MAIN CHANGED PARTS:

1. Introduction

2. Conclusion

3. Sedion 1.6
old-version p. 34

new-version p. 30 a new paragraph has been added after the paragraph
beginning with “The concept of moddlling”

4. Sedion 5.3.2
old-version p. 186 para-4, p. 187 para-3 and p. 190para-1
new-verson p. 156 para-1, p. 157 para-3 and p. 159para-1

5. New introductionsfor each chapter to get rid of some repetitions

Chapter 1
{ADDED IN}
In this chapter, the concept of open-devel opment dependency that underlies MWDS isidentified
and compared and contrasted with closed-world dependency. An ealy example of theimplicit
use of dependency can be found in Rosss APT® language [I TT67], developed in 1967 for
automatic programming of numerical machinetods. Several dependency-based appli cations,
such as greadsheds, Agentsheds, and several graphical moddling tods, arereviewed to
ill ustrate the potential virtues of using dependency. The last sedion introduces a modelling
framework, devel oped at Warwick over more than ten years, that adopts dependency similar to
that reviewed in those applications as a fundamenta concept.

{REMOVED}

1.0 Overview

This chapter reviews appli cations that feature dependency with particular emphasis on what we
shall characterise as ‘ open dependency’ (cf. Sedion 1-1). An early example of theimplicit use
of dependency can be found in Rosss APT? languege [| TT67), developed in 1967 for automatic
programming of numerical machinetods. Other examples of dependency-based software
developed in diverse mmputer sciencedisciplinesto be reviewed in this chapter include the
eledronic spreadsheds of the 1970s, the interactive languages for graphics first introduced by
Wwvill in 1975 [Wyv75] and the Information Systems Base Language (1SBL) query language
designed by Todd in 1976 [Todd74. Thereview also considers some airrent appli cations that
make esentia use of the dependency concept. Thelast sedion introduces a modelling
framework, devel oped at Warwick over more than ten years, that adopts dependency similar to
that reviewed in those applications as a fundamenta concept.

1 APT stands for “Automatically Programmed Tods”, and the APT language.
2 APT stands for “Automatically Programmed Tods”, and the APT language.

1.7 Summary

The tapter has identified and discussed two distinct kinds of dependency: closed-world and
open-devel opment dependency. The latter isan essential concept in the modelling framework
studied in thisthesis. Dependency-based appli cations that put particular emphasis on open-
development dependency have been reviewed to demonstrate the virtues of using dependency in
diverse aeas of computer science for ingancein sprealsheds, graphical modelling and
database systems. Certain features of these applications, such as explicit editing of defining
formulae and experimental-based (i.e. ‘what-if’) interaction, support open-devel opment
modelling activity.

The use of a definitive script to reflea an agent perspedive, asintroduced in this
chapter, is one esential theme of MWDS. For ingance, the spreadshed — as a single-user
application in Nardi’s snse— will be interpreted as using gpen-devel opment dependency to
support modelling based on a single-agent perspedive. In the next chapter, we will discussin
detail how MWDS can support single-agent modelling with referenceto some simple @ase
studies implemented using the tod's devel oped at Warwick.

Chapter 2
{ADDED IN}

This chapter hastwo parts. The first describes the ditinctive dharacteristics of a
definitive script and reviews the omputer tod's that have been devel oped at Warwick to support
MWDS. The seand discusses the principles of MWDS in single-agent and multi-agent
scenarios and the use of MWDS as a framework for the modell er’ s construal of an external
situation. The chapter also introduces the mncept of an agent-oriented LSD acoount and its
supportiverolein MWDS.

{REMOVED}

The oncept of dependency has been impli citly used in alarge number of software applications,
as mentioned in Chapter 1. However, the essential principles and characteristics of dependency,
particularly in the ‘ open-development’ sense, have not yet been fully investigated.

2.0 Overview

The dapter will mainly discussthe essential features of dependency in open development, as
represented (cf. Sedion 1.6) by modelling with definitive scripts (MWDS). Giving amore
formal and detail ed acoount of the use of definitive scripts in open-development modelling, as
informally introduced in Sedion 1.6, the chapter can be divided into two parts. The first part
(Sedion 2.1) will focus on the principles and characteristics of a definitive script and the
significance of dependency, and give abrief explanation of computer support tods devel oped at
Warwick together with someillustrative @ase studies. The seand part (Sedion 2.2) will explore
how MWDS can support single-agent modelling and then multi-agent modelling.

