Chapter 7: Problematic issues and possible solutions

7 Problematic issues and possible solutions

In this chapter, some of the problematic issues and limitations of MWDS that have been
encountered in the study and development of definitive models are reviewed, and some possible

solutions are suggested.

7.1 Problematic Issues in MWDS

Many problems have emerged from studying and interacting with various definitive models. This
is because the computer tools for supporting MWDS are still under-devel oped and limited. The
designer may have to understand the limitations and nature of the tools before constructing a
model. Constructing the model involves representation of a referent, and if the designer cannot
conceptualise the situation well enough this may result in an inefficient use of scripts and make
the model very complicated. Many features associated with MWDS, such as freezing a definition
and triggered actions, can cause difficulties in comprehending and debugging the model. The
entire discussion can be divided into three sections respectively devoted to construction,

maintenance and eval uation efficiency concerns.

Section 7.1.1, 7.1.2 and 7.1.3 deal with the problems of construction, maintenance and
efficiency in the evaluation of definitive scripts. A particular concern is the difficulty that

traditional programmers findin MWDS, which stem from the novelty of the principles used.

7.1.1 Problems with constructing a model with definitive scripts

Although the concept of open-development dependency has been widely used in computer
science (cf. Chapter 1), programmers, typically coding in a procedural paradigm, do not fully
understand the principal concept of using definitive scripts to support model building. This may

be partly because the characteristics of definitive principles and scripts are different from those of

181

Chapter 7: Problematic issues and possible solutions

traditional programming. MWDS, principally based on the ancept of dependency, offers a
radically different style of modelling (cf. Chapter 2). Its emphasisis on using a script to represent
state as observed and experienced (cf. Chapter 5). The use of a definitive script can mediate
between a computer representation and human cognition. The philosophy behind definitive

scriptsis consistent with Ghezzi and Jazayeri’ s view of the role of a programming language:

“programming languages are regarded as the tools for communication not only with
computers but also with people” [GJ98],

in that a definitive script is intended for interpretation by both the computer and the human.
MWDS takes Ghezzi and Jazayeri’s idea further than they envisaged; not simply developing a
means to make a program intelligible to the human reader, bu supplying an artefact that can be
used interactively to complement inspection of scripts as an aid to comprehension. It promotes a

new vision for computer sciencein which MWDS has a central place

Building a software application with most traditional programming languages, (e.g. Pascal,
C and C++) is typically associated with the daracteristic activities identified in the waterfall
model of the software life cycle: requirements analysis and spedfication, software design,
implementation, verification and validation and maintenance. The idea that software devel opment
is a sequential combination of phases is far too simplistic to do justice to practice, but the
problems of bringing coherence and integrity to the abstract and practical products of these
various characteristic activities are real enough. Programming languages are used in
implementation, when the algorithms and data structures for the modues that form the entire
application are defined and coded. Traditional programming design typically involves the
decomposition of the entire program into logical comporents. Each comporent can be a
procedure, an dbject or an agent according to the underlying programming paradigm. In
traditional software design, there is a clear separation between the abstract development process
and the devel opment product [Sun99].

MWDS, in contrast to traditional approaches, focuses on using a definitive script to
represent an external referent according to its gate as observed and experienced at any particular
point in time. This script can be anged and refined to correspond to changes in the modeller’s
perspective.

Chapter 7: Problematic issues and possible solutions

Changing the value of an
explicitly defined variable

NN N
,,,,,,, - ,‘ ,,,,,,, - ,‘ ,,,,,,, - ,‘ Ralations
observed

Stateof the New gate Propagating changes
world caused by dependency

Possible
world sate

Figure 7-1: The state changing in definitive scripts

MWDS involvestwo kinds of state change:

» oneinvolves changing the value of an explicitly defined variable; this typically relates to
what is designated as transient state in Figure 7-1. The values of dependee variables in
the new state will be updated according to the particular pattern of dependency framed
by the persistent relationships associated with implicitly defined variables.

» the other involves changing the persistent relationships; this will change the pattern o
dependency, and the dependee variables in the new state will be updated to correspond
to this new pattern of dependency (cf. Figure 7-1).

The process of modelling with definitive scripts involves creating and communicating
experience through a computer-based artefact [BCSW99]. It is an experimental test-bed for
interactive activities in which there are no distinctive phases as in a software cycle. A modeller
initially designs a model by representing what they perceive and doserve in a particular situation
andthen gradually redefines those observables or introduces new observables (cf. Chapters 3 and
5). In the erly stages, when the objedives of the model-building may be unclear and the
representations for basic observables in the referent have be devised, the model development is
typically slow and potentially frustrating. Once the model development is well-establi shed, the
experiential character of the modelling activities becomes more prominent. At this gage, the
recognition of meaningful relationships relies on the subtlety of the medhanisms that create
asciations between one experience and another and this can itself be stimulated by interaction
with and modification of the definitive model. This exploits what Turner [Tur96] characterises as
a‘'blendng of experiences: it can lead to rich and engaging representations but can also result in
incongruous or funny aswociations. The model does not need to be well defined before actual
coding, asis required in a traditional programming paradigm. The modeller may find it hard to
initiate modelling from a MWDS perspective if he/she has been trained in and is famili ar with a
traditional programming paradigm.

183

Chapter 7: Problematic issues and possible solutions

Design and strategy issuesin constr ucting a definitive model

The organisation of definitions is very crucial in MWDS since modelling activities in MWDS
involve @mntinucusly modifying, redefining and interacting with the script. Keeping track of the
revisions of the mode is one of problematic isauesin MWDS. Relevant issues include recording
the inter-relationship between the sequences of definitions and redefinitions introduced in the
modelling, recording dfferent versions and their time of introduction and recording the order in

which actions appear in the script.

