Chapter 5: Representing state and behaviour in MWDS

5 Representing state and behaviour in MWDS

As described in the introduction to the thesis, this chapter sets out to illustrate how MWDS can
be viewed (controversially) as providing an aternative and urorthodox picture of the relationship
between the world and our representation of it. In the eperience of the author, such an
aternative viewpoint is natural for the modeller engaged in MWDS. This leads the author to
conceive the distinction between MWDS and traditional computer-based modelling (for example,
in respect of openness and experiential character) as fundamental rather than as a matter of
degree. Thisis potentially a source of controversy for sceptical readers — ore that becomes even

more pronouwnced in Chapter 6, where such a fundamental distinction is presumed.

Representing state isakey concernin MWDS. The discusgon in this chapter addresss the
connection between state and behaviour in MWDS. By introducing the concept of an ADM
device and a program device, it is posshble to explore the link between MWDS and traditional
modelling of state and behaviour. The ADM device and the program device are compared and
contrasted with reference to four aspects of state — Situational, Explicit, Mental and Internal —
that are of concern when we use and interact with a device. The two principal case studies in this

chapter relate to:

* asimple program (‘*Jugs), originally developed for the BBC micro-computer by R.
Townsend [Town], that has been widely used in schodls;

* a CSP specification for a chocolate vending machine introduced by C. A. R. Hoare
[Hoare85],

which are respectively used to explore the explicit and internal, and the situational and mental
aspeds of state.

132

Chapter 5: Representing state and behaviour in MWDS

5.1 Open-development and closed-world views on devices

Traditional programming, whether declarative or procedural, focuses on the representation o
actions and behaviours. State is defined with reference to behaviour. MWDS is na like
traditional programming. It is more dosely related to building a physical artefact. A definitive
script itself represents a state not behaviouwr. Behaviour in a definitive context is understood to
refer to a predictable, reliable pattern of state changes that can be repeated many times. When we
construct a definitive model, behaviours are associated with patterns of interaction that occur at
the discretion o the modeller. However, there may be no behaviours associated with definitive

scripts that are devel oped with exploratory creative model buil dingin mind.

To compare a definitive model with a traditional program, we need to make an ontol ogical
shift, whereby we regard a program as it executes on a wmputer as a physical artefact that
generates observables that can be experienced by the user. Even after this shift in perspedive, a
definitive modd is quite unlike a traditional program, which is designed with a specific function
in mind. Such a program refleds a ‘ closed-world” model of the requirement; it is concerned with
behaviour and interactions which are drcumscribed and preconceived in advance by modellers
who have a goad understanding of what users want. In this snse, the term *device is used to
refer to a physical artefact that is conceived as ‘program-like’ (whether or not it is computer-
based). In particular, we shall refer to a traditional program that is being viewed as a physical

artefact as a‘ program device'.

The characteristics of atypical device are listed in the first column of Table 5-1. There are
specific modes of use within which the behaviour of the device and of its user follow standard
patterns and the interpretation of state changes is preconceived. These @n be described in terms
of the ‘circumscribing observables' that characterise its use. These drcumscribing observables
may refer to internal and external features of the device and to factors associated with the
situation and the user’s understanding of the situation. The set of circumscribing observables
defines a bourdary surrounding normal use of the device Sincethe deviceis designed for genera
rather than merely personal use, the set of circumscribing observables is defined in an abstract

and dojective manner.

Characteristic Typical devices ADM artefacts

Spedfic modes of use v X

133

Chapter 5: Representing state and behaviour in MWDS

Standard petterns of behaviour v X
Standard user interaction patterns v X
Standard interpretations for sate tange v X
Clea identifying boundary v X
An objective observational context v X

Table 5-1: Contrasting the char acteristics of typical devicesand ADM artefacts

Table 5-1 contrasts the characteristics of devices and ADM artefacts. Though the
characterisation in the table is flexible, it reflects a genuine distinction. The characteristics of a
device @nnot be completely circumscribed. It has properties that are nat considered in standard
use and it can be used in ways outside the scope of its spedfication. For instance, an analogue
watch can be used as a paperweight or used in conjunction with the sun for diredion finding. As
ill ustrated in Chapter 3, ADM artefacts can have al the characteristics gedfied in Table 5-1.
Such examples illustrate the shift from ‘closed’ user-artefact interaction (i.e. interaction
conforming to the user manual) to ‘open’ user-artefact interaction (i.e. adaptive use involving
interaction with the artefact not anticipated by the designer) and vice versa (cf. [BRWWO1]).
The shift from closed to open interaction relies upon the user’ s imagination. The shift from open
to closed interaction relies upon the modeller’s discretion. A device is constrained from being
open by optimisation and its embodiment in the physical world. An ADM artefact cannot be
optimised to a specific function without compromising its quality as a construal. How efficient a
device @n be depends on what physical properties we anidentify in the world. How flexible an

artefact can be depends on how faithfully we @an construe its interaction with the worl d.

From an abstract viewpoint, the distinction between devices and ADM artefacts resembles
the distinction between a traditional objectivist view of cognition and experiential cognition, as
described by Benyon and Imaz[BI199] (after Lakoff [Lakoff88]) in conredion with their research

into the conceptual foundations of representations used in HCI and software engineeing:

‘... experiential cognition emphasizes the role of both bodily and sociocultural
experience in characterizing concepts and in the human imaginative capacity for
creating concept and modes of rationality that go well beyond any “mind-free”
external reality.”

“Experiential cognition is an approach to understanding what meaning is to
humans. The traditional objectivist view of cognition sees it as the algorithmic
manipulation of abstract symbols that provide internal representations of an external
reality.”

134

Chapter 5: Representing state and behaviour in MWDS

It also reflects the distinction between the sense-making activities that are attributed to these two

views of cognition as explained in [BI99] as follows:

“Traditional views of cognition see meaning coming from the association of
symbols with external objects, whereas experiential cognition sees meaning coming
from the application of “imaginative projections” to some basic concepts, these basic
concepts being meaningful because of their roles in bodily experience.”

The traditional objectivist view of cognitionis smilar in spirit to the traditional view of
software engineering: when we begin to build a device we go through a process of negotiation
between users' requirements and software limitations which is generally done through a paper-
based design. In contrast, experiential cognition has more in common with experimentally-based

design which drectly builds a prototype for a device, then modifies and refinesiit.

The discusgon in Chapter 3 has $own that ADM artefacts are very rich and broad. In
modelling a device, they can take account of all possble aspects, including the internal factors,
such as mechanisms and interfaces, and external factors, such as the situation and the user’s
mind. However, in ader to make the comparison between MWDS and traditional ways of
studying the development and use of devices possible, we need to restrict the observation and
interaction with an ADM artefact so that it has the tharacteristic properties of devices identified
in Table 5-1. Theterm * ADM device will be used to refer to an ADM artefact that is restricted in

this way by exercisingthe modeller’ s discretion.

In the rest of this chapter, we take up the two agendas suggested by the previous
paragraph: a cmparison between the internal construction of traditional devices and ADM
devices, and the application o ADM artefacts in studying the design and use of traditiondl
devices in their broader context, taking account of mental and situational factors. These two
agendas respectively relate to the internal and the external semantic relations associated with a
deviceas depicted in Figure 2-12.

Four aspects of state in the study of devices

These two agendas above are discussed with reference to four aspeds of state — Situational,
Explicit, Mental and I nternal — that are defined based on the way that we use or interact with a
device (cf. Figure 5-1). As discussed in [BRWWO1], these four aspeds are relevant in both

closed user-artefact interaction and open user-artefact interaction. They are specified as follows:

» Explicit state corresponds to the visible state of the device

13t

Chapter 5: Representing state and behaviour in MWDS

» Situational state is related to knowledge of the real-world context in which the deviceis
being used andto which the device refers;

« Menta state takes account of the user’s knowledge and expectations about interaction
with the device when interpreting its current state and conceiving its possble transitions
of state;

* Internal state is related to the internal representation ar mechanism inside a device. In
normal use, it may not have to be considered unless or until we realise that there is a

conflict in the relationship between the device and its referent.