2.3 Summary

This chapter has discussed the principles and basic characteristics of a definitive script, and also
given a brief review of tools and notations to support it. The virtues of definitive scriptsin
representing internal and external statein single-agent MWDS has been explored, along with a
discusson of multi-agent MWDS. In the next chapter, we will exploit MWDS framework to
support universal modelling together with many ill ustrative definitive scripts.

Chapter 3
{ADDED IN}
This chapter introduces the Abstract Definitive Modelling (ADM) framework for MWDS in all
its aspeds. The versatil e use of definitive scriptsin representing a variety of agent perspedives
isillustrated by discussng how a wide range of models can be mnstrued as ADM artefacts.
These indicae the capacity for the ADM framework to support ‘ universal agent-oriented
modelling’.

{REMOVED}

3.0 Overview

The last chapter has discussed various characteristics of MWDS in supporting single-agent and
multi-agent scenarios in principle. This chapter, on the other hand, aimsto exploit MWDS in
practicethrough many definitive models. In order to achieve this, the Abstract Definitive
Modelli ng framework isintroduced and discussed in Sedion 3.1 to frame MWDS and henceto
help in constructing the discusson of the variety of ways of using definitive scriptsin various
definitive modelsin Sedion 3.2.

3.2 Summary

In this chapter, the concept of an ADM artefact has been used to frame the wide range of
potential applications for MWDS. Many definitive models with various characteristics have
been discussed and explored to illustrate the versatility of MWDS. These indicate the capacity
for the ADM framework to support ‘ universal agent-oriented modelling'.

Chapter 4
{ADDED IN}

This chapter discusses MWDS as amodelling activity with referenceto atimetabling
case study. The modelling activity is viewed from two complementary perspedives:
e asdeveloping an instrument (the ‘ Temposcope’) to give semi-automatic support to
the timetabler [BWM+0Q];
e asconstructing an interactive situation model (ISM) [Sun99] that embodies the
modell er’ s growing understanding and experience of the timetabling scenario.
The qualities of MWDS in resped of interaction, comprehension, discovery and extension are
also described.

{REMOVED}

Previous chapters have discussed the principles of MWDS and ill ustrated the characteristics of
definitive models. This chapter focuses on the nature of the modelling activity itsalf. It also
considers how we are able to apply MWDS in practice

4.0 Overview

MWDS is based on the representation of state as observed and experienced within agiven
situation. Threebasic concepts, observables, agency and dependency play a fundamental role. A
definitive script is used to represent observables and the dependencies amongst observablesin
thereferent. The key emphasisin MWDS is on interaction between the modell er and the
situation and between the modell er and the computer-based model. The modd isviewed as a
physical artefact rather than as an abstract machine.

The activity associated with MWDS will be described with referenceto a practical
study in timetabling. It istypically difficult to find a systematic way of solving atimetabling
problem, sincethe cnditions or constraints on the timetable can change even asthetimetableis
being developed. This chapter discusses how MWDS can get aroundthis problem by
introducing a mmprehensible representation of the airrent status of the modelling activity at
every stage. Thisisillugtrated in Sedion 4.1, which describes the use of MWDSfirst to
construct the underlying data model for atimetabling problem (Sedion 4.1.1), then to add the
visuali sation and interactive features in the interface (Sedion 4.1.2), and finaly to progressvely
build up solutions (Sedion 4.1.3). Throughout this model building, there is conceptually a
single atefact that devel opsinitially as the modell er’ s construa of the timetabling problem gets
to be embodied in the artefact, and later asthe modeller’ s construal of the problem is enriched
throughthe interaction with the atefact. There ae two ways to interpret the ontinuous
evolution of the mmputer mode!:

e as developing the potential of the computer as a timetabling instrument (cf.

[BWM+0Q));

e ascongructing an interactive situation model (1ISM) [Sun99] that embaodies the

modell er’ s growing understanding and experience of the timetabling scenario.

MWDS has many characteristics that enable the modell er, and the user working in conjunction
with the modell er, to adapt the emerging model to cope with new and unexplored situations.
Relevant properties, such as interaction, comprehension, discovery, and extension are discussed
in Sedion 4.2.

4.3 Summary

This chapter hasillustrated how MWDS can be appli ed in constructing an appli caion viz. the
Temposcope. In this context, the developer initially focuses on capturing the datarequired for
buil ding the timetable. Through the refinement process the devel oper, actingin therole of a
timetabler, observes and leans what isrequired in the manual construction of the timetable. The
constraints and rel ationships between observables introduced refled the timetabler’s concernsin
buil ding the timetable. The model can be used as a partial y automated tod to help the
timetabler to construct atimetable. The processof buil ding the timetabl e involves many
characteristic activities, such asinteraction, comprehension, discovery and extension, that can
be supported by MWDS.