Thefile structure

Designing the fil e structure to keep definitive scriptsis an essential concernin MWDS. There are
two posshble ways of storing definitive scripts. One involves goring all the definitions in the
model in a single file. The other involves distributing the definitive script into several files. Each

of these two approaches has advantages and d sadvantages.

The single file approach: We have no problem in understanding the script with this drategy if
the script is small (cf. the Room Viewer model). But if a model involves a large number of
definitive scripts (as in the Car History model {Car94}), the script is very hard to understand and
to extract from for re-use. There is no moduarity as there is in the several files approadh. This
makes the redefinition context difficult to identify so that it is hard to debug the script. The script
in the file @n aso be grouped in dfferent ways in ader to gve various views on its

interpretation, as we shall discusslater with reference to the Car History model.

The several files approach: In developing a cmplex ADM artefact, which consists of many
agents interacting through a definitive script, small portions of scripts are introduced into the
model bit by bit (cf. the Heapsort model in Chapter 6). The introduction of each script can stem
from changes in the modeller’s experience during interacting with the model, changes in the
external situation and changes in the objectives of the modelling. The focus in introducing a
script is typically on its effects where redefinition and action are concerned. The global context
for a redefinition may be hard to understand. There are interrelationships between files and we
need a‘runfile’ to record the order in which files are introduced into the model. The several files
approach can support a better tracking of the experimental strategies that are featured at each
stage of development.

184

Chapter 7: Problematic issues and possible solutions

Versions and timesin theintroduction of scripts

An ADM artefact is open-ended and experiential y-based in character. It can be incrementally
developed, refined and extended over an unlimited period of time. In part because of the
characteristics of the tkeden interface it is common for the modeller to construct the model
interactively by editing and (re)l oading fil es. Recording the time when each file is introduced and
modified is very essential. This is because it helps the modeller to arganise the order of his/her
experimentation with the model. By way of illustration, Figure 7-2 indicates the problems
associated with ardering files. In Figure 7-2, File B is redefined (say to fix some definitions) at te.
We then have to dedde whether we should replaceFile B with File B' or include File B' after File
E. The problem with the first option is that some definitions in File B' may refer to definitions in
File C, D or E. With the latter option, we must ensure that File B' does not contain definitions of

variables that have subsequently been overwrittenin File C, D or E.

v

Figure 7-2: Thefile structuresand their timestamps

Another problem relating to the order in which fil es are introduced stems from the fact that
the ordering of actions can be significant. For instance, with the current implementation of the
tools supporting MWDS, we may encounter problems with the ordering of actions as ill ustrated
by the following alternative scripts:

/* initial values A=10; B=2; */

Script 1: proc updateA: T {A=B+5;}; Script 2: proc updateB: T {B=A-5};
proc updateB: T {B=A-5}; proc updateA: T {A=B+5;};

/* trigger the actions by redefining T */
/* including Script 2 results in A=7, B=2 */ /* including Script 1 results in A=2, B=-3 */

In Script 1, the value of variable A is updated first, then the value of variable B is evaluated using
the updated value of A, whilst, in Script 2, the order of updating these two variablesis reversed.

Introducing actions that interfere with each aher in thisway isin general abad practicein

MWDS. It is important that the modeller avoids constructing scripts that feature actions of this

18t

Chapter 7: Problematic issues and possible solutions

kind. Note that the problem illustrated in Scripts 1 and 2 arises from the presence of assignments

to A and B; contrast the way in which the redefinitions in Figure 2-1(b) commute.
Freezing definition

Since maintaining dependency is very expensive, it is necessary to suspend or delay the updating
dependency until all needed values are given. Freezing definition is a technique to cut off the
dependency network in the model. It can be used to disconnect the dependency network once the
task is done. For instance, in the Timetable model (cf. Chapter 4), when the visualisation of the

model is properly set up, we can freeze the definitions:

StaffSelect_myList is stafflist; StaffSelect_myCaption is stafflist;

by assigning their literal values to them, thus:

StaffSelect_myList = stafflist; StaffSelect_myCaption = stafflist;

Thereafter, changing stafflist does not affect the visualisation of the model. However, these
definitions can be restored at any time if the modeller needs to change the visualisation of the
model to reflect a change to stafflist. In order to effectively use freezing definitions, the modeller
needs to understand thoroughly its possible side-effects and to be careful to avoid breaking
essential dependencies.

Updating Updating
dw dependency — cale=o:
WMB AV=B45.] WMB_AV =[3,4,5,..];

DA AV =[1,2,7,12,..]; —» DA_AV =[1,2,7,12,..];
AB_AV =[7,8,12,34,.], . ———» AB_AV =[7,8,12,34,..];

autocalc=1;

Script A Dependency maintainer ScriptsB

Figure 7-3: Delaying dependency maintenance

Delaying the update of dependency is another essential concern in MWDS. The
dependencies are maintained when all required values are given. For instance, in the Timetable
model when feeding a set of definitive variables into the model, we do not want to let the system
update the dependency every time each new variable is entered. Instead, we only want the
dependency to be updated after all variables are included. By way of illustration, Figure 7-3
demonstrates how a built-in variable autocalc (cf. Section 2.1.1) is used in the model to delay
the updating of dependency. In Script B, the system will maintain the dependency when
autocalc is set to 1 (or after all needed variables are given). In contrast, in Script A, the system

186

Chapter 7: Problematic issues and possible solutions

will update the dependency every time each variable is read. However, we have to manually
insert autocalc in the appropriate place. It is beyond the @pacity of the system to determine
automatically where to delay the updating dependency.

