of perturbing the

context for the traditional VMC as specified in Figure 5-13 – in much the same spirit that a

scientist might perturb parameters in an experimental context – so as to take additional factors

into account. These might include matters of user discretion (e.g. what happens if the user inserts

a Thai coin?), machine malfunction and agent perspective (e.g. is the user a child or blind?).

Listing 5-2: Extract of the script for the VMC model

Figure 5-14 depicts a definitive VMC model derived from the CSP specification shown in

Figure 5-13. The model was developed incrementally through a sequence of simple modelling

steps based on representing the observables that mediate the interaction between the user and the

vending machine and their inter-dependency. In Figure 5-14, there are three components to the

display: a text window that displays the current status of possible actions, a visual representation

%eden
action1 is [“insert 2p coin”, 1, !balance];
action2 is [“insert 1p coin”, 2, balance<=1];
action3 is [“buy a large chocolate”, 3, balance>=lgchoc];
action4 is [“buy a small chocolate”, 4, balance>=smchoc];
action5 is [“get refund”, 5, balance>=1];
proc vmc: action{
 switch(action){ case 1: balance=balance+coin2p; break;

 case 2: balance=balance+coin1p; break;
 case 3: if (balance>=lgchoc) { balance=balance-lgchoc; bank = bank+lgchoc;} break;

 …
};

Chapter 5: Representing state and behaviour in MWDS

160

of the vending machine, and the input window through which the modeller can interact in the role

of VMC designer and user.

Each tuple displayed in the text window takes the form:

[description of action, action index, validity of the action]

Each group of five tuples represents a state of the interaction and is derived from the set of

definitions in Listing 5-2 within the model by evaluation.

The variables in this extract from the script are balance, lgchoc and smchoc, which

respectively represent the balance of the money for the transaction in the machine, the price of a

large chocolate, and the price of a small chocolate. The script models the way in which,

according to the CSP specification in Figure 5-13, the availabilit y of the agent actions action1

through action5 depends on the current state. For instance, action3 (‘buy a large chocolate’) is

possible provided that the balance in the machine exceeds the price of a large chocolate

(balance>=lgchoc). On this basis, the actions that are valid in the three states depicted in the

text window in Figure 5-14 correspond to tuples whose third component is 1. Note that the

validity of actions described in the model is artificially simple, though it faithfully reflects the

original CSP specification for VMC. For instance, it is impossible to insert more money if the

balance for the transaction is 2 pence.

Figure 5-14: The definitive VMC model

The visual display in Figure 5-14 models the way in which the availabilit y of agent actions

is made explicitly observable in interaction. Figure 5-14 displays a scenario in which the user has

inserted 2 pence, decides to get a small chocolate, then gets a 1 pence refund. In the visual

Visual displayText window

Input window

Chapter 5: Representing state and behaviour in MWDS

161

display, the black and white circle respectively represents inappropriate and appropriate actions

on the part of the user. In this way, the interface declares the boundary of an ADM device. It is

still possible for the user to make arbitrary interactions with the model to the input window. For

instance, the redefinition action=3 displayed in the input window will invoke an action

(‘action3’) to buy a large chocolate even though this option is not available via the interface.

Modelling the chocolate vending machine as an ADM device makes it possible to take

broader observations and interactions that are not necessarily associated with events and actions

into account. It is not difficult to modify the actions displayed in Listing 5-2 to model more

realistic behaviour. Such modification is typically quite different in character from devising a

new CSP specification for the abstract behaviour. This is because an ADM device embodies a

rich construal of how the chocolate vending machine operates. For instance, it is relatively

straightforward to take account of how and when a situation when the machine cannot accept any

more money develops. The ADM device is also typically more useful than an abstract

specification in suggesting possible features to assist user interaction with the device. For

instance, interaction with the model via the visual interface may disclose the need for a panel to

indicate the balance of the current transaction.