The situation

b

Mental state

—

Situational state

The device
- <
5
Internal P
State =
|.|>le The user

Figure 5-1: The four aspects of state in using a device (adapted from [BRWWO01])

As in [BRWWO0]], these four aspeds of state are ill ustrated with reference to a digital
watch. Explicit state is what we @n seeby looking at the watch. If we observe the explicit state
of a device in isolation from other aspeds of state, we may misinterpret the state of the device.
For instance, by looking at the watch, it is sometimes hard to tell whether we are observing the
current time (i.e. if the watch is in ‘display current time’ mode) or the alarm time (i.e. if the
watch isin ‘display alarmtime’ mode). The situational asped of state typically supplies the norm
for device use. For instance, when the user sets the watch to ‘ stopwatch’ mode to record the time
taken to run a race he/she has to dbserve features of the external situation in addition to
observing the watch. Mental state refers to knowledge complementary to the explicit state that
has to be @rried in the user's mind to make sense of the device's behaviour. For instance, the
user expects that if he/she presses a button X once in the arrent time mode, the watch will
display the alarm time that is currently set. The internal state of the digital watch is concerned

with test and repair. Theinternal state of the watch is not usually accessbleto the user.

13¢

Chapter 5: Representing state and behaviour in MWDS

B screen (tkeden 1.96) -0 X

Explicit
LA aspect of
La 25! state
NNEEER
Mental | i 3l
aspect of
State
N Situational
aspect of
State

Figure 5-2: Situational, Explicit and Mental aspects of statein digital watch use (adapted
from [BRWWO1])

The three primary aspects of state (viz. Explicit, Situational and Mental) are typically
specific to each instance of use, and have to be simultaneously apprehended by the user
[BRWWO1]. For instance, when using a watch to count pulse rate, the user puts the watch into
the countdown mode (registered as mental state), sets the duration to one minute (consulting the
explicit state) and counts pulses (referring to the situational state) until the watch beeps
(establi shing an explicit state and confirming the expectation associated with the mental state).

A device is normally designed with a concept of appropriate use in mind. This will be
framed in the ‘ user manual’ for the devicein terms of ideali sed observables related to the primary
aspeds of state. For example, a digital watch user who has just arrived in Tokyo from London
will need to know how to reset the time on the watch to Japanese time. The designer expects the
user to be able to read the current time on the watch (an explicit state), to know the time in Tokyo
(adituational state) andto have some redpe in mind (a mental state) for changing the watch to an
appropriate mode (cf. Figure 5-2). The uses of a device are mnceived and documented with
reference to common types of abstract observation relating to explicit, situational and mental
state that are determined by the nature of the device. A prescription for use in terms of abstract
observation is not in itself sufficient for practical situated use. For instance a digital watch is
designed to be used in dfferent time zones and this kind d use will be documented in the user

manual with referenceto the current time (an ‘ abstract’ observable), but this does not tell the user

Chapter 5: Representing state and behaviour in MWDS

how to determine the time in Tokyo. There are two ways in which ADM artefacts can be used to

study devices:

» constructing ADM artefacts that model devices: An example of such use is depicted
in Figure 5-2, where the model of digital watch is as discussed in Chapter 3. Another
example isthe modd of the original Jugs program [Town] depicted in Figure 2-5, which
can also be interpreted as a model of a device. This use of an ADM artefact focuses on
internal and explicit aspects of state associated with the internal semantic relation (cf.
Figure 2-12(a)). This is discussed in more detail in Section 5.3.1with reference to the
relationship between MWDS and traditional programming techniques such as data

structures, flowcharts and the M odel-View-Controll er architecure.

» developing an ADM artefact to support the construction and to explore the situated
use of a device: Examples of such development are depicted in Figure 5-2 and Figure 5-
5, which respedively modd the situated use of a digital watch and the Jugs program.
This use of an ADM artefact focuses on mental and situational aspects of state associated
with the external semantic relation (cf. Figure 2-12(b)). This is discussed in more detail
in Sedion 5.3.2 with reference to the relationship between MWDS and spedfication
techniques such as the use of CSP, use-case analysis and the Z-naotation.

In thinking about representations for interactive systems design, it is usual to make a
distinction between explicit representations, such as models and artefacts, and implicit
representations that involve interpretation on the part of the user, and rely upon asaumptions
abou his’her backgrourd, role and culture [BI99]. This distinction echoes the traditiona
distinction between what is viewed as empirically given and what is viewed as the product of
rational construction. In MWDS, as explained in Sections 1.6 and 2.1, the asciation between
the model and its referent is mediated experientially. What matters in establi shing this association
iswhat is observable — that is, what can be diredly apprehended by the modeller —whether or not
this apprehension involves interpretation. By this criterion, features of an ADM artefact that
require sophisticated understanding on the part of the modeller (such as the English annotations
on the buttons in the Jugs model in Figure 2-5, the graphical presentation of the months of the
year in Figue 2-9 and the Tha tranditerations of numbers in Figure 2-16) are patentially
regarded (depending onthe modeller) as part of the explicit state. On this acawunt, MWDS can be
seen as involving a shift in perspedive on what is empirically given similar to that proposed by
William Jamesin his*Radical Empiricism’ [James96, Birdg6)].

13¢€

Chapter 5: Representing state and behaviour in MWDS

The special qualities of an ADM artefact in representing devices in design and use stem
directly from the fundamental role played by the observable. In MWDS, ‘what can be directly
apprehended by the modeller’ is the central focus for attention and exploration. Through
experience, ‘what can be direaly apprehended by the modeller’ can evolve as what at first
requires ‘off-lin€ interpretation becomes immediate and explicit. Through projedion and
experiment, the modeller can identify what is—as if — diredly apprehended by other agents. The
implications of this are that modelling a device @n potentially take account of failures and
defects, and that modelling the use of the device @n go beyond the designer's gereotype of
idealised use to take acoount of richer real-world observables from the situations and subjedive

characteristics of the users, bah separately and in combination.

5.2 The SEMI aspects of state in MWDS

For adevice theway that SEMI aspects of state are related is precise and circumscribed to reflect
the designer’s abstract conception o its use. Users normally interact with the devicein a predse
way based on the written manual. Closed-world modelling of the device only supports interaction
that is rigid and bourded. This is because it is built and optimised to meet a precise and
predefined specification. In gpen development of an ADM device, the possble interaction is
more open-ended and gves flexibility to adjust and refine the characteristics of the deviceand its
users. Because the boundary of an ADM device is established by the modeller’ s discretion, it still

has interactive and experience-based characteristics. This gives scope for richer exploration of

the SEMI aspeds of state associated with the device

The four aspects of state and their different qualities are discussed and clarified in this
sedion with referenceto extensions of the Jugs model as depicted in Figures 2-5 and 3-6. For this
purpose, imagine (Scenario 1) that the original Jugs program [Town] is being used by pupilsin a
standard way. From the initial state depicted in Figure 5-3, the objective for the pupil is to get
one unit of liquid by a sequence of jug operations. For instance a suitable sequence of operations
is:

Fill A; Pour; Fill A; Pour; Empty B; Pour; Fill A; Pour.

The teacher is able to specify a new problem by changing the @pacities of the jugs and the target.

Internal and Explicit aspects of state

Chapter 5: Representing state and behaviour in MWDS

The internal and explicit aspects of state are diredly associated with the physical characteristics
of adevice. The designer’s conception of a devicerefers to observables — possbly abstract rather
than reali stic — that represent its internal state. In developing a definitive model of a device, there
are wunterparts for these observables in the script. Normally the internal state should be hidden

from the users. It can be interpreted as state that is recor ded inside the device.