Eliminating definitions is sometimes essential in MWDS (e.g.) because the dependency in
real-world state is not rigid. With the current tools, definitive variables are hard to eliminate once
they are defined into the system. They cannot be automatically got rid of, bu they can be
manually eliminated by a built-in command forget(*string”). Before we @an use this command,
we have to ensure that the variable has no dependees before deleting it. For instance in arder to

delete B, in the context of the definition:

Ais B+C;

we first have to eli minate the dependence of A on B by redefining A, for example by introducing
the definition:

A = B+C;
or the definition

Ais C;
andthen using forget() to eliminate the variable B. This can only be @wnveniently done manually.
This means that, in practice when a complex model is developed, there are several unnecessary
variables that are kept in the system but are assgned a dummy value. For instance, in the MBF

model there are many DoNaLD point variables whose values are assgned to {0, G — ther

visuali sations are hidden but they still exist in the system.

The concept of dependency and triggered action

Triggered actions appear in many definitive models as automatic agents invoked by the
redefinition o their triggering variables (cf. Sedion 2.1.2). The mncept of a triggered action is
very rich. It combines the use of a procedural programming technique with dependency. The
procedure is activated by its triggering variables instead of by a procedure all. By way of
ill ustration, Figure 7-4 shows an action (viz. report) that is invoked when its triggering variables
are redefined. Such triggering occurs in many contexts: where a triggering variable is redefined
explicitly (e.g. first=4;); isimplicitly changed by afunction (e.g. exc(1, ixgtchl);); or is partially
redefined (e.g. val[1]=3;).

Chapter 7: Problematic issues and possible solutions

val =[3,4,5, ..]]
first = 8 val =[3,4,5, ..]]
last = 15
first = 4,
proc report: val, first, last { val = [4,4,5, ..]
writeln(“val="val); val=[3,4,5, ..] first=4
writeln(“first="first); last = 7; first = 4’ w last=7
writeln(“last”last); —>Iast = 7/ val =[4,3,5, ..]]
} first=4
exc(l, ixgtchl); last =7

Figure 7-4: An example of atriggered action

Asit is easy to imagine, if the script consists of many complex triggered actions, we may have
unexpected side-effects when redefining variables. This can cause difficulty in debugging and
understanding the script. The problem of determining the order in which triggered actions are
executed has been dscussed previously. There is aso a posshility of cyclic triggering. The

modeller should be aware of these problems when interactively devel oping a model.

In a large script that involves a lot of triggered actions and definitions, the triggered
actions can sometimes cause redundant redefinitions and may significantly slow down the
updating process For instance in the Heapsort model, the triggered action maintainheapl,

defined as follows:

proc maintainheapl: hcl, next{
if(lhcl && next==1){
exc(l,ixgtchl);
next=0;
%
has hcl, next as triggering variables. Redefining one of these two variables invokes the action.
From the script, this action will be activated at least twice if hcl is false. The first action is
activated by the external change that affects the value of hcl and the second ane by the internal
effect of the execution of exc(1, ixgtchl). This procedure swaps the values of two elements in
the list and subsequently affects the value of hcl so that the maintainheapl action is triggered

again (albeit with hcl true).

7.1.2 Problems in the maintenance of large scripts

Since it involves personal experience and human perspectives (cf. Figures 2-11 and 2-17),
MWDS arguably helps to facilitate the integration between human thinking and computer
representation. Definitive models can be regarded as computer-based artefacts which embody the

modeller's construal. Their interpretation is informal and their structure need not follow a

18¢€

Chapter 7: Problematic issues and possible solutions

specific pattern as that of a procedural program does. The script in the model can represent the
modeller’ s understanding, perception and doservation, which may be influenced by the externa
situation. Studying the script can resemble learning and comprehending the modell er’ s perception
and the representation of the assciated external situation. There are many problematic issues

concerned with maintaining ar debugging the script. These @n be listed as follows:
» Specifying theright variable

It is characteristic of definitive scripts that they are very open-ended. Each definition can be
changed on-the-fly, as can the defining formula in a spreadshed cdl. When we handle a large
spreadshest, it is very hard to grasp the inner mechanism of the shed. The spreadsheet user may
not know which cellsit is appropriate to change in arder to make sense of the inner mechanism.
MWDS also has a similar problem. For instance the Lines model (cf. {Lines91}, Sedion 3.2.1)
was initially devel oped with a focus on visualising abstract mathematical concepts. The modeller
did not concentrate much on designing the interface The six key variables that trigger all the
dependencies and, as a result, determine how the corresponding visuali sation will be displayed,
are nat easy to identify without any hint or information from the modeller. This makesit hard for
the unfamiliar user to make sense of the model. Although he/she @n try to interactively
investigate and interrogate the script to gain a grasp of the relationships in the script, it will be
much quicker if he/she knows these key variables in advance, and can interact with the model
progressvely more deeply. To overcome this problem, most of the definitive models have
README files accompanying them to guide the user and to record information about their
development. Alternatively, provided the model is not toolarge, we anidentify the key variables
visually by drawing the dependency network diagram for the script (cf. Sedion 2.2.1and Figure
2-2).

An analogy for a naive user interacting with a definitive modd is a child first encountering
a new toy. Initially he/she hardly knows what the toy is for and how it works. He/she just
interacts with it by trial and error. With the supporting tools for MWDS, the user can
experimentally interact and explore the model in a similar way that the child tries to get

amusement and understanding from the toy.

* Understanding complex dependency

Some people @n express thowhts and relationships very predsely, some cannot. Definitive

scripts can be used broadly to represent the modell er’ s perspectives on hissher model, which can

Chapter 7: Problematic issues and possible solutions

be unstructured and can involve many complex interdependencies. To be able to understand a
definitive script, we may need to memorise the observable names and understand their semantics
and the dependencies amongst observables. This can be easy if the script is small, bu it will be
very hard if the script is large and has very complex interdependencies between observables.
There are several ways in which the definitions in the script can be grouped to assst their
interpretation. For instance, the definitions in the script of the Lines mode can be partitioned
according to their similarity or their interdependency (cf. Sedion 3.2.1), whilst the definitions in
the script of the Heapsort model can be grouped according to their functionaity (e.g.
visualisation ar internal mechanism or triggered actions) or according to the definitive notations

to which they belong (e.g. Scout, DoNaL D).

