
MAIN CHANGED PARTS:

1. Introduction

2. Conclusion

3. Section 1.6

old-version p. 34

new-version p. 30 a new paragraph has been added after the paragraph
beginning with “ The concept of modell ing ….”

4. Section 5.3.2

old-version p. 186 para-4, p. 187 para-3 and p. 190 para-1

new-version p. 156 para-1, p. 157 para-3 and p. 159 para-1

5. New introductions for each chapter to get r id of some repetitions

Chapter 1
{ADDED IN}
In this chapter, the concept of open-development dependency that underlies MWDS is identified
and compared and contrasted with closed-world dependency. An early example of the implicit
use of dependency can be found in Ross’s APT1 language [ITT67], developed in 1967 for
automatic programming of numerical machine tools. Several dependency-based applications,
such as spreadsheets, Agentsheets, and several graphical modell ing tools, are reviewed to
ill ustrate the potential virtues of using dependency. The last section introduces a modell ing
framework, developed at Warwick over more than ten years, that adopts dependency similar to
that reviewed in those applications as a fundamental concept.

{REMOVED}

1.0 Overview

This chapter reviews applications that feature dependency with particular emphasis on what we
shall characterise as ‘open dependency’ (cf. Section 1-1). An early example of the implicit use
of dependency can be found in Ross’s APT2 language [ITT67], developed in 1967 for automatic
programming of numerical machine tools. Other examples of dependency-based software
developed in diverse computer science disciplines to be reviewed in this chapter include the
electronic spreadsheets of the 1970s, the interactive languages for graphics first introduced by
Wyvill in 1975 [Wyv75] and the Information Systems Base Language (ISBL) query language
designed by Todd in 1976 [Todd76]. The review also considers some current applications that
make essential use of the dependency concept. The last section introduces a modell ing
framework, developed at Warwick over more than ten years, that adopts dependency similar to
that reviewed in those applications as a fundamental concept.

1 APT stands for “Automatically Programmed Tools” , and the APT language.
2 APT stands for “Automatically Programmed Tools” , and the APT language.

1.7 Summary

The chapter has identified and discussed two distinct kinds of dependency: closed-world and
open-development dependency. The latter is an essential concept in the modell ing framework
studied in this thesis. Dependency-based applications that put particular emphasis on open-
development dependency have been reviewed to demonstrate the virtues of using dependency in
diverse areas of computer science, for instance in spreadsheets, graphical modell ing and
database systems. Certain features of these applications, such as explicit editing of defining
formulae and experimental-based (i.e. ‘what-if’) interaction, support open-development
modell ing activity.

The use of a definitive script to reflect an agent perspective, as introduced in this
chapter, is one essential theme of MWDS. For instance, the spreadsheet – as a single-user
application in Nardi’s sense – will be interpreted as using open-development dependency to
support modell ing based on a single-agent perspective. In the next chapter, we will discuss in
detail how MWDS can support single-agent modell ing with reference to some simple case
studies implemented using the tools developed at Warwick.

Chapter 2

{ADDED IN}

This chapter has two parts. The first describes the distinctive characteristics of a
definitive script and reviews the computer tools that have been developed at Warwick to support
MWDS. The second discusses the principles of MWDS in single-agent and multi-agent
scenarios and the use of MWDS as a framework for the modeller’s construal of an external
situation. The chapter also introduces the concept of an agent-oriented LSD account and its
supportive role in MWDS.

{REMOVED}
The concept of dependency has been implicitly used in a large number of software applications,
as mentioned in Chapter 1. However, the essential principles and characteristics of dependency,
particularly in the ‘open-development’ sense, have not yet been fully investigated.

2.0 Overview

The chapter wil l mainly discuss the essential features of dependency in open development, as
represented (cf. Section 1.6) by modell ing with definitive scripts (MWDS). Giving a more
formal and detailed account of the use of definitive scripts in open-development modell ing, as
informally introduced in Section 1.6, the chapter can be divided into two parts. The first part
(Section 2.1) will focus on the principles and characteristics of a definitive script and the
significance of dependency, and give a brief explanation of computer support tools developed at
Warwick together with some il lustrative case studies. The second part (Section 2.2) wil l explore
how MWDS can support single-agent modell ing and then multi-agent modell ing.