Figure 5-3 represents the Jugs model viewed as an ADM device (‘ the Jugs device): if we
interact with the model in a restricted way (i.e. by pressng the interface buttons), it serves
predsdy the same function that an implemented program meeing the specification for ‘jugs
does [Town]. We @n compare the use of the Jugs device in Scenario 1 with that of the Jugs

program.

Where the Jugs program is concerned, the internal state is recorded in procedural
variables. In contrast, the internal state of the Jugs deviceis recorded in the extract of the script
labelled Internal in Figure 5-3. Such an internal representation is closely related to the designer’s
view of the internal state of the Jugs program. In the Jugs device, there is <ope to change the
internal state in a way that does not affect the explicit state of the model or the functionality of
the model that is exercised in Scenario 1. For instance, if the teacher wishes to supply new values
for capA and capB so that the target 1 is dill appropriate, the modeller can introduce these
definitions:

n is 2*k+1; capA is 5*n; capB is 5*n+2; k=0;
Alternatively, to ensure that randomly chosen values of capA and capB still lead to a solvable
problem, the modeller can introducethe single definition:
target is gcd(capA, capB);

These show the flexibility for adapting the Jugs device for more specialised use and to enrich its

internal mechanism.

Note that someone who explores the Jugs device (cf. Figure 2-10) may not be aware of
internal changes of this kind until he/she hits upaon the right interaction (e.g. redefining k). For the
explorer, uncerstanding the semantics of the Jugs device invalves privil eges to interact associated

with an expedation that may or may not be reali sed.

The eplicit state of a deviceis directly connected to the visuali sation ar appearance of the
device It correspords to state as perceived from the viewpoint of an external observer. Users

always apprehend a device from its explicit state. For example, the eplicit state of the Jugs

14C

Chapter 5: Representing state and behaviour in MWDS

deviceis depicted in Figure 5-4. When both jugs are initially empty (cf. Figure 5-3), and the user
clicks on the Fill B option, the eplicit state of the Jugs deviceis changed to the state depicted in
Figure 5-4(a). In fact, this click invokes the internal agents init_pour and pour to change the
value of the internal observable contentB, which sequentially affects the explicit state of the
Jugs device.

%eden — 5 screen(tkeden 1.35) E
capA =5; capB =7;

Afull is capA==contentA,;

Bfull is capB==contentB;

validl is !Afull; Inter nal
valid2 is !'Bfull;

|
|
i
valid3 is contentA !=0; I

|
|
| | |
} } } Target is 1 : awaiting input
| | |
| | |
FELELEE TETELE

%eden 1:Fill & 2:Fill & ENENY

i
CA is repeatChar(‘~’, widthA*contentA);
jugA is repeatChar(‘/’,2*capA+2+widthA); N
cB is repeatChar(‘~’, widthB*contentB);
jugB is repeatChar(‘/’,2*capB+2+widthB);
%scout -
wcontentA = { > Explicit
frame: ([wcapA.frame.3.nw+{1.c,-contentA.r},contentA,widthA])
string: cA
bgcolor: “yellow”
2 J

Figure 5-3: A screenshot of the Jugs device with itsscript (for internal and explicit)

The dependency between the explicit and the internal state of the model is established by
the definitive script labelled Explicit in Figure 5-3. Changing the internal observable capB
automatically affects the explicit state of the model as depicted in Figure 5-4(b).

The user clicks on

— - soreen (tkeden 1.36) il B — 4 screen (tkecen 136) capB=10;
(a) (b)

1:Fill & 2:Fill B [0

I
VUL T
1Fill A EEESNY BT

S 4 Enpty B 5:Pour

SEE 4 Eupty B 5:Pour

Figure 5-4: Explicit state for the Jugs device

Note that in the script in Figure 5-3, the colour of the liquid is treated as a comporent of
the eplicit state that is defined independently of the internal state of the model. This can be
interpreted as meaning that the colour of the liquid is not a circumscribing doservable of the

device assgning a new colour to the liquid does not affed the functionality of the device. This

141

Chapter 5: Representing state and behaviour in MWDS

ill ustrates the designer’s idealised view of the drcumscribing observables, which presumes that
the user sees the level of the liquid regardiess of its colour (cf. Figure 3-3 where no colour is

involved).
Mental and Situational aspects of state

The representations of the internal and explicit aspeds of a device are objedive in rature. They
reflect diredly the designer’s conception of the device and its identifying bourdary (cf. Table 5-
1). Nothing here reflects the state of mind of the user. In contrast, the representations of the
mental asped of state of a device are related to what users perceve, and are more controversia
and potentially more subjective. The mental asped of state is concerned with the state that the
user projeds upan the device when interacting with it, and the way that he/she then interprets and
conceives the current state and consults expedations about the possble next states. It can be

regarded as state as conceived by users.

Presumptions about the mental model of the user are an essential part of device design. As
the discusson of the Digital Watch model in [BRWWO1] ill ustrates, the user may only be
famili ar with one part of the mental model for the device as conceived by the designer. Effedive
ways of studying the mental asped of state are significant for device design because it is

generally hard to tell what is going onin the user’s mind.

The mental state attached to users cannot be directly exposed. Even random interactions
with a device may coincidentally appear to be sensible. In arder to ‘understand’ the mental state
of the user, we typically need to set up dfferent scenarios for uses of the device For instance if
we get rid d the white-on-black colour of the invalid buttons, as svown in Figure 5-5(b), we may
probe the mental state of the users by observing and recording the pattern of their interactions.
From this change to the device we @n asesswhether the user’s interaction with the Jugs device
is merely based on choosing avail able options or is based on hig’her perception of the status of
the jugs from the visuali sation. For instance, we would like to be able to reveal the fact that Jug A
is full, bu users think Fill A is avalid option. A further modification d the Jugs device might
involve tranglating the text onthe buttons into Thai and/or rearrangng the order of the buttons on
the display. This might indicate whether the user understands the concept ‘jug A is full’ and can
interpret thewords ‘Fill A’.

The modifications of the Jugs device discussed above are easy to make (cf. Figure 5-5(b)
becuse the device is redlised as an ADM artefact. The simplicity of the redefinition required

Chapter 5: Representing state and behaviour in MWDS

reflects the fact that the modeller’ s construal of the device is captured in the scripts and agents of
the artefact. Modifying the device is unlike modifying the Jugs program by editing and
recompiling in that it respects the continuity of the modeller’s perception (cf. Section 3.1). In
particular (cf. Figure 5-5(a) and (b)), other aspects of state, such as the current level of liquid in
the jugs, are unaffected.

— -H screen(tkeden 1.36) B X — - screen(tkeden 1.36) 0 1
Yscout
(@) (b) invalid_fg="black”;
invalid_bg="white”;
[womwme L O P
s =
[o | | e |
I fmeel tacget is 1 : awsiting input I LIl dorger 5e 1+ avaiting dapus
1] e ! | " |
[o | | e |
[RRRRRARNARNRY] OLLLED TEETLLL
1:Fill & ERITERR 4 Enpty B 5:Pour 1.Fill & 2:Fill B 3.Empty A 4:Empty B 5:Pour
== ER
B 44 kvi«3» SE
.
(C) 7 FEile Options Help
#xxxx Montal state sesss _AI

"Fill B haz heen pressed
The user helieves Jug B iz not full

#xxxx Mental state sxessx

“Pour” has been pressed

The user helieves there iz liquid in one jug
ind that the jugs are not both full

Target iz 1 : awaiting input -

(ARRR RN A RAR RN
PN 2 Fill B 3:Enpty A& 4:Empty B

%eden

mentavalidl is (bgcolor_wmenul=="white’)?“Jug A isnot full”: “Jug A isfull”;
mentavalid2 is (bgcolor_wmenu2=="white’)?“Jug B is not full”: “Jug B isfull”;
mentalvalid5 is (bgcolor_wmenu5=="white’)? “ Thereis liquid in one jug and the jugs are not both full”: ...;

Mental

Figur e 5-5: Changing the Jugs model to illustrate the mental state

The way in which we are representing mental state in this context is closely associated
with the way in which an explorer apprehends gate through experiment. With reference to Figure
2-10, the eplorer is aping the situation so that there are patterns of interaction to reflect the
target mental state. In addition to shaping the situation by modifying the device, the modeller can
also introduce an extra agent. For instance, by adding extra scripts to monitor the number of
inappropriate interactions made by the users, we @an be more confident about how well the user’s
mental state matches the state of the artefact. If we have @nfidence in such interpretation, the
Jugs device may be extended to report the user’s mental state before seleding the option as
depicted in Figure 5-5(c) andthe associated script labelled Mental.