When developing definitive models, it is best to construct them based on the three
fundamental concepts of observation, agency and dependency (cf. Figure 2-17) so that they work
efficiently and that their scripts are sufficiently well-structured to be understood. The Heapsort
model and the Lines model are goad examples of such models. If the modell er misuses definitive
scripts, the model may be designed with unnecessary procedural-style features. In this case, it is
quite hard to trace, debug and understand the script in the model. The General-User-Interface

model and the Car History model are examples of such models.

Even though the (d)tkeden tools offer many features to help the modeller to interact with
the model and inspect the script (cf. Section 2.1.2, it can ill be difficult to gasp the
relationships amongst variables inside a large script. The built-in command ‘symboltable()’
returns the symbd table in the form of an Eden list and provides the modeler with the
comprehensive information about all the variables in the definitive model. The use of meaningful

observable names that correspord to their referents can also be helpful in understanding a script.
* ldentifying the state of the model

As discused before, MWDS offers an open-ended model development. The modeller uses
definitive variables to represent his’/her observations. The model can be started with an unclear
goal and then be incrementally redefined, modified and extended in dverse directions with no
limitation. Without a record of the model development or some hints about its purpose, it is very
difficult for the modeller or the next developer to identify the state in which the model has been
left by the last phase of development.

19C

Chapter 7: Problematic issues and possible solutions

Interacting with a definitive model is in some respeds smilar to reading a bodk. A reader
may place a bookmark so that when he/she resumes reading, he/she knows where to gpen the
book. However, sometimes he/she may need to revise what was read before. The new developer
spends some time experimenting with the model in arder to identify the state of model. In the
worst scenario, the state of definitive mode is such that the reader ends up reading the book from
the beginning only to find that the book written by the erly modeler is unfinished. MWDS
supports the concept of open development. A model can rever be complete: it is typically
completed to the extent that it satisfies the designer’s requirements at some point in time. In
MWDS, good documentation can help the user to start engaging with the model, but in arder to

fully understand the model it is necessary to actually interactively experiment with it.
» Difficulty when debugging

In MWDS, when we want to redefine variables or bring new variables into the model, we need to
make sure that this does not destroy the esential mechanism of the model. To ensure this, we
have to understand the eisting definitions by using some features provided by the (d)tkeden
tools and investigate the effeds of redefinitions. When dealing with a large script, redefining one
variable @n affect a great number of variables through side-effects and unexpected updating of
variables may occur. Thisis smilar to the problem of unexpected changes from triggered actions.

SinceMWDSiis, in principle, closely related to spreadsheds, it inherits their disadvantage
of difficulty in debugging [Nar95]. The unexpected change caused by redefinition is an essential
problem for debugging. In traditional programming, the program works squentially in a spedfic
order and no side-effects from dependency updates appear. In contrast, the interpretation o a
definition ina script is not fixed on its introduction but changes whenever the script is modified.
This is because redefining dependee variables causes a propagation of changes to maintain
dependency in the model and the scope of this propagation is determined dynamically by the

SCript.

* Reusability

Reusability is a big issue that has been studied for many years for various programming
languages espedally for objed-oriented languages. The libraries in many programming
languages such as C and Pascal can be seen as one form of reuse of a program. The inheritance

feature of the object-oriented paradigm is another example. However all these traditional

programming languages follow a top-down design technique. The entire domain process is

191

Chapter 7: Problematic issues and possible solutions

aways divided into small sub-problems. Several small procedures are combined and work
together in a complete system.

MWDS has a different approach to analysing the problem domain. It attempts to
understand and solve the problem at the same time. A script can represent the individua
modeller’ s observation. Each doservable hasits own counterpart in the referent. 1t typically needs
to exist all the time in the model, since its value @an be indivisibly updated by the dependency
system. In this respect definitive variables are quite different from the temporary parameters that
are passed to a sub-routine in a procedural program. Scripts are rarely reused in the same sense
that ‘routine’ procedures are reused in procedural programming languages. The analogy between
definitive variables and spreadsheet cdls is helpful in this context. The literal definition
asciated with the cell is rarely reused, but there may be other cdls where a similar pattern of
calculation is required. The copy and paste mechanism provided in a spreadshed illustrates such

an example of reusing an existing pattern of definitioninacdl.

* Reproducing similar set of definitions

As discussed in Chapter 2, definitive scripts are used to represent observation and perception, in
much the same way that the experimental scientist uses an artefact as a means for the
metaphorical representation o observables. In this context, it is often useful to formulate
definitions to represent similar kinds of observations. For instance, the points p1, p2, p3 in the
Heapsort model are similar to each aher, with only small differences of syntax. It is often
necessary for the definitions in such a set to be repeatedly defined manually, even though it
represents a generic abstraction perceived by the modeller. For instance in the Heapsort model
and the Lines model, there are generic families of definitions so that the models can be enlarged

by generating definitions from the generic pattern for each family.

7.1.3 Evaluation efficiency

In small definitive models, the issue of efficiency is not highly significant, since the dependency
maintenance system is capable of storing and updating all dependencies at a reasonable speed.
However, when dealing with large definitive models (e.g. such as contain more than a thousand
definitions), the system consumes a large amount of memory to store a script and takes a
significant time to complete al the updates once there is a change. For instance, when running

the timetabling model, it takes a significant time to update and set up all definitions (windows,

Chapter 7: Problematic issues and possible solutions

trigger procedures and definitions) at the beginning. The system has to keep all dependencies up-
to-date.