2.3 Summary

This chapter has discussed the principles and basic characteristics of a definitive script, and also
given a brief review of tools and notations to support it. The virtues of definiti ve scripts in
representing internal and external state in single-agent MWDS has been explored, along with a
discussion of multi-agent MWDS. In the next chapter, we will exploit MWDS framework to
support universal modell ing together with many ill ustrative definitive scripts.

Chapter 3
{ADDED IN}
This chapter introduces the Abstract Definitive Modell ing (ADM) framework for MWDS in all
its aspects. The versatile use of definitive scripts in representing a variety of agent perspectives
is ill ustrated by discussing how a wide range of models can be construed as ADM artefacts.
These indicate the capacity for the ADM framework to support ‘universal agent-oriented
modell ing’.

{REMOVED}

3.0 Overview

The last chapter has discussed various characteristics of MWDS in supporting single-agent and
multi-agent scenarios in principle. This chapter, on the other hand, aims to exploit MWDS in
practice through many definiti ve models. In order to achieve this, the Abstract Definitive
Modelli ng framework is introduced and discussed in Section 3.1 to frame MWDS and hence to
help in constructing the discussion of the variety of ways of using definitive scripts in various
definitive models in Section 3.2.

3.2 Summary

In this chapter, the concept of an ADM artefact has been used to frame the wide range of
potential applications for MWDS. Many definitive models with various characteristics have
been discussed and explored to illustrate the versatility of MWDS. These indicate the capacity
for the ADM framework to support ‘universal agent-oriented modell ing’ .

Chapter 4

{ADDED IN}

This chapter discusses MWDS as a modell ing activity with reference to a timetabling
case study. The modell ing activity is viewed from two complementary perspectives:

• as developing an instrument (the ‘Temposcope’) to give semi-automatic support to
the timetabler [BWM+00];

• as constructing an interactive situation model (ISM) [Sun99] that embodies the
modeller’s growing understanding and experience of the timetabling scenario.

The qualities of MWDS in respect of interaction, comprehension, discovery and extension are
also described.

{REMOVED}
Previous chapters have discussed the principles of MWDS and illustrated the characteristics of
definitive models. This chapter focuses on the nature of the modell ing activity itself. It also
considers how we are able to apply MWDS in practice.

4.0 Overview

MWDS is based on the representation of state as observed and experienced within a given
situation. Three basic concepts, observables, agency and dependency play a fundamental role. A
definitive script is used to represent observables and the dependencies amongst observables in
the referent. The key emphasis in MWDS is on interaction between the modeller and the
situation and between the modeller and the computer-based model. The model is viewed as a
physical artefact rather than as an abstract machine.

The activity associated with MWDS will be described with reference to a practical
study in timetabling. It is typicall y diff icult to find a systematic way of solving a timetabling
problem, since the conditions or constraints on the timetable can change even as the timetable is
being developed. This chapter discusses how MWDS can get around this problem by
introducing a comprehensible representation of the current status of the modell ing activity at
every stage. This is ill ustrated in Section 4.1, which describes the use of MWDS first to
construct the underlying data model for a timetabling problem (Section 4.1.1), then to add the
visualisation and interactive features in the interface (Section 4.1.2), and finall y to progressively
build up solutions (Section 4.1.3). Throughout this model building, there is conceptually a
single artefact that develops initially as the modeller’s construal of the timetabling problem gets
to be embodied in the artefact, and later as the modeller’s construal of the problem is enriched
through the interaction with the artefact. There are two ways to interpret the continuous
evolution of the computer model:

• as developing the potential of the computer as a timetabling instrument (cf.
[BWM+00]);

• as constructing an interactive situation model (ISM) [Sun99] that embodies the
modeller’s growing understanding and experience of the timetabling scenario.

MWDS has many characteristics that enable the modeller, and the user working in conjunction
with the modeller, to adapt the emerging model to cope with new and unexplored situations.
Relevant properties, such as interaction, comprehension, discovery, and extension are discussed
in Section 4.2.