The last aspect of state considered in this context is related to the use of the devicein
different scenarios or situations. When people design a device, they conceive potential situations

and associated circumscribing observables within the boundary of normal use. In any actua

143

Chapter 5: Representing state and behaviour in MWDS

scenario in which the device is used there are other observables in the situation apart from

circumscribing ones. For instance, imagine (Scenario 2) that the Jugs program is being used in a

context where the time dlowed for seleding a button is limited (cf. Figure 5-6). In this case, the

observable timeout — outside the bourdary of normal use of the Jugs program—is sgnificant.

%eden

proc time: tn {count++;}

timeout is (count>=60)? 1: 0;
validl is !Afull && !timeout;
valid2 is |Bfull && !timeout;
valid3is ...

/* timeset is the time that the user clicks */
proc stamptime: input { timeset = tn[1]; count=0; }

/* timeout, if the user does not interact within 1 minute*/

Situational

— =¥ screen (ikeden 1.36)

.

|
I | s I Target is 1 : Tine Dub
|
|
I

(1. Fill alf2 Fill BJ3:Enpty A

Figure 5-6: The Jugs device with the time constraint

The representation o a device by an ADM artefact enables us to extend the model into a model

of the device in situated use. For instance Figure 5-6 shows how the script for the Jugs device

depicted in Figure 5-3 can be extended to represent its use in Scenario 2.

Modelling the use of a device in this way can help the designer in exploring its stuated

use. It makes it possgble to study qualitative aspects of a user’s interaction (e.g. concerning the

colour of the liquid and the speed of update in the Jugs device). It can also promote aeativity and

suggest possble variants of the device.

Figure 5-7: Distributed use of the Jugs device (taken from [Sun99])

144

Chapter 5: Representing state and behaviour in MWDS

By way of illustration, Figure 5-7 depicts the use of the Jugs device in a distributed
environment developed by Sun [Sun99]. The observables used by the teacher in monitoring the

interaction o each student with the deviceare included in the mode!.

By way of further ill ustration, Figure 5-8 depicts a variant of the Jugs device modd in
which the liquid in the jugs evaporates according to the temperature. In this situation, we have to
recnsider the posshble options for interacting with the device. Theinclusion o Pour A and Pour
B optionsis necessary since a state in which *Jug A is not full’ and *Jug B is not full’ at the same
time, as $own in Figure 5-8(b), can now be reached. Such an extension is sgnificantly easier
than modifying the original Jugs program would be since such states are already defined in the
Jugs device and are modell ed independently of any particular behaviour.

— ¥ screen(ikeden 1.36) o[RS — -# screen(ikeden 1.36) B

(@ A1 m (b)

| Target is 1 : awaiting input

2
H
H
H
i

3-Ewpty A 4-Enpty b TR G

1:Fill & 2:Fill B 3:Empty & 4:Empty B 6:Pour & T:Pour B

Figure 5-8: The Jugs model with the evaporating liquid

The next sedion revisits the two agendas proposed in Section 5.1: comparing the structure
of traditional devices (as represented by classcal programs) with that of ADM devices; and
comparing the design and use of a traditional device (as represented by program specification and
requirements analysis) with the development and use of the crrespording ADM device These
two agendas, to be addressed in Sedions 5.3.1and 5.3.2, are respedively concerned with the
internal and external semantic relations of a device (cf. Figure 2-12). Sedion 5.3.1focuses on the
explicit and internal aspects of state and Section 5.3.2 @ the situational and mental aspects of
State.

5.3 ADM devices and program devices

As has been illustrated in the discusson o the Jugs device above, when modelling a device with
definitive scripts, we take account of both its circumscribing observables and other observablesin
its operational context. The drcumscribed petterns of interaction amongst the device, the user
and the environment are embedded in an gpen-ended ‘ space for agent action’, such as is depicted

in Figure 2-17. The boundary around the use of the ADM deviceis virtual and is established by

14t

Chapter 5: Representing state and behaviour in MWDS

the modell er’ s discretion. Whereas the space supports exploratory interaction, the behaviour of
the device is asciated with agent interaction that is managed so as to follow reliable patterns
and maintain arderly observational contexts. For instance, the possble interactions of the user
and the response of the Jugs device in Figure 5-3 are predictable and there is no posshility that

the buttons move around the screen o that the liquid evaporates.

The computational framework for MWDS depicted in Figure 2-17 identifies the ADM
device as a construal of the interactions amongst the device the user and the environment. The
ADM device captures date as experienced by the modell er and the modell er’ s view is sgnificant
in representing and interpreting state. Because MWDS respects the ntinuity of the modeller’s
perception (cf. Sedions 3.1and 5.2), design and use @n be interleaved without interference, and
the role of the modeller is more aptly characterised as ‘designer-user’ rather than ‘designer-

exclusively-or-user’ (cf. [BRWWO0L]).

In an ADM device, the state is represented by a network of observables in a
comprehensible fashion. In construing the behaviour of a device, the modeller needs to explore
its relation to the user and the environment by experiment. This experimental activity can be
imitated by interacting with the ADM device Reevant observables can be extracted as sub-

networks and probed to determine their values and inter-relationship.

The dependency in an ADM device is well suited to representing the intimate relations
amongst the SEMI aspeds of state depicted in Figure 5-1. For instance, consider the scenario in
which the deviceis a digital watch and the situation is that the watch is one minute slow. When
the user resets the time & recorded internally by the watch, this smultaneously affeds the
display of the watch and the user’s view of the status of the watch. Conceptually, one action
indivisibly affects the internal state, the explicit state and the mental state. In this way, the ADM

devicesupplies a holistic view.

5.3.1 Explicit & internal aspects of state in ADM and program devices

Internal and explicit aspeds of state of a device respectively relate to the internal representation
and functionality, and the external appearance and interface The discusgon of these two aspeds
of stateis prior to that of mental and situational aspects becuse, when interacting with a device,
we are first concerned with exploring the device in isolation. This involves understanding the

internal semantic relation (cf. Figure 2-12(a)).

14¢

Chapter 5: Representing state and behaviour in MWDS

The internal representation of a program deviceis closely conreded with the choices of
programming paradigm; each paradigm has its own dstinct characteristics for framing the
solution to a problem. There are broadly two kinds of programming paradigm: those that are
concerned with modelling the problem situation and those that focus on explicitly specifying
solutions. For instance, logic programming and dbjed-oriented programming involve modelling
the problem situation by using logical predicates and dyjed abstractions. In contrast, procedural
programming specifies a problem solving processin terms of a sequence of procedural actions. In
this thesis, MWDS has previously been compared with aher paradigms for domain modelling
(cf. the discussons relating to Figures 1-5, 1-6 and 5-2 and the Digital Watch model in Chapter
3). From this point onwards, we shal focus on the relationship between MWDS and

programming in its narrow sense.