As discussed in Chapter 5, data representation in MWDS differs from traditional data
representation. In a traditional approach, data modelling serves the purpose of helping in
organising and handling data so that they can be referred to easily in practical applications
[Mull99]. It is the initial abstraction that hides the complexity of the system. A data structure is
designed to serve a particular application and to reduce the complexity to a level that a
programmer can grasp and manipulate with programs. In contrast, in MWDS, representing cata is
similar to representing physical observables. Each variable eists atomically in the model (cf.
Figure 5-9) but may be linked by chains of dependency to a large number of other variables. For
instance in the Lines model for 9 lines, we have a network of almost 1000 dfinitions indivisibly
interrelated with each aher and the value of one variable, viz. numcovedge, is determined by
the values of more than 500 variables. This makes the data representation in MWDS very rich,

but potentially expensive to maintain.

Maintaining large mmplex dependencies consumes a lot of resources to store both the
variables and their dependencies. For instance, when running the Lines model for 10 lines, we
receve a‘stack overflow’ error. Thisis because the value of variable numcovedge is dependent

on over 700variables and the system does not have enough stack spaceto evaluate this variable.

7.2 Possible solutions

Asdiscussed in thelast sedion, MWDS raises many problematic issues. Most of them are related
to understanding, organising and retrieving scripts. When dealing with a small script, these
problems are easy to overcome. But when a large script is involved, these problems are
prominent. Althoudh the EM tools provide dficient features to help in tracing dependencies and

values of variables, it is gill hard to manually inspect the variables in alarge script one by one.

Understanding a script involves both comprehending the internal semantic relation, and
the external semantic relation. The support that can be given by the EM tools themselves and by
the auxili ary techniques to be described in this sction is mainly useful in respect of the internal
semantic relation. Scripts can be treated as written text. They can be reorganised to gve various
interpretations. They can be generated with reference to their generic and abstract patterns. This

sedion will discussposshble techniques that can be used, in conjunction with supporting practices

193

Chapter 7: Problematic issues and possible solutions

and tools, to help in comprehending scripts and interaction with the model, and in generating

scripts automatically.

7.2.1 Techniques to help in comprehending definitive models

» Using the Awk-based toolsto help in extracting and organising scripts

Definitive scripts have a distinctive and relatively simple syntactic structure: the relationship
between variables is expressed by different forms of definition. There are many ways to arganise
scripts in arder to interpret them. In this sedion, scripts are treated as a plain text that can be
manipulated and transformed by tools written in the Awk programming language [AKW8§].
Awk is a powerful language to handle data mani pulation, change the format of data and generate

new sets of data with reference to existing ones by using pattern-matching techniques [DR9(].

The Awk tools to be described in this ction demonstrate how scripts can be
automatically reorganised in dfferent forms to assst their interpretation. They can be dassfied

into three @tegories according to their primary objedives in respect of manipulating scripts:

1. Partitioning tools — used to arganise scripts according to their underlying definitive

notations;
2. Reporting tools — used to analyse characteristics of definitive variables defined using
specific notations or in spedfic ways;
3. Script extension tools — used to automatically generate scripts, based on existing ones,
that can be later added into the model to help in debugging and comprehension.
In this discusson, we do not give detail s of how the tools are written, but concentrate primarily
on how these tools are used and help us to comprehend scripts and models. The Car History
model is revisited and used as a case study. The Car History model was developed wsing the
single file approadch. Its <ript consists of several hundred definitive variables from different
definitive notations. This makes it hard for the modeller or a new developer to understand and
debug the script. The following discusgon introduces tools of each o the above three types and

ill ustrate how they can be applied in reorganising, analysing and generating scripts.
Partitioning tools

Definitive scripts can be used to represent various kinds of observations. The current EM tools
feature three main definitive notations: Eden, DoNalLD and Scout, respectively used to represent

observables for general-purpose use, observables associated with simple geometric entities and

194

Chapter 7: Problematic issues and possible solutions

observables associated with dsplay of windows and user interface devices. Each notation has
different characteristics and syntax. Although DoNaL D and Scout scripts are trandated into Eden
script before their evaluation, it is easier to understand the relationshi ps between definitions from
their native syntax rather than from their Eden trandation. By first understanding the
relationships between the Scout and DoNaL D variables in the model, we @an gain a rough gasp
of the internal mechanism and the structure of the model, and can then proceed to examine the

patterns of state transition in the model.

A partitioning tool has been written in Awk to extract the definitions in each of the three
principal notations Eden, DoNaLD and Scout from a given script. This tool is invoked by the
command split-tkeden , and runs on the Unix platform so that it can be used in conjunction with
other Unix commands. It has three options ('€, ‘s and ‘d’) to extract the Eden, Scout and

DoNaL D definitive scripts respedively.

S split-tkeden

e d

v N
car-history.e | car-history.d | | car-history.s |

Figure 7-5: Illustrating of using split-tkeden

%eden %donald %scout

cars is [“Ford_Escort”, int Car, clipsx, Enginx, ... window title = {

Ford_Escort, ...]; viewport Carl box: [tmin, tmax]
openshape car pict: “Title”

Ford_Escort is [*'model”, within cart{ type: DONALD

fe_model, “exhaust”, ...]; outerref = if ~cartype==4 then {430, fgcolor: “blue”
660} else {390,700} bgcolor: “white”
} ..

Listing 7-1: Extractsfrom the scriptsin the car-history (.e, .d, .s) files
By way of ill ustration, the script for the Car History mode is written in one file. The split-
tkeden command can be used to extract the Eden script as follows:
bash$ split-tkeden “e” car-history > car-history.e

Figure 7-5 illustrates how the split-tkeden command can be used to dvide the entire script into
three separate scripts that respedively contain Scout definitions, DoNaLD definitions and Eden
definitions, functions and actions. The three scripts are stored in the files: car-history.s, car-

history.d and car-history.e (cf. Listing 7-1).