4.3 Summary

This chapter has illustrated how MWDS can be applied in constructing an application viz. the
Temposcope. In this context, the developer initiall y focuses on capturing the data required for
building the timetable. Through the refinement process, the developer, acting in the role of a
timetabler, observes and learns what is required in the manual construction of the timetable. The
constraints and relationships between observables introduced reflect the timetabler’s concerns in
building the timetable. The model can be used as a partiall y automated tool to help the
timetabler to construct a timetable. The process of building the timetable involves many
characteristic activities, such as interaction, comprehension, discovery and extension, that can
be supported by MWDS.

Chapter 5
{ADDED IN}

As described in the introduction to the thesis, this chapter sets out to illustrate how
MWDS can be viewed (controversiall y) as providing an alternative and unorthodox picture of
the relationship between the world and our representation of it. In the experience of the author,
such an alternative viewpoint is natural for the modeller engaged in MWDS. This leads the
author to conceive the distinction between MWDS and traditional computer-based modell ing
(for example, in respect of openness, and experiential character) as fundamental rather than as a
matter of degree. This is potentiall y a source of controversy for sceptical readers – one that
becomes even more pronounced in Chapter 6, where such a fundamental distinction is
presumed.

Representing state is a key concern in MWDS. The discussion in this chapter addresses
the connection between state and behaviour in MWDS. By introducing the concept of an ADM
device and a program device, it is possible to explore the link between MWDS and traditional
modell ing of state and behaviour. The ADM device and the program device are compared and
contrasted with reference to four aspects of state – Situational, Explicit, Mental and Internal –
that are of concern when we use and interact with a device. The two principal case studies in
this chapter relate to:

• a simple program (‘Jugs’), originall y developed for the BBC micro-computer by
R. Townsend [Town], that has been widely used in schools;

• a CSP specification for a chocolate vending machine introduced by C. A. R. Hoare
[Hoare85],

which are respectively used to explore the explicit and internal, and the situational and mental
aspects of state.

{REMOVED}
So far this thesis has addressed MWDS for representing state, especiall y from the perspective of
exploratory modelli ng. The themes of this chapter are connecting state to behaviour in MWDS
and exploring the link between MWDS and traditional modell ing of state and behaviour.

5.0 Overview

Open-development and closed-world modelling offer different views of representing state and
behaviour. MWDS offers a very open-ended view to construct the model while traditional
modell ing is closed, precise and circumscribed. Without placing some restrictions on the open-
development modell ing, we cannot compare these two approaches. We need to consider
artefacts that are ‘program-like’ and have a specific use (e.g. a digital watch and the Jugs
program in [Town]) in order to bring the two views of modelli ng state into line with each other.
We adopt the term ‘device’ f or such an artefact, to distinguish it from an ADM artefact. Four
aspects of state, which are of concern when we interact with a device, are introduced and the
explanation and elaboration of these four aspects of state: Situational, Explicit, Mental and
Internal, is included in Section 5.1. Section 5.2 discusses in detail the relation of these four
aspects of state and MWDS using the Jugs model as a way of ill ustration.

Section 5.3 wil l explain how MWDS relates to traditional techniques (e.g. data
structure, MVC, CSP, dataflow) for constructing programs. This section wil l compare and
contrast how MWDS and traditional approaches handle these four aspects of state by dividing
them into two groups: I&E and S&M. The summary of the chapter is written in Section 5.4.

5.4 Summary

This chapter has compared and contrasted MWDS and traditional programming with reference
to the four aspects of state (SEMI). These four aspects are concerned with the use of a device in
a situation. The concept of a program device and an ADM device are introduced to make the
comparison between these two distinct approaches possible. A program device is designed and
developed based on a preconceived and precise description. Its patterns of interaction to be used
in possible situations are designed and prescribed in advance. Traditional approaches to
developing requirements rely upon eli citation to create an idealised model of the interaction
with a device that only partiall y reflects the implicit assumptions about how this interaction is
mediated by actual observables (cf. the way that interaction in a game of Noughts-and-Crosses
is explored in [BJ94]). In contrast, MWDS constructs an ADM device for cultivating
requirements that puts the emphasis on the significance of experience and experimentation. It
also tends to represent and handle the SEMI aspects of state in parallel, whilst a traditional
approach tends to separate these aspects in developing the device. By using MWDS, we can
connect software development with the analysis of perception and action.

Chapter 6
{ADDED IN}

As described in the introduction to the thesis, this chapter sets out to illustrate how
MWDS can potentiall y be viewed as providing empirical roots for logical constructions. This
agenda is only appropriate if the distinction between MWDS and classical programming is
presumed to be fundamental in character. For convenience, this chapter is written from this
perspective and is acknowledged to make controversial claims.

