Appendix A

Empirical Modelling of a
Sailboat

This chapter describes my experiences of constructing a sailboat simulator (SBS).
The physical properties of the sail, rig and hull are described within the model.
Following the principles introduced in Chapter 2, the state of the SBS is described
using a definitive script, and an agent-oriented design method is used to determine
and construct each of the sailboat components: sail, rig, hull and sailor. The re-
sulting simulation combines a model of the sailboat dynamics, a simple graphical

animation and an interface through which the user can play the role of the sailor.

A.1 Common-sense knowledge

Sailing and sailboats were already familiar subjects to me before I began construct-
ing the SBS. This knowledge was based on my experience of sailing various craft,

including dinghies, sailboards and a yacht. I knew
o how to react to situations as they arose in the boat,
e how to predict situations arising in and around the boat,
e how to devise courses of action to deal with predicted situations, and

¢ the meaning of sailing terms for giving and understanding instructions.

206

Appendix A. Empitical Modelling of a Sailboat 207

In other words, I knew how to sail. I shared this common-sense [Wol92] sailing
knowledge with everybody else who was able to sail. My task was to represent
this essentially subjective, practical, vague, inconsistent, situated, analogical [HT95]
and phenomenological [GS83] knowledge of how a sailboat behaves in the form of a

simulation.

A.2 Agent-oriented modelling

I found that the concepts of LSD corresponded to my common-sense notions of

sailing. I was able to identify four agents:
e the sailor who steers the sailboat and adjusts the position of the sail;
e the sail that is blown by the wind;
e the rig that holds the sail between a boom and mast;
e the hull that holds the rig and is stablized by a keel.

The sailor agent was the easiest to identify because it was simply me. The other
three agents I identified by considering causality between agents. I began with
the sail agent and considered what stops the sail from blowing away in the wind.
This thought process resulted in the identification of the rig agent. Similarly, by
thinking what stops the rig from blowing over I identified the hull agent. This
was essentially common-sense thinking involving personification and the notions of

causality [Wol92, HT95).

A.3 Observation-oriented modelling

I continued my LSD specification of the SBS by identifying the observables asso-
ciated with each agent. The oracles and handles of the sailor were the easiest to
identify because I had only to remember what I observed during sailing. Having
identified the oracles and handles of the sailor agent, as shown in Example A.1, I

then went about forming oracle-handle pairs by attributing oracles and handles to

Appendix A. Empirical Modelling of a Sailboat 208

the sail, rig and hull agents. Some oracles and handles did not make a pair, such as

the oracle for wind direction, suggesting an openness about the model.

Example A.1. Representing the modeller in the SBS. By defining the sailor
agent in LSD I was effectively modelling myself. The diagram shows what I was
aware of while sailing.

agent sailor {
heading oracle
list
driving_force
hull_speed

wind_dir

heading
sheetlenmin
sheetlenmax
sheet_len
handle
heading
sheet_len
derivate
turn = user_input (turn_type)
sheetdir = user_input (sheet_type)

-
£ P | protocol
i T- - | 14/////// turn == starboard -> inc(heading)
- hull b turn == port -> dec(heading)

L =1 (sheetdir == out) &&

(sheet_len < sheetlenmax) -> inc(sheet_len)
(sheetdir == in) &%
(sheet_len > sheetlenmin) -> dec(sheet_len)
}
Having defined the oracles and handles for the sailor agent I formed oracle-handle

pairs by attributing oracles and handles to the sail, rig and hull agents.

When I came to define the derivates and protocols for the sail, rig and hull

agents I had a decision to make. I could either

e represent my common-sense knowledge of causality and agency in sailing as

mainly protocol definitions, or

e apply my school-book knowledge of Newtonian mechanics to explain the re-
lations between observables, represent this relation as derivates and test the

resulting definition against my common-sense knowledge.

I had the choice between two approaches because of my combined sailing and sci-

entific background. However, if I was a sailor who had not learned about physics

Appendix A. Empirical Modelling of a Sailboat 209

then I would have produced a model based on my common-sense knowledge alone
(cf. naive physical models of children [GS83]) suggesting that theory is not necessary
for EM. But, the fact remained, that I did know about physics and decided that a
more generalized and complete model would result from taking the second choice.