19t

Chapter 7: Problematic issues and possible solutions

After grouping the script according to its notation as shown in Listing 7-1, we can try to
understand each script in isolation. Splitting a large script in this way can be helpful in locating
errors. As was discussed in connection with the Lines model in Chapter 3, there are in fact many
ways in which a large script can be organised. Other partitioning tools can in principle be

devel oped to support alternative organisations of scripts.
Reporting tools

The Awk-based reporting tools introduced in this section are mainly used to help in analysing
definitions relating to variables of specific types. Eden is dynamically typed, and there is no need
to declare the type of an Eden variable. Scout and DoNaL D, on the other hand, are strongly typed
and each type has a different abstract meaning. When the type of a variable has been ascertained,
it is easy to anticipate what kind of structure the variable should have. For instance, a line is
defined with a pair of points. The report generating programs described in this section are
particularly useful for scanning DoNaLD and Scout scripts. They extract alist of variable names
together with their types. Though the report generated is purely textual, it can be used in
conjunction with the executing script. For instance, if the user wants to inspect any particular
variable in detail (e.g. to determine its current value and direct dependees), he/she can use the
(d)tkeden interrogating features described in Section 2.1.2. The reporting tools that have been
constructed by the author are listed in Table 7-1.

Reporting commands Descriptions
type.donald type.donald <filename.d>

List DoNaL D variable names together with their types.
type.scout type.scout <filename.s>

List Scout variable names together with their types.

proc.eden proc.eden <filename.e>
List Eden function and procedure names.

window.pict window.pict <filename.s>

List Scout window names of type DoNaLD and their associated
DoNaL D picture names.

view.donald view.donald <DoNaLD picture name> <filename.d>

Extract the DoNaL D script associated with a DoNaL D picture name.

Table 7-1: A list of reporting tools

Figure 7-6 illustrates how the reporting tools: type.donald, type.scout and proc.eden can be used
to generate reports for the Car History script. These commands can be combined using Unix pipe

as indicated in the dashed rectangles in Figure 7-6. For instance, in Figure 7-6, the split.tkeden

196

Chapter 7: Problematic issues and possible solutions

command is used to extract the Scout script and passes its output to the type.scout command,

which in turn passes its output to the Unix mor e command.

B kv C i > 4

2

Z File Options Help

- fe=c ===,

JarateriBgen :[Y/MSC-54/CARCar—with—awk]1# type donald car-history,.dImore d

point outerref #referencé point st Eop of oar window — 7 7

point 1bl1,1bl2,.1013
point fentr.rentr.nl.nZ n3.nd N5 nb.n7, B e
point bwtl . lxete o bxbl edor X X
point btl.btr,bbl.bbr Window Edit Options Help
point. uml umreeull,ule el ouer (i
point fh,.rh frt brre.rbt, fte #poillljaracsriflazy: [~/Models/CAR/Car-with-awk]s1 split, theden s _car-history|type. scoutl more | i
point. rhtd. rtw.ru #notflstring title_pageS: #variable name for character string used
point esht.rbt2 #oo—fllstring title pages; #variable name for character string used
point rit3.rul.hr.hl.rtud.de.Fted fohalll sering title page?; #variable name for character string used
point ritd, rtud, fu - fht #ohalllorring title pages: #variable name for character string used
point rhotS.rfr.rfrr.ef L. rflb.rthb, rdbkb) string= ©
point bl br.ombl ntl.tl. tr ftw nrs

integer intx,inty,intx,int¥;

integer Ezoomx ,EzoonX, Fzooux, Fzoow:, Mzooum: , Mzoou:;
inteyer Rzoomx,RzoomX,Czoomx, CZoom, CZ00ms, CZ00WH;
integer mzoo0nx,nzoonkX, eZ00mx , eZ00mN;

integer Fzoony Fzoon¥ Fzoony Fzaoon¥ Mzooue Mzoou¥:

7 . |

’

A Ei d window size
il tions He

/_ sl Op nelp st window size

func stamp £ me e e e e mmm s —————m——
func find £

func Mew_Component £

func current £

func currlist2 £

func labelstamp €

func labelsesrch £

func outstatus § b £

func date £

func reset_windows £

func carscreen : carl_mouse £
func Set_Values £

func Set_Carmodels £

func changecar £

func carZscresn § card_mouse £

Figure 7-6: Screenshots of running the reporting tools on the Car History script

In some respects, the reporting tools are analogous to database queries. The scripts can be
viewed as a representation of persistent data stored files, and the tools as query commands. The
tools take advantage of the distinctive character of definitive scripts to provide special-purpose
support for debugging and comprehending a script. For instance, the window.pict command scans
through the script and i dentifies the names of Scout windows of type DoNaL D together with their
associated DoNaLD picture names. Another program, view.donald, can then be used to extract
the DoNaLD script for a particular picture name. For instance, the DoNaLD script for car as

displayed in Figure 3-12 can be extracted by the view.donald command as follows:
bash$ view.donald carl car-history.d
Script extension tools

This section introduces ancther technique to help in comprehending a definitive model that
involves adding extra scripts to the model to provide interactive querying features. The script
extension tools are used to read the original script so as to make a list of references and to

generate scripts based on these references. When such generated scripts are interpreted in

197

Chapter 7: Problematic issues and possible solutions

conjunction with the original script, they provide extra features to help in debugging and
understanding the model. This technique is more interactive and can be used more readily in

dynamic analysis of the model that the previous techniques discussed in early sections.