There are two quite different ways to interpret computer use. The classical theory of
computation accounts for interaction with computers in terms of algorithms and formal models
of state and automata [HU79]. The semantics of MWDS has an entirely different basis in which
the key emphasis is upon the computer as a physical artefact and on experientiall y mediated
interpretation of human-computer interaction (cf. Section 2.2). Beynon [Bey99] argues the case
for a non-logicist foundation for AI that stems from such experientially mediated
interpretations, and discusses the significance of languages and logics within this framework.

6.0 Overview

The key concept in our case study is the ‘data structure’. A data structure serves two purposes: it
can be viewed as a physical artefact that metaphorically represents computer manipulation of
data; it is also used to frame state transitions within a computer program (cf. Section 5.3.1). Our
specific focus in this chapter is upon the heap data structure and its application in the heapsort
algorithm. The two main sections of the chapter address:

• the use of MWDS to construct a model of the heap data structure as a physical artefact

(such as a lecturer might draw on a blackboard when introducing heapsort);

• how a formal account of heapsort, based on Dijkstra’s Weakest Precondition (WP)

formalism can be interpreted in terms of the definitive Heap model3.

Section 6.1 introduces the heap structure and the conventional heapsort pseudo code. This is
followed by a discussion of the development of the Heap model based on the observation-
oriented and agent-oriented paradigm provided by MWDS. The model building is closely linked
to the kind of experimental analysis that might have led to the discovery of heapsort, and the
model is gradually developed in a manner similar to that discussed in [SRCB99]. The definitive
Heap model supplies the basis for a non-standard implementation of heapsort, centred on the
representation of state as observed and experienced by the modeller. This can be viewed as an
ADM Heapsort device that has different characteristics from a conventional heapsort program.

Section 6.2 relates the experiential view of heapsort associated with the ADM Heapsort
device to a formal specification of the heapsort algorithm using Dijkstra’s WP formalism
[Dij76]. The integration of informal and formal views of heapsort within the Heap model is
addressed in subsection 6.2.1, where we show how the states in the heapsort process that are
characterised by pre- and post-conditions in WP can be interpreted and visualised in the
Heapsort device. The characteristics of the Heapsort device as a non-standard model of heapsort
are discussed in subsection 6.2.2. In the final subsection (6.2.3), we consider the relationship
between MWDS and the classical theory of computation, using heapsort as a case study. This
involves construing the different ways in which heapsort is performed by the ADM Heapsort
device and by a conventional heapsort program.

Chapter 7

{ADDED IN}

In this chapter, some of the problematic issues and limitations of MWDS that have been
encountered in the study and development of definitive models are reviewed, and some possible
solutions are suggested.

{REMOVED}
The discussion so far has illustrated many characteristics of using MWDS to represent state as
experienced and observed. Through the review and study of many definitive models developed

3 Some material in this section is drawn from [BRS00]

with the EM tools, many problems and difficulties have emerged during different phases of
modelling such as construction, debugging and maintenance. This chapter will discuss these
problems, which may stem from the principles of MWDS itself or from the tools that are still
under-developed, and then suggest some possible solutions. The discussion of the problems and
possible solutions can lead to innovation and improve and clarify the principles and supporting
tools.

7.0 Overview

In this chapter, the difficulties and problems that we have at the current stage of development of
the tools and concepts are studied in section 7.1. It highlights the problems with model
construction (Section 7.1.1) stemming from the fact that definitive principles are quite new and
different from a traditional programming paradigm. This is followed (Section 7.1.2) by a
discussion of the problems (in terms of comprehending, interacting, debugging and reusability)
of maintaining large scripts and the issue of efficiency (Section 7.1.3).
Section 7.2 discusses possible solutions to cope with the problems of comprehending,
maintaining and interacting with large definitive models. It can be divided into two main
sections. One is concerned with tools to help in understanding and interacting with the models.
The second is centred on automatically generating large scripts, which is a tedious process if
carried out manually.

7.3 Summary

This chapter has discussed some of the limitations and difficulties that arise in MWDS, and
suggested simple possible solutions to overcome some specific problems.