During the definition of the derivates for the first agent, the sail agent. I
found my theoretical knowledge to be insufficient and had to resort to directly
representing my common-sense knowledge. Using the idea of vectors helped to
explain some of the observations of the sail, such as the angle between the sail and
wind resulting from subtracting one from the other. However, I could not apply
my theoretical knowledge to explain the driving force of the sail with respect to its
angle to the wind or to derive the values of constants. I have since discovered that
modelling and simulating aerodynamic effects from first principles has always been
a largely unsolved problem in mathematics and physics [Asp90, MK97, sai63]. I
avoided this problem by representing my knowledge as a function in terms of sail
angle relative to the wind. Example A.2 shows the sail agent definition and the
visualization/animation (the visualization and animation are not distinguished by
a screen-shot) that I used to test my theory for the sail forces.

By simplifying my model of the dynamics of the hull in the water I was able
to define the rig and hull agents almost entirely in terms of physical theories of
motion, the only exceptions being the values of constants. The rig and hull agent
definitions use integrals to represent the invariant relation between observables over
time. For example, the speed of the sailboat at any time is an integral of the
acceleration of the boat. This had the effect of introducing time into the model
as an observable. Example A.3 shows the rig and hull agent definitions and the

visualization/animation that I used to test my theory of sailboat forces.

A.4 Definitive representation of the sailboat

While defining the sail agent I would constantly refer to and modify the visual-
ization/animation, shown in Example A.2, in order to test the emerging theory of

the sail forces and discover appropriate values for constants. DoNaLD and SCOUT

scripts, defining the image of the sailboat and forces, were written at the start

Appendix A. Empirical Modelling of a Sailboat 210

of modelling and remained essentially the same throughout. I would repeatedly
convert the derivates into definitions in EDEN and experiment with the resulting
visualization by changing the sheet variable with the graph, shown in Example A.2,
emerging over time. In order to save time I defined an EDEN action that changed

the sheet observable automatically thus animating the visualization.

Example A.2. Representing the sail in the SBS. I defined the sail as an
LSD agent and then tested the specification using the combined visualization and
animation shown in the diagram.

[® screen HUNEESEENE £7 agent sail {

const

drivingFmin = 400.0 // minimum driving force [N]
drivingFmax = 500.0 // maximum driving force [N]

k = asin(drivingFmin/drivingFmax))
state

sail_dir // sail direction as bearing [rad]
sail_wind // angle between sail and wind [rad]
driving dir // sail driven anti/clockwise [1/-1]

driving_force // driving force of sail [N]
oracle

heading
wind_dir
sheet

_ : . ; : A derivate
'é ?”2D9..§ L L sail_dir = heading + sheet

sail_wind = wind_dir - sail_dir
driving dir = (sin(sail_wind) < 0.0) ? 1 : -1
driving_force is

(cos(sail_wind) < -cos(k)) 7

drivingFmin : abs(sin(sail_wind))*drivingFmax;

Goioano)io TN

5T Spive P77 p

force on sail ws sheet angle

}

I had to experiment with the simulation in order to find the appropriate represen-
tation for the driving force and values for constants.

The visualization/animation of the sail was extended to include the graphs of
propulsion and heeling force experienced by the sailboat, as shown in Example A.3.
The new screen image was simply created by appending a script defining the new
graphs to the existing DoNaLD and SCOUT scripts. The derivates were converted
into definitions except for the integral derivates that were implemented using EDEN
actions, as shown in Example A.3. The new visualization/animation was used in

the same way as the original to test the emerging theory of sailboat forces.