There are two phases in the use of a script extension tool. Phase 1 is concerned with

generating a script. For instance, the command:

bash$ show.win car-history.s > car-history.show.win.

is used to transform the car-history.s script into a new script where there is new functionality for
the middie-button mouse click’. In phase 2, the script generated in phase 1 (eg. car-
history.show.win) is introduced into the executing Car History model. With the additional script
generated by show.win command, the definition of the window will be displayed as output if the
user clicks on the middle mouse button when it is pointing at a particular window. This extra
functionality isillustrated in Figure 7-7, where the user clicks on the middle mouse button when

it is pointing at the central window, and the definition of that window is displayed as output.

— 4 screen o =D

A

Hodelling

Tine Dependent Data
Using Eden and Oracle
by James D Woods

< Enter time varizhle D

& - kvt (mEDT
File Optians Help

titl #definitions to window title

&=E
box: Ctmintnax] #
pict: ” 4

*
#loNalD type picture

: |

Figure 7-7: The Car History model with additional script generated from the tools

After adding this script, the essential functionality of the model remains the same. It islike

extending the model by including a layer of interpretation on top of the original model. Thisis

! This functionality will be supplementary to the original functionality of the middle mouse button (if any), when
both scripts are interpreted together.

198

Chapter 7: Problematic issues and possible solutions

one example of how we can automatically generate scripts and such scripts can provide extra

features to the modd, in this case to help in understanding the internal semantic relation.

The techniques discussed in this section demonstrate how definitive scripts can be
reorganised, analysed and automatically generated. This is because scripts are very open in
character. The script in the model can be redefined and a new set of definitions can be added on
top of the existing one. Scripts can also be treated as plain text so that a programming language

for manipulating text such as Awk can be used to extract a particular set of definitions.

The tools and techniques discussed above illustrate how report generation can assist script
comprehension. However, the best way to understand the script in the model is by experimenting
with them. The more one interacts with the model, the more one understands and absorbs the
concept behind its construction and representation. This motivates special-purpose script

extension techniques that can be used to enrich specific models.
* Special-purpose script extension

This section describes another way to extend definitive models. Instead of using automatic tools
to generate scripts, the developer can write scripts as an extended feature to help new users to
interpret the original scripts. The developer may want to make the model more comprehensible
and easily accessible. In this section, some examples are developed to show how the devel oper

can extend hig’her model in order to help the user understand or interact withiit.
Dynamic annotation

A definitive script can represent diverse kinds of real world attributes. The DoNaLD and Scout
definitions that specify a GUI interface (which consist, for example, of lines, points, windows
and boxes) may be easy to comprehend, but some definitions represent abstract meanings
conceived by the designer. Such definitions may be complicated for the new developer to
understand. Furthermore, their current interpretation depends on their value and state, so that
their full significance is best appreciated through interaction. For instance, consider the

definition:
lock = hinge + if open then {0,-width} else {width,0}

taken from Figure 2-6. In Figure 2-6, the point which represents the lock in the DoNaLD line
drawing is labelled using auxiliary definitions that are not listed in the script. This provides a

simple form of dynamic annotation, whereby the position of the label is linked to the position of

199

Chapter 7: Problematic issues and possible solutions

the point. An alternative application of the same idea might involve displaying strings of the

form:

the door isopen: lock is currently at hinge + {0,-width}
the door isclosed: lock iscurrently at hinge + {width, 0}

according to the current value of the boolean variable open. Such annotation helps to trandlate
between the coded computer representation of the door and its commonsense externa

interpretation.

Asthe above example illustrates, a definitive script has very great expressive power where
the interpretation of state is concerned. It can be used to represent the current status of an
observation or an abstract concept at a particular time. To each dependency, there correspond
many different specific values for the observables it involves, and these stand in different

relations to each other at different pointsin time.

— = screen tkeden 136) <Z> SE X

al2 . VP [al2 . DOVN
223 : VP [a23 . DOWN
3 a4 . VP [a34 . DOV
b12 . UP__[k12 : DOWN
h23 . UB [h23 . mowN
B34 UP_ [h34 . mowN

2. z-% definitions
5. RESET

2 POSET P*

Arrangement & Poset P*

User interface
buttons

1!

2 mininal triangular regions

6 covering edges

AZ“ "}\‘m —
A

Definitive Var. used in
Arrangement A

1 2123 =
1 2124 -
! 2134 =
: 2234 =
\ 2123 =
1
1
1
1

Dynamic
—7 annotation for z
and Z-family

s line 3 in LR order

7124 =
7134 =
2234 =

line 4 crosses line 1 after line 2 crosses line 1 in LE order

1
1

1

1

1

s line 1 in LE order |
1

1

1

1

|

Figure 7-8: Special-pur pose script extension of the Lines model

The purpose of dynamic annotation is to provide a richer interpretation of a particular
script with reference to its current state. This is further illustrated in an extended version of the
Lines model studied by the author in [Rung97]. As discussed in Chapter 3, the Lines model (cf.
Figure 3-8) includes generic families of variables {z123, z124, z134, 2234} and {Z123, Z124,
Z134, 7234} and the value of each of the variables in these familiesis 1 or 0 depending on the

200

Chapter 7: Problematic issues and possible solutions

relative positions of the points of intersedion between the lines. Each variable @n be

dynamically interpreted depending onthe state of the model (cf. Figure 7-8).