It is characteristic of a device that it does not require a rich model of its operational
context. It is only designed to serve a particular purpose and only needs to take account of its
circumscribing observables within the boundary of normal use. This is parallel to the way that a
procedural program is developed from a program spedfication (such as flowchart or pseudo
code) that addresses its pre-identified requirements. The issues of efficiency and optimisation are
prominent concerns in this kind o programming. Devices are often built from pre-existing
comporents; this is smilar to the way procedural programs are constructed wsing standard

algarithms that are optimised to deliver preconceived functionality.

We @n interpret an ADM device as a prototype for a program device. It expresses the
relationships between abstract circumscribing observables that have to be maintained in normal
use. For instance— when it is viewed as a device— the original Jugs program has to maintain the
relationshi ps between observables that represent the internal and explicit aspects of state depicted
in Figure 5-3. Note that the ADM device is a prototype rather than a conventional input-output
specification; experiential issues (such as the speed of the screen update and how the state is
apprehended by the user) are significant.

In this sction, we shall focus on comparing ADM devices with procedural program
devices. Procedural program devices have the essential characteristics of the classcal von
Neumann computer as an artefact. Such program devices only support very primitive kinds of
observation and action. These reflect the nature of the stimulus-response behaviowr associated
with machine code primitives, such as retrieving data from and storing chta to locations,

deaoding the operation code of an instruction, fetching the next instruction o branching. Data

Chapter 5: Representing state and behaviour in MWDS

structure provides a means to arganise data and manage interaction with data so that — subject to
treating complex values as atomic — the dfect of richer observation can be reduced to such
primitive observation. It allows observation and action that involves evaluation and assgnment
of complex aggregates of primitive values. Both dbservation and action follow a fixed recipe

prescribed by the data type of the variables being read o assgned.

The execution d a program device @n be conceived in terms of the model for agent action
in Figure 2-17. There is one agent, viz. the interpreter of the machine instructions. The
observables for this agent are the sequence of madhine instructions, the program counter, data
locations, registers and their contents. The next action d the ayent is determined by the program
counter. The organisation of the instructions and datais closely prescribed since the interpretation
of the instructions proceeds sequentially and essential constraints need to be met before an
instruction is meaningful. The data representation in the program device does not adequately
reflect the richnessof human doservation. Consider, for example, how a quadtree data structure is
used to represent graphics, or sorted list is used to reduce the comparison of real-world entities to
numerical comparison o indices. To overcome this problem, we limit the interaction with the
device to well-engineaed stable dements of the situation (cf. reliable paths in Figure 2-17),
restrict the nature of the task to be performed by the user, and build data structures to exploit
these constraints (cf. the way in which the organisation of a library enables us to accessa bodk

without needing to consult its observable characteristics in detail).

The preceding dscusdon of the machine as an agent is only justified if the processng o
data structures is physically expressed in the program device in an appropriate way. The
manipulation of data structures can only be viewed as observation and action if operations on
complex values are ‘atomic’ and is suitably embodied in the explicit state for interpretation by
the user. For instance in a typical animation, the screen shoud have an appropriate resolution
and refresh rate, and complex data structures should be totally evaluated before updating the
screen. These are implicit assumptions that are typically made by programmers when interpreting
a program as a device (cf. the experientially mediated internal semantic relation in MWDS
depicted in Figure 2-12(a)). The Mode-View-Controller (MVC) architedure [Olsen98],
initially designed to support the multi-windowed interactive Smalltalk-80 interface is an
informal framework for managing the relationship between explicit and internal aspeds of state
that is particularly well -suited to the design of a program device

14¢€

Chapter 5: Representing state and behaviour in MWDS

The display and interfaces of a program device — the explicit aspect of its state — are built
on top of itsinternal state. They provide a visual presentation of internal state and interfaces for
the user to interact with the program device. To some extent, the relationship between internal
and explicit state is expressed in a traditional program specification, which prescribes the pattern
of user interactions corresponding to the requirement. The explicit state also involves an
embodiment of the internal state that can only be addressed in the design and implementation

phase.

Within MWDS, the data representation drectly refleds observables in the external
referent and the relationships amongst them (cf. Figure 1-5). This resembles the way in which a
relational database @n be seen as a data model of part of the real world in which the organisation
is interested [Cart95]. In the relational database, the design of the tables is guided by the
functional dependencies between data described in Codd's relational model [Codd70]. A
relational table @n be viewed as a form of data structure; it is not only meant to correspond (as a
set of tuples) to a family of physical objeds, but also (as a relational scheme) to the abstracted
ideal of one kind of objed [Kent78]. The nearest counterpart of the table in MWDS is an ADM

entity without actions.

Beause MWDS emphasises the representation o observables, it generally implements the
internal state of the model as a side-effect of developing the explicit state. The explicit state of a
model can dften be considered as determined by observables in the externa referent. For
instance, in the Room Viewer model (see Chapter 3), the script is derived from obvious visua
features such as corners, doors and walls in the room. The Scout and DoNaLD definitive
notations are designed to specify the visual state of the mode, and generate an interna
representation that is directly linked to the eplicit state of the model via dependency. The
internal and explicit aspects of state are kept consistent in this way. In particular, changing the
internal state will automatically affed the explicit state. This approach to implementing the
explicit state @an be helpful in gving the user or the modeller a comprehensible view of the
current internal state. Where a visual feature has an assciated interaction, the use of Scout can
supply an interfaceto dctate the protocol by which the user can alter the state [BY 90]. Consider,

for instance the mechanism for opening and closing the door in the room viewer.

MWDS can also be used effectively when devel oping explicit state to match gven internal
state. The multiple views of a model that can be conveniently specified wsing the MVC

architecture, can also be esily implemented with a definitive approach. This is because the

Chapter 5: Representing state and behaviour in MWDS

internal state is represented by a definitive script and the various display representations that are
based on diverse interpretations of the internal state can be connected by introducing new
dependencies into the script. The principle is similar to the introduction of views in a relational
database, but is generalised in this context to address different visual representations of the data
(cf. Figure 2-9).

The way in which MWDS deals with observation and action provides a different
perspective on the machine as an agent. MWDS induces activity at the machine level that is
different in character from that described by the orthodox use of data structures. It also gives
prominence to matters of indivisibility in machine execution. For instance, in the implementation
of Eden, maintaining dependencies in a network of definitions takes precedence over al other
kinds of machine processing. Whereas a traditional procedural program processes a data structure
following a fixed recipe and separates the data representation from the program control, in
MWDS, the dependencies dynamically determine the recipes by which variables are read or
assigned and so connect the data representation with the program control. For this reason, the
mechanism for implementing a device used in MWDS is more faithful to the way we construe
observations and actions. This mechanism is oriented towards the representation of physical state

rather than abstract algorithms or behaviours.

In MWDS, rich observations can be represented by combining dynamic definitions with
structured data using hierarchical data dependency. For instance, in the Car History model (cf.
Listing 3-3 and Figure 3-11), the possible cars are represented by the following set of definitions:

cars is [“Ford_Escort”, Ford_Escort, “Ford_Orion”, Ford_Orion, “Ford_Fiesta”, Ford_Fiesta, ...];
Ford_Escort is [‘model”, fe_model, “exhaust”, fe_exhaust, “engine”, fe_engine, ...,];
fe_model is ["Mk1", Mk1, “Mk2", Mk2];

This script can be interpreted as a dynamic data structure that represents the data stored in the
model together with the dependencies between the data. Each definitionis a list of data variables
together with their associated identifiers. When evaluated, each definition can be regarded as a
table similar to a table in a relational database system (cf. Figure 3-11), but the structure of the
tableis not fixed.

The difference between data representation in traditional programming and MWDS is
depicted in Figure 5-9. A definitive script represents data as a collection of discrete observables
dynamically linked by dependency. In a traditional program, the data is stored in a more rigidly
structured fashion so that it can be referenced systematically by the program control.