Chapter 5
{ADDED IN}

As described in the introduction to the thesis, this chapter sets out to illustrate how
MWDS can be viewed (controversially) as providing an alternative and unorthodox picture of
therelationship between the world and aur representation of it. In the experience of the author,
such an alternative viewpoint is natural for the modell er engaged in MWDS. Thisleadsthe
author to concave the distinction between MWDS and traditional computer-based modelling
(for example, in resped of openness and experiential character) as fundamental rather than asa
matter of degree Thisis potentialy a source of controversy for sceptical readers — one that
becomes even more pronounced in Chapter 6, where such afundamenta distinction is
presumed.

Representing state isa key concern in MWDS. The discusson in this chapter addresses
the mnnedion between state and behaviour in MWDS. By introducing the concept of an ADM
device and aprogram device, it is possble to explore the link between MWDS and traditional
modelling of state and behaviour. The ADM device and the program deviceare mmpared and
contrasted with referenceto four aspeds of state— Situational, Explicit, Mental and Internal —
that are of concern when we use and interact with adevice Thetwo principal case studiesin
this chapter rdlateto:

e asmpleprogram (‘Jugs), originally devel oped for the BBC micro-computer by

R. Townsend [Town], that has been widely used in schods;

e aCSP spedfication for a chocolate vending machine introduced by C. A. R. Hoare
[Hoaresd)],

which arerespedively used to explore the explicit and internal, and the situational and mental
aspeds of state.

{REMOVED}

So far thisthesis has addressed MWDS for representing state, espedally from the perspedive of
exploratory modelli ng. The themes of this chapter are mnneding state to behaviour in MWDS
and exploring the link between MWDS and traditional modelling of state and behaviour.

5.0 Overview

Open-devel opment and closed-world modelling offer different views of representing state and
behaviour. MWDS off ers a very open-ended view to construct the model while traditional
modelling is closed, predse and circumscribed. Without placing some restrictions on the open-
development modelling, we annot compare these two approaches. We need to consider
artefacts that are ‘program-like’ and have a spedfic use (e.g. adigital watch and the Jugs
program in [Town]) in order to bring the two views of modelli ng state into line with each other.
We adopt theterm ‘devicé for such an artefact, to distinguish it from an ADM artefact. Four
aspeds of state, which are of concern when we interact with a device, are introduced and the
explanation and elaboration of these four aspeds of state: Situational, Explicit, Mental and
Internal, isincluded in Sedion 5.1. Sedion 5.2 discussesin detail the relation of these four
aspeds of state axd MWDS using the Jugs model as away of ill ustration.

Sedion 5.3 will explain how MWDS rd ates to traditional techniques (e.g. data
structure, MV C, CSP, dataflow) for constructing programs. This sedion will compare and
contrast how MWDS and traditi onal approaches handl e these four aspeds of state by dividing
them into two groups: & E and S&M. The summary of the chapter iswritten in Sedion 5.4.

5.4 Summary

This chapter has compared and contrasted MWDS and traditional programming with reference
to the four aspeds of state (SEMI). These four aspeds are concerned with the use of adevicein
a situation. The concept of a program device and an ADM device ae introduced to make the
comparison between these two distinct approaches posshle. A program deviceis designed and
developed based on a preconceaved and predse description. Its patterns of interaction to be used
in posshle situations are designed and prescribed in advance Traditi onal approaches to
developing requirementsrely upon €li citation to create an idealised model of the interaction
with adevicethat only partialy refleds the implicit assumptions about how thisinteraction is
mediated by actual observables (cf. the way that interaction in a game of Noughts-and-Crosses
isexploredin [BJ94]). In contrast, MWDS constructs an ADM devicefor cultivating
requirements that puts the emphasis on the significance of experience and experimentation. It
also tends to represent and hand e the SEMI aspeds of statein parallel, whilst atraditional
approach tends to separate these aspeds in devel oping the device By using MWDS, we @an
conned software development with the analysis of perception and action.

Chapter 6
{ADDED IN}
As described in the introduction to the thesis, this chapter sets out to illustrate how
MWDS can potentiall y be viewed as providing empiricd roats for logical constructions. This
agendais only appropriate if the distinction between MWDS and classcal proggamming is
presumed to ke fundamental in character. For convenience, this chapter is written from this
perspedive and is acknowledged to make mntroversial clams.