This modification of the Lines model demonstrates how the designer can include the
dynamic explanation of definitions in the model through an extension that is itself a definitive
script. Further extensions of the Lines model that assst the user in comprehension are discussed

in detail in [BRSW9g].
User interface

MWDS offers an open-ended modelling framework in which the model is being developed in
parall e with the ongoing search for its requirements and specifications. The requirements for the
model are gradually cultivated by the designer through open interaction in which any variable @an
be redefined at any time. Because interaction with the model is so open, it is hard for a new
developer to know how to interact with it. To overcome this problem, the modeller can gve
accessvia agraphical user-interface to reliable and interesting petterns of interaction that have
been fourd. Such an interface helps the human interpreter to interact with the model more
systematically. It circumscribes the opennessof the model but also provides guidance for the user
concerning how to interact with the model. In this way, the modeller determines in advance how
broad the user’s interactions should be. The sequence of interactions can be devised by the

modeller to prevent the user from destroying the model by mistake.

The introduction o interface may be unhelpful as far as understanding the qualities of a
definitive model are cncerned, since the user’s interaction is unrepresentatively restricted. On
the other hand, it may be quite hel pful for the novice user to have limited scope to revise a model.
The user does not need to spend much time on studying how to run the model. The model can be

closed for the novice user and can be exposed for the expert user.

There are at least two motivations for developing interfaces to definitive models: to asgst
comprehension of the model and to adapt the model for conventional use as a device (cf. Chapter
5). Aninterface designed to asgst the amprehension of the Lines model is depicted in Figure 7-

8.

In MWDS, the user-interface @n be configured dynamically and there is a possbility of
close involvement of the user in the model development (cf. Chapter 5). Because of this, MWDS
offers a way to develop interfaces to a definitive model that are ‘user-centred’ [NB99] in that
their design is guided by how domain knowledge is to be processed so as to best meet spedfic

201

Chapter 7: Problematic issues and possible solutions

user needs. The potential for ‘user-centred’ interface design supported by MWDS isiill ustrated in
the Timetable model discussed in Chapter 4. The user interface of this model was added after the
main data model had been devel oped.

7.2.2 Techniques to help in automatically generating definitive scripts

A definitive script can have a generic form, and in this case it is easy in principle to generate a
new script from the existing one by generali sation. The scripts for the Heapsort and Lines models
are both examples of scripts with a generic form. The script for the 15-element Heapsort model
was originally derived from a 7-element Heapsort model by generalisation. An alternative to
explicit manual generation of such generalised scripts is required. Two dstinct techniques for
automatic script generation are proposed in this sction. One uses a ‘template’; the other uses
‘virtual agents' . Both these techniques generate scripts automatically, so that the devel oper does

not need to enter scripts for alarge model manually.
* Usingatemplate

This method o script generation uses a definition as a template. Scripts are repeatedly generated
with referenceto the template. An example of this can be seen in the Heapsort and Lines models.
Both models are similar in the way that their scripts are generic and can be enlarged. The concept

of using adefinition as atemplateto generate scriptsisill ustrated in Figure 7-9.

func makestr { A function to convert alist
para listl; auto |, result; .
result=""; 1 = listl; toastring

while (#1=0) { '
result = result // I[1]; shift;

} The definiti on of
L _ 1 atemplate
-4 1

templatej is ["]",ja," = label(\" ", ja, “\" ", “A”, ja, “\n"];
jdef is makestr(templatej);

jais str(a);
func alljdef{ _
auto i,result; A function to generate a
result =", script to a particular
for(i=Lii<=N;i++){ i pattgr?:
autocalc = 0; a = i; autocalc = 1;

resultl = resultl // jdef;

return resultl;

Figure 7-9: Generating scriptsusing atemplate

The script extracted shown in Figure 7-9 generates a family of definitions for the following

DoNaL D variables of type string:

Chapter 7: Problematic issues and possible solutions

i1 = label(“1”, A1)
i2 = label(“2”, A1)
i3 = label(“3”, A3)
j4 = label(“4”, A4)

The variable templatej, shown in Figure 7-9, is a template definition that records the essential
structure of afamily of j definitions. It is of type list. The function makestr will convert this list
to a string and the function alljdef serves to convert the string generated from the template
templatej to a string that represents a sequence of definitions. The variable a in the function
alljdef is the key value on which templatej depends. The scripts that are generated in this way
can either be written to a file or passed directly to the built-in Eden function execute() for

evaluation (cf. Section 2.1.2).
* Using avirtual agent

The concept of virtual agent was proposed by Sun in his thesis [Sun99] and implemented as a
feature of dtkeden (cf. Section 2.1.2). A virtual agent offers an alternative technique for auto-
producing scripts which are similar to each other. Instead of using a template, as discussed in the
previous section, a virtual agent offers a built-in syntax and command to serve this task. This way
of generating scripts is more straightforward and is more closely integrated with the dependency
evaluation in dtkeden. With this method, there is no need to generate scripts as strings and pass

them to execute().

The use of virtual agents offers an easy and systematic method of generating a set of
definitions. The definition of the Scout windows in the Timetabling model is a particularly good
example of such use. As illustrated in Figure 4-2, the script for the display of staff buttons, as
listed in Listing 4-4, is automatically generated by using virtual agents. The role of the template
is played by a file in which the structure of the family of definitions to be reproduced is stored
(cf. thelistbutton_x2.sfilein Figure 4-2). This fileisincluded into a main file (cf. the listbutton.s
in Figure 4-2) and the number of definitions based on this structure to be generated is determined
by the for-loop specified in the listbutton.sfile.

The use of virtual agents is subject to several limitations:

* The method generates variable names automatically. This means that there is a risk that

name clashes will arise.

* Unlike templates, virtual agents can only generate scripts of certain limited forms. For

instance, it is not possibleto use virtual agents to generate the definition:

203

Chapter 7: Problematic issues and possible solutions

hcl is [hcl, hc2, he3, he4, heb, he6, he7].

Scripts generated using virtual agents may be difficult to understand and maintain since

they are generated and evaluated at the same time rather than written to afile.

The maintenance utilities suggested in section 7.2.1 cannot be applied to scripts

generated using virtual agents, since they only act on explicit definitions.

204