Appendix A. Empirical Modelling of a Sailboat 211

Example A.3. Representing the rig and hull in the SBS. I defined the rig and
hull agents in LSD and tested the specifications using the visualization/animation
shown in the diagram.

agent rig {

const
boom_len = 2.5 // length of boom [m]
mast_len = 4.0 // height of mast [m]
rig_moi = 200.0 // moi of rig [kg m~2]
resistK = 560.0 // friction constant

state
sheet // angle between keel and sail [rad]
sheet_set // setting of sheet [rad]
sheet_len // length of sheet [m]
sailT // torque of sail about mast [Nm]
resistT // dampening torque [Nm]
saillacc // angular acc of sail [rad/s"2]
sailAvel // angular vel of sail [rad/s]
oracle

driving_force

driving_dir

t // time [s]
handle

saildAvel
derivate

sailT = driving_force * -driving dir * boom_len / 2.0

resistT = resistK * -sailAvel

saildacc = (sailT + resistT) / rig moi

sailAvel = integ_wrt(saillacc,t)

sheet = integ_wrt(sailAvel, t)

sheet_set = 2 * acos(sqrt(1 - (sheet_len*sheet_len)

/ (4*boom_len*boom_len)))

}

[@] screen

TpT T SpivE P72 F

force on sail vs sheet angle propulsion force vs sheet angle heeling force vs sheet angle

Appendix A. Empirical Modelling of a Sailboat 212

agent hull {

const
dragK = 100.0 // drag coefficient of water
boat_mass = 400.0 // mass of boat [kg]
ballast_mass = 100.0 // mass of ballast [kg]
ballast_weight = ballast_mass * g// weight of ballast [N]

keel _depth = 1.5 // depth of keel holding ballast [m]

hull_moi = 600.0 // moment of inertia of hull [kg m"2]

dampX = 500.0 // resistance coefficient to hull listing
state

hull_speed // boat speed in water [m/s]

list // angle of boat from vertical [rad]

drag // drag of boat in water

forward_force // forward force of boat [N]

acceleration // acceleration of boat [m/s"2]

hull_speed // speed of boat [m/s]

side_force // sideways force of boat [N]

sailTq // torque of sail about hull [Nm]

ballastT // torque of keel about hull [Nm]

dampT // dampening torque [Nm]

hullAacc // angular acceleration of hull [rad/s"2]
oracle

driving force
driving dir
sheet
t // time [s]

derivate
drag = dragK * hull_speed
forward _force = driving_force * -sin(sheet) * driving_dir
acceleration = (forward_force - drag) / boat_mass
hull_speed = integ_wrt(acceleration, t)
side_force = driving_force * cos(sheet) * driving_dir
sailTq = side_force * mast_len / 3.0
ballastT = ballast_weight * sin(list) * keel_depth * -driving_dir
dampT = dampK * -hullAvel
hulldacc = (sailTq + ballastT + dampT) / hull_moi
hullAvel = integ_wrt(hullAcc, t)
list = integ_wrt(hullAvel, t)

I generated the EDEN script for the rig and hull agents by transforming the derivates
into definitions except for the integral derivates. The hull speed integral derivate,
for example, was implemented by the EDEN action

/* hull_speed = integ_wrt(acceleration, t) */
proc integ_hull_speed : iClock {
hull_speed = hull_speed_iVal + (acceleration * iPeriod / 2.0);
hull_speed_iVal = hull_speed + (acceleration * iPeriod / 2.0);
}

and the EDEN action for the clock.

Appendix A. Empirical Modelling of a Sailboat 213

A.5 Exploring the sailboat simulation

The SBS was constructed with the aim of recreating the experience of sailing so that
I could use my knowledge of sailing directly to test theories and discover values for
constants. The animation that allowed this use of knowledge is shown in Examples
A4 and A.5. The sailboat was represented by a view from above and from the
stern (rear) and an interface was defined through which I was able to control the
boat by turning it anticlockwise (port) or clockwise (starboard) and reducing the
length of the sheet (sheeting-in) or increasing the length of the sheet (sheeting-out).
A speed indicator gave the current speed of the boat. Later a clock and driving
force indicator were added. Although primitive, the animation served its purpose
of recreating the experience of sailing for testing the model and finding appropriate
values for constants.

I was able to explore the SBS during its construction more as a sailor than
a system developer. By interacting with the model via the interface or directly by

changing the values of EDEN variables I explored the SBS:
e searching for emergent behaviours;
e considering the behaviour in terms of physical principles;
o performing both familiar and novel manoeuvres;

e shifting the context of the sailing experience by changing variable values;

looking for confirmation that the model is faithful to my experience;
e searching for behaviours which are not faithful to my experience.