There aetwo quite different ways to interpret computer use. The classcal theory of
computation acoounts for interaction with computersin terms of algorithms and formal model's
of state and automata [HU79]. The semantics of MWDS has an entirdly different basisin which
the key emphasisis upon the mmputer asa physical artefact and on experientially mediated
interpretation of human-computer interaction (cf. Sedion 2.2). Beynon [Bey99] arguesthe case
for anon-logicist foundation for Al that stems from such experientially mediated
interpretations, and d scusses the significance of languages and logics within this framework.

6.0 Overview

The key concept in our case study isthe ‘data structure’ . A data structure serves two purposes. it
can be viewed as a physical artefact that metaphorically represents computer manipulation of
data; it isalso used to frame state transitions within a computer program (cf. Sedion 5.3.1). Our
spedfic focusin this chapter is upon the heap data structure and its application in the heapsort
algorithm. The two main sedions of the chapter address

e theuse of MWDS to construct amodel of the heap data structure as a physical artefact

(such asaledurer might draw on a blackboard when introducing heapsort);

» how aformal acoount of heapsort, based on Dijkstra’s Weakest Preconditi on (WP)
formalism can be interpreted in terms of the definitive Heap mode®.

Sedion 6.1 introduces the heap structure and the cnventional hegpsort pseudo code. Thisis

foll owed by a discusson of the development of the Heap model based on the observation-
oriented and agent-oriented paradigm provided by MWDS. The model building isclosely linked
to the kind of experimental analysis that might have led to the discovery of heapsort, and the
mode! is gradually devel oped in a manner similar to that discussed in [SRCB99]. The definitive
Heap model suppliesthe basis for a non-standard i mplementation of hegpsort, centred on the
representation of state as observed and experienced by the modell er. Thiscan be viewed asan
ADM Heapsort devicethat has different characteristics from a mnventiona hegsort program.

Sedion 6.2 relates the experiential view of heapsort associated with the ADM Heapsort
deviceto aformal spedfication of the heapsort algorithm using Dijkstra’s WP formalism
[Dij76]. Theintegration of informal and formal views of heapsort within the Heap model is
addressed in subsection 6.2.1, where we show how the states in the heapsort process that are
characterised by pre- and post-conditionsin WP can be interpreted and visuali sed in the
Heapsort device The characterigtics of the Heapsort device as a non-standard model of heapsort
are discussed in subsedion 6.2.2. In the final subsedion (6.2.3), we mnsider the relationship
between MWDS andthe dasscd theory of computation, using heapsort as a ase study. This
involves construing the different waysin which heapsort is performed by the ADM Heapsort
device and by a conventional heapsort program.

Chapter 7
{ADDED IN}

In this chapter, some of the problematic issues and limitations of MWDS that have been
encountered in the study and development of definitive models are reviewed, and some posshle
solutions are suggested.

{REMOVED}
The discusson so far hasill ustrated many characteristics of ussing MWDS to represent state as
experienced and olserved. Through the review and study of many definitive modd s devel oped

% Some materid in this section is drawn from [BRS0Q]

with the EM tools, many problems and difficulties have emerged during different phases of
modelling such as construction, debugging and maintenance. This chapter will discuss these
problems, which may stem from the principles of MWDS itsdlf or from the tools that are till
under-devel oped, and then suggest some possible solutions. The discussion of the problems and
possible solutions can lead to innovation and improve and clarify the principles and supporting
tools.

7.0 Overview

In this chapter, the difficulties and problems that we have at the current stage of devel opment of
the toals and concepts are studied in section 7.1. It highlights the problems with model
construction (Section 7.1.1) stemming from the fact that definitive principles are quite new and
different from atraditiona programming paradigm. Thisisfollowed (Section 7.1.2) by a
discussion of the problems (in terms of comprehending, interacting, debugging and reusability)
of maintaining large scripts and the issue of efficiency (Section 7.1.3).

Section 7.2 discusses possi ble solutions to cope with the problems of comprehending,
maintaining and interacting with large definitive models. It can be divided into two main
sections. Oneis concerned with toals to help in understanding and interacting with the models.
The second is centred on automatically generating large scripts, which is atedious process if
carried out manualy.

7.3 Summary

This chapter has discussed some of the limitations and difficulties that arisein MWDS, and
suggested simple possible solutions to overcome some specific problems.