150

Chapter 5: Representing state and behaviour in MWDS

b)

a (
@ |hp1is(e|t1>e|t2) && (dt1>dt3) |
/ D !

epends on \ dlt4is 98

[A dt3is8
! ea|t1|3294€!It2is23 /’

\

| Program control |

read

)
LT

\
N 7
U //

Data aray

Figure 5-9: Datarepresentation in (a) a traditional program, and (b) MWDS

[llustrating internal and explicit statein ADM and program devices

[llustrative example 1
MWDS represents internal state directly in that each variable is the counterpart of an dbservable.

Each state of a definitive model can be interpreted and comprehended by the modeller. The
internal and explicit states are typically indivisibly linked and correspord to each aher state-by-
state. The accesshle internal states of a program device are determined by the available
procedures and the predefined user control. For instance, in the Jugs device, we @n set the
content of jug A to the value 14 (cf. Figure 5-10(b)). In contrast, in the program device, we @n
only asggn the content of jug A to 14in passng (e.g. by emptying and filling jug A). In addition,
if a stateis not within the scope of the normal behaviour of the program device (e.g. if contentA

exceeds capA), it isinaccesshle.

— - soreen (tkeden 1.36)

-8 X (b)

— - screen(lkeden 1.36)

(@)

Target is 1 : updating

is 1 : avaiting input

FEEEEE Trern
1:Fill A 2:Fill B 3:Enpty A [FETUSA 5:Pour

1:Fill & 2:Fill 5 TR 5 Pour
-0 X

& M ¢ 4 kvle2a
File Cptions Help
p 7 bin/tkeden1,36: 1 a]
ueLe an

7 Eile Options Help
/dics femp /enpuiblic/sol aris-sparc/kin/tkeden-1.36
1w interrupted: clearing both RunSsts ¢ sdes/enp.) itk 1 30t
iy 36t
)

|
4

Figure 5-10: The Jugs model: (a) conventional, (b) definitive approach
We @n get insight into the different ways in which an ADM device and a program device

link internal and explicit states by modifying the Jugs device Figure 5-10(a) shows a ‘rogue

151

Chapter 5: Representing state and behaviour in MWDS

variant of the Jugs device that has characteristics typical of procedural program devices. In
Figure 5-10(a), awhile-loop is used to update the level of the liquid in the jugs directly. When we
interrupt the process of filling jug A, the explicit state does not correspond to the internal value of
contentA. The objective of this procedural implementation is to save computation by reassigning
of contentA only when jug A has been filled. This may increase the speed of updating the
display, and does not cause problemsin normal use, but the relationship between the internal and

explicit states is not preserved.

In contrast, the explicit state of the Jugs device model in Figure 5-10(b) directly
corresponds to the internal state of the device. Even when the device is interrupted, the internal
and explicit states are consistent and correspond to the state that is obtained by directly assigning
the appropriate val ue to contentA.

[llustrative example 2

In this section, we consider variants of the Jugs device that illustrate the significance of the
internal semantic relation (cf. Figure 2-12(a)) where the functionality of the device and the

capabilities of the user and the computer are concerned.

We first consider the scenario where we are not concerned with the number-theoretic
problem underlying the Jugs device (cf. Figure 5-11 without the optional status string). In
MWDS, we can try to represent the state of an artefact as redlistically as possible. The Jugs
device can be adapted to make the animation of filling, emptying and pouring the liquid more
realistic. For this purpose, each unit layer of the liquid is defined by a line of pixels as depicted in
Figure 5-11(a).

(a) — =i screen (tkeden 1.36) b (b) — = screen (tkeden 1.36) - F X

Optional status string |

S
i Target is 1 : updating - Target is 1 : awaibting

Capacity Capacity " "
o At T B Tog Ai00 ug B-b1

2:Fill B 3:Empty & 4:Empty B 5:Pour

1:Fill a 2:Fill B ERENESEE 4 :Enpty B 5:Pour

Adoslenp//enpublic/solaris—sparc/binstkeden-1,
: clearing both RunSets {current gueus and to
contentE = 130

contentA = 100; contentfl = B0
ﬁontentB = 101; contentBO = 5O j

e

Figure5-11: The Jugs device: (a) pixel per unit display, (b) pixel per 2 unitsdisplay

152

Chapter 5: Representing state and behaviour in MWDS

In Figure 5-11(a), if the @pacity of Jug B increases to 300, the computer display may not
be able to cope with it. At this gage, we may have to scale down the visuali sation and as a result
of thiswe @nnot have a state-by-state wrrespondence between the internal and explicit state any
more. Figure 5-11(b) shows a variant of the Jugs device where the display of the liquid is updated
whenever contentB increases by two. The visualisation is updated intermittently as a result of
the redefinition of variable contentBO, defined as contentB/2. In this context, the

correspondence between the explicit and internal statesis one-many.

If we try to interpret Figure 5-11(a) and Figure 5-11(b) as Jugs devices (restoring the
optional status gring), we encounter problems. In Figure 5-11(b), we @nnot distinguish visually
between the situation in which contentB is 100, and the situation in which contentB is 101,
when the target can be reached in a single operation. In Figure 5-11(a), the visualisation of the
liquid level cannot be easily interpreted by the user as an integer. To addressthis problem, we
can develop the richer visualisation as depicted in Figure 5-12. Note that we @n easily adapt
Figure 5-11(a) so that it represents jugs with capacities 5 and 7 using 20 lines of pixels per unit of
liquid. A posshble motivation for this modification is to make the visualisation o operations in
the Jugs device more redlistic. In this context the correspondence between the eplicit and

internal statesis many-one.

X %scout
point wconAlOstart={wconAend.1-widthA,

- b
wconAend.2-conA10};

window wcontentA10 = {
type: DONALD
box [wconAlOstart, wconAend]
bgcolor: “gray70”

h

Target is 1 : updating window wcontentA50 = {

P %eden
apacity Capacity)

Tug A=100 Jug B=201 conAl0 is (contentA/10)*10;
1:Fill A 2:Fill 5 EESTISEE 4:Enpty B 5 Pour

—- = screen {tkeden 1.36)

Figure5-12: Thericher visualisation for the Jugs devicein Figure 5-11
Optimisation in program devices
It is expensive — even when it is feasible — to make a device that can make rich doservations of its
environment. For instance, it is hard to build a digital watch to reset the time by itself or to repeat
the alarm on dbserving that the user stays in bed. For this reason, synchronising the state of the

device with the state of its environment typically involves interaction between the user and the

device This means that there is an incentive to optimise st and efficiency by minimising the

153

Chapter 5: Representing state and behaviour in MWDS

dependence on regular and close observation, and it is commonly the @se that the state of a

device does not reflect even its circumscribing observables very closely.

In a program device, strategies for reducing doservations are typically based on assgning
the values of observables rather than maintaining them by a definition. This leads to data that is
cut off from further observation wherever possble. Optimisation of this nature relies on the fact
that the patterns of interaction with the user are restricted and the organisation of the control and
data within the deviceis rigid and stable. By way of illustration, in the context of Figure 5-10(a)
the observable contentA is only refreshed when the visualisation shows jug A to be full. This
optimisation works on the assumption that the user cannot interrupt the visualisation processand

that there is no mechanism that can change the value of capA during the update.

[Eden definitions] [Eden functions]

Afull is contentA==capA, func FAfull{ Afull = (contentA==capA); };

validl is !Afull; func Fvalid1{ validl = FAfull(); };

valid3 is contentA != 0; func Fvalid3{ valid3 = contentA = 0; };
FAfull(); Fvalid1(); Fvalid3();

Listing 5-1: Converting a definitive script to a procedural program

In an ADM artefact, the scope of interaction is so broad (cf. Figure 2-17) that any
‘optimisation of observation’ undermines its quality as a construal. It is only when we first
identify and then rigidly impose the bourdaries for interaction with the artefact that we @an
introduce optimisation. We @n regard MWDS as providing a very open-ended and flexible
environment within which to model the design of a device using an ADM artefact. Observables
are introduced into the model bit by bit. A model is gradually developed and it is always open to
modification. However, when the designer has identified an ADM deviceto represent the design

model, he/she @n circumscribe the model by imposing the boundaries for interaction.