Example A.4 shows four screen-shots while I was performing a common sailing
manoeuvre called a “tack” in which the boat turns half-circle through the wind.
Because of my familiarity with this common sailing manoeuvre I knew what to
expect. .If the model did not meet my expectations I either changed my beliefs,
thus learning from my interaction with the simulation, or changed the model. For

example, I discovered during interaction with the model that it was possible to

Appendix A. Empirical Modelling of a Sailboat 214

capsize the boat, as shown in Example A.5. This represented a change in my beliefs

about the scope of the model.

Example A.4. Exploration in the SBS. One way I explored the SBS was to
perform familiar sailing manoeuvres. The following diagrams are screen-shots during
a manoeuvre called a tack in which the sailboat turns half-circle through the wind.

[TETving Yorce [Drswing Yores
Clock Clock
%} O | OFF | BT
(a) Preparing to tack. (b) Turning into wind (luffing).
screen screen
sTEoD CEE O] [speed > TI0TE]
vorT

I:lok Clock
[ON T orr TRST] ON | OFF | R&T
(c) Sail changes sides. (d) Tack completed.

I found that the SBS provided a good approximation to the handling of a real
sailboat.

A.6 Extending the sailboat model

Once I was satisfied with the SBS I placed it in the Empirical Modelling Group
archives. Later, another modeller retrieved it and continued to extend the model.

This modeller had no experience of sailing but had discovered a book that detailed

Appendix A. Empirical Modelling of a Sailboat 215

Example A.5. Emergence in the SBS. It emerged during the exploration of the
SBS that it represented the sailboat capsizing. This was a surprise to me because I
did not think of the capsize situation during modelling.

screen screen
Speed - 0 199540
: >\ ¢ ,..Q&’""
DFeIng THEe [orremgrsTes gurce
Clock Clock
103 |
ON | OFF | R5T [_ON] OFF | BST |
(a) Turning to port. (b) Sailboat capsizes.

This unexpected behaviour was discovered when I performed a manoeuvre incor-
rectly. The manoeuvre is called a “jibe” in which the stern (rear) passes through
the wind thus making the sailboat unstable.

the phenomenon of turbulence on sails and the apparent shift in wind direction
caused by the motion of the boat. The modeller was able to add this information to
the existing LSD specification of the sail, as shown in Example A.6, without having
to consult me. This provides evidence of the openness of models in EM and the ease

with which they can be extended.

Appendix A. Empirical Modelling of a Sailboat 216

Example A.6. Openness in the SBS. Yung extended the LSD definition for the
sail agent, shown in Example A.2, to include the effects of turbulence and the wind
generated by the motion of the sailboat.

agent sajl {
const
FpushK = 10 // pushing force constant [N m"-3 s°-2]
Fsuck = 20 // suction force constant [N m"-3 s"-2]
state
sail_dir // sail direction as bearing [rad]
driving dir // sail driven anti/clockwise [1/-1]
driving force // driving force of sail [N]
sheet_angle // angle between keel and sail [rad]
sail_area // effective sail area [m~2]
oracle
rel_wind_dir // wind direction experienced by the sail [rad]
rel_wind_vel // wind speed experienced by the sail [m s~-2]
heading
wind_dir
saildvel
derivate
sail_dir = heading + sheet
sail_wind = rel_wind_dir - sail_dir
driving_dir = (sin(sail_wind) < 0.0) ? 1 : -1
driving_force = rel_wind_vel * abs(cos(sail_wind)) * FsucK * sail_area
+ rel_wind_vel * abs(sin(sail_wind)) * FpushK * sail_area))
sail_area = boom_len * mast_len * cos(list)
rel_wind_vel = sqrt(wind_vel"2 + hull_speed~2 -
2#wind_velxhull_speed*cos(wind_dir - heading))

rel_wind_dir
heading - asin(sin(wind_dir-heading) * wind_vel / rel_wind_vel) + pi

The new definition is essentially the the original with the the addition of more
constants, observables and derivates.