Once the bourdaries for interaction are imposed, there are systematic ways of replacing
definitions by procedural constructs. For instance using a technique introduced by Yung
[Yung96], the Eden definitions in Listing 5-1 can be replaced by the Eden functions, on the

asumption that the relevant observables are not going to be redefined.

5.3.2 Situational & mental aspects of state in ADM and program devices

The previous sction hes discussed the representation of internal and explicit aspects of state in

ADM and pogram devices. This sction will discuss how the situational and mental aspeds of

154

Chapter 5: Representing state and behaviour in MWDS

state are represented in ADM and program devices. The internal and explicit aspeds of state
relate to the internal semantic relation and to the design and implementation aspeds of software
development. The mental and situational aspeds of state relate to the external semantic relation
andto the requirements and specifi cations aspects of software development. The previous sction
has introduced the idea of using an ADM artefact to model the design and use of a device. We

can compare this activity with the traditional approadc to devel oping a program device

In the traditional view of programming, the situational and mental aspects of state are
studied and pedefined in the erly stages of model development. This view is particularly
appropriate in the development of a program device where optimisation to suit specific
predetermined functions is the central concern. For instance, with reference to Figure 5-2, the
model of the mental asped of state has to be mnceived before the design and implementation of
the digital watch can proceed. This is consistent with what Benyon and Imaz [BI99] identify as

the ‘ elicitation metaphor’ f or requirements:

“Elicitation suggests that requirements are mental representations to be
extracted from the users’ heads to have a complete list of requirements.”

In developing a program device, the businessof asking users about their mental model is
handled in the requirements analysis. Diverse situational states for the device are set up to
correspond to users' requirements. Various forms of specification have been devised to describe
the features and patterns of use of the device in a predse way. The purpose of a specification is to
expressusers requirements and to circumscribe the situations in which the device will be used.
The specification of the mental state of the user is to be interpreted within a preconceved
situation. For instance, in the context of Figure 5-2, we @n imagine that the user is updating the
UK time on the digital watch dsplay to correspord to the current time in Tokyo. The posshle
situations for the use of the device are concaved in advance in terms of abstract observations
(e.g. ‘current time") and conventions for interaction. This may impose constraints on the actual

situations that arise in practical use.

It is recognised to be difficult for the designer of the device to understand the mental and
situational aspeds of state from the perspective of the user. Use-case analysis [JCJO92] is an
example of a software activity intended to help a designer to comprehend what users may require
from a program device. This activity is concerned with a negotiation between what the user needs

and what the designer can/will deliver.

15¢

Chapter 5: Representing state and behaviour in MWDS

The behaviour of a classcal program cannot be interpreted without framing the roles of
the mental and situational aspects of state in its exeaution. Once the program is written, the
interpretation of these roles is fixed, and does not change during exeaution. Preconceiving these
interpretations, and expressng them in a formal specification using notations with dbjectively
defined semantics, such as Z-notation [PST96], CSP [Hoare85] and WP [Dij76] has many
positive benefits where ensuring the quality and fitness for purpose of a program device is
concerned. Because the specification d requirements frames the boundary of normal use for the

device it impacts on all aspects of subsequent development and use. As Spivey writes in
[Spiv88]:

“A formal specification can serve as a single, reliable reference point for those
who investigate the customers’ needs, those who implement programs to satisfy
those needs, those who test the results, and those who write instruction manuals for
the system.”

The characteristics of a program device (cf. Table 5-1) are very significant in influencing
the way it is developed through establishing the bourdary for its use and optimising its design
and implementation to take advantage of this boundary. A device devel oped from this perspedive
becomesrigid and fixed to serve a particular pre-studied situation with a pre-designed i nteraction
pattern. It can be used to accomplish particular pre-perceived goals andit does not allow a user to
interfere with the medhanism inside. The internals of the device become a mysterious bladk box

for the user, who may learn all the relevant interactions from a written manual.

The traditional approach to requirements analysis for a device puts the emphasis on
planning the user’s interaction with reference to idealised observables. In the absence of a
prototype, the designer relies on requirements elicitation that assumes that the user’s knowledge
can be articulated. In its emphasis on the significance of experience and experimentation, the use
of MWDS to construct an ADM device s closer to prototyping. Conventional prototyping and
simulation embodies explicit aspects of state of a device in ways that typically are not well-
integrated with other aspects of state. For instance, where interaction is passible, this may be
idealised in a way that only partialy refleds the implicit assumptions about how this interaction
is mediated by actual observables (cf. the way that interaction in a game of Noughts-and-Crosses
is explored in [BJ94]). In contrast, MWDS tends to represent and handle the SEMI aspeds of
state in parallel. The shift from a traditional empiricist to a ‘Radical Empiricist’ perspective
[James96] is important in this context — observables are not only derived from the primitive

sensory elements of experience, bu can also involve more sophisticated cognitive processes

15¢

Chapter 5: Representing state and behaviour in MWDS

[Bey9g]. Conceptual observables, such as ‘the digital watch does not keep accurate time', which
are oncerned with human interpretation and are not diredly visible, are represented in the
implicit knowledge gained through interacting with a model (cf. Figure 2-11). Once we identify

such observables, we may also be able to introduce definitions to represent them explicitly.

MWDS casts the modedler in the role of an experimenter rather than a human robot. It
focuses on what goes on in the experimenter’s mind during his’her interaction with a prototype
device The modeller can act as a designer or a user by adopting dfferent perspedives on the
prototype. The modeller can explore hissher mind via interacting with the prototype. Interaction
with the prototype and the observation of stimulus-response patterns generates the
complementary knowledge about state that has to be arried in the designer’s (respectively
user’s) head to make sense of the design (respedively normal behaviour) of the prototype device
This activity is characterised by Sun [Sun99, SRCB99] using the metaphor of ‘requirements
cultivation’. Making the prototype device with MWDS enables us to take a broader view of
requirements. For instance in principle, we @n consider the impad that the use of devices can
have upan the mind of the user, and their broader implications for users in social, cultural or

administrative ontexts[BRWWO01].

As explained in Section 5.2 and illustrated in Figures 5-5(a) and (b), the way in which
MWDS respeds the continuity of the modell er’ s perception makes it possbleto interleave design
and wse without interference. This close integration between device design and use in MWDS
enables the user’s view and user’s need to be taken into account during development. Many
concerns (e.g. how the designer conveys the protocol for interaction with the deviceto the user,
how the user understands the designer’ sintentions, and how the designer-as-user understands and
learns what is required of the device) are eseentially addressed at the same time during building
and interacting with the prototype device. The user’'s interaction with the mode may be
monitored so as to reveal the consequences of common mistakes and misconceptions. Practical

steps that can be taken to eliminate these through redesign can be explored.

MWDS is nat a methodical processbut an interactive activity that involves elements of
serendipity and dscovery, and there is no presumption that preconceived petterns of action will
achieved spedfied goals [Bey97]. The situational state that is associated with the normal use @n
evolve during the development of the prototype. An experimenter can refine the eisting
observables or include a new set of observables to deal with new situations as they arise. This has

been illustrated in the Jugs model when the situation evolves so that the liquid evaporates, as

Chapter 5: Representing state and behaviour in MWDS

depicted in Figure 5-8. The *Vending Madine for Chocolate model (VMC) to be discussed in
the next section will be used to illustrate how MWDS differs from traditional ways of specifying

devicesintheir context.
The VM C case study

Communicating Sequential Processes (CSP) is a standard technique for formal spedfication o
concurrent systems introduced by Hoare [Hoare85]. This sedion compares the CSP specification
of a simple concurrent system and a representation o the system by an ADM artefact devel oped
using MWDS.

The chocolate vending machine (VMC) is a well-known basic case study introduced by
Hoare to illustrate the dharacteristics of CSP. Figure 5-13 depicts the VMC spedfication as
presented by Hoare in [Hoare85 together with a diagram to represent its associated posshle

behaviours.

VMC = (in2p - (lgchoc - VMC | smchoc — outlp - VMC) |
inlp - (smchoc—VMC |inlp- (Igchoc—VMC |inlp- STOP)))

in2p in1p

ol

smchoc inlp smchoc

outlp " lgchoc
V4

STOP

Igchoc

Figure 5-13: The CSP specification for the VM C from [Hoar e85, p30]

CSPfocuses on spedfying the behaviour of a processwith resped to communication and events.
In the VMC process the five possible events are indicated by in2p, inlp, outlp, smchoc and
Igchoc. For instance, in2p represents ‘the user inserts 2 pence into the madhine' . Each potential
behaviour corresponds to a sequence of events. For instance, the sequence of the events in2p,
smchoc, outlp represents the purchase of a small chocolate using a 2 pence piece. In the
specification in Figure 5-13, the possble behaviours are represented by the sequences of events
or traces associated with the variable VMC. Each trace is determined by a sequence of choices
between several currently possble events. The doice of which event will actually occur is
controlled by the environment within which the process executes. The customer of the VMC

decides what action to perform and the VMC behaves accordingly. The entire behaviour of a

15€

Chapter 5: Representing state and behaviour in MWDS

complete system is represented by the trace of events associated with agents acting and
interacting with each aher and with their environment. In specifying behaviour, CSP puts the
emphasis on events rather than on the agents that initi ate them:

“In choosing an alphabet, there is no need to make a distinction between events
which are initiated by the object and those which are initiated by some agent
outside the object. The avoidance of the concept of causality leads to considerable
simplification in the theory and its application.” [Hoare85, p. 24].

In modelling the chocolate vending machine using definitive scripts, our emphasisis upon
the way in which agents interact rather than on abstract sequences of events. Two kinds of
modelling are involved: modelling the way in which the avail ability of an agent action depends
on the current state, and modelling the way in which the avail ability of an agent action is made
explicitly observable in interaction. This reflects the emphasisin MWDS on state and dbservation
respectively. The modelling activity is not primarily concerned with the abstract patterns of
actions, but with how such peatterns can be construed to emerge within the general framework for
agent action depicted in Figure 2-17. In this context, it is essential to consider many factors that
are discounted in the CSP account, such as the physical properties of the machine, how reliably
the machine responds to the user’ s action, and the physical capabilities of the user to interpret and
mani pulate the state of the macdine. This enables us to explore the implications of perturbing the
context for the traditional VMC as specified in Figure 5-13 —in much the same spirit that a
scientist might perturb parameters in an experimental context — so as to take additional factors
into account. These might include matters of user discretion (e.g. what happens if the user inserts

aThai coin?), machine malfunction and agent perspective (e.g. is the user achild o blind?).

%eden
actionl is [“insert 2p coin”, 1, !balance];
action2 is [“insert 1p coin”, 2, balance<=1];
action3 is [“buy a large chocolate”, 3, balance>=lgchoc];
action4 is [“buy a small chocolate”, 4, balance>=smchoc];
action5 is [“get refund”, 5, balance>=1];
proc vmc: action{
switch(action){ case 1: balance=balance+coin2p; break;
case 2: balance=balance+coinlp; break;
case 3: if (halance>=Igchoc) { balance=balance-Igchoc; bank = bank+Igchoc;} break;

Listing 5-2: Extract of the script for the VM C model

Figure 5-14 depicts a definitive VMC mode derived from the CSP specification shown in
Figure 5-13. The model was developed incrementally through a sequence of simple modelling
steps based on representing the observables that mediate the interaction between the user and the
vending machine and their inter-dependency. In Figure 5-14, there are three comporents to the

display: atext window that displays the current status of posgble actions, a visual representation

Chapter 5: Representing state and behaviour in MWDS

of the vending macdhine, and the input window through which the modeller can interact in the role

of VMC designer and Leer.
Each tuple displayed in the text window takes the form:

[description of action, action index, validity of the action]

Each group of five tuples represents a state of the interaction and is derived from the set of

definitionsin Listing 5-2 within the model by eval uation.

The variables in this extract from the script are balance, Igchoc and smchoc, which
respectively represent the balance of the money for the transaction in the macdine, the price of a
large chocolate, and the price of a small chocolate. The script models the way in which,
according to the CSP spedfication in Figure 5-13, the avail ability of the agent actions actionl
through action5 depends on the current state. For instance, action3 (‘buy a large chocolate) is
possble provided that the balance in the machine exceeds the price of a large chocolate
(balance>=Igchoc). On this basis, the actions that are valid in the three states depicted in the
text window in Figure 5-14 correspord to tuples whose third comporent is 1. Note that the
validity of actions described in the model is artificially simple, though it faithfully reflects the
original CSP specification for VMC. For instance, it is impossble to insert more money if the

balancefor the transaction is 2 pence.

= O < | ¢ screendikeden 36) EEE S
3 Filz Options Help - -
Text Wlnd '[,‘msﬁrt o coin’. 101 | VENDING MACHINE V|sua| dISp|ay

["insert 1p coin",2.1]

["buy a large chocolate".3.0] ®

["buy a snall chocolate”.d4.11

['get refund”.5.1] g snall chocolate]
["inzert 2p coin".1.0]

["insert 1p coin".2.0]

["buy a large chocolate".3.11

['buy & =mall chocolate”.d.1]
["get refund".5.11

["insert 2p coin",1.0] _
["insert 1p coin".Z.1] Inssrt Zp coin
["buy & large chocolate", 3,01

["buy a snall chocolate",4.1]
i”get refund" . 5,11 j L fn=ect Lp coin

— =¥ tkeden 1.36: Input eEE Get your small
) . X chocolate
File Edit Wiew ﬂe1p|
- - # %eden - ¥donald %sco
InPUt wi ndO\N Enter EDEM statements:

action=3;
/7 O =ppropriate action 4 inappropriate action

Figure 5-14: The definitive VM C model

The visual display in Figure 5-14 models the way in which the avail ability of agent actions
is made explicitly observableininteraction. Figure 5-14 displays a scenario in which the user has

inserted 2 pence, decides to get a small chocolate, then gets a 1 pence refund. In the visua

16C

Chapter 5: Representing state and behaviour in MWDS

display, the black and white drcle respedively represents inappropriate and appropriate actions
on the part of the user. In this way, the interface declares the bourdary of an ADM device. It is
till possible for the user to make arbitrary interactions with the model to the input window. For
instance, the redefinition action=3 displayed in the input window will invoke an action

(‘action3) to buy alarge chocolate even though this option is not avail able viathe interface

Modelling the chocolate vending machine as an ADM device makes it possible to take
broader observations and interactions that are not necessarily associated with events and actions
into account. It is not difficult to modify the actions displayed in Listing 5-2 to model more
realistic behaviour. Such modification is typically quite different in character from devising a
new CSP spedfication for the abstract behaviour. This is because an ADM device embodies a
rich construal of how the chocolate vending madiine operates. For instance it is relatively
straightforward to take account of how and when a situation when the machine @annot accept any
more money develops. The ADM device is also typicaly more useful than an abstract
specification in suggesting possble features to asdst user interaction with the device. For
instance, interaction with the model via the visual interface may disclose the need for a panel to

indicate the balance of the current transaction.

161

