Appendix C

SUL, MUL and Hydrolift
Artefacts

C.1 SUL artefacts
C.1.1 SUL LSD specification

agent door() {
state
door
oracle
brake
derivate
door is (brake == QON) ? OPEN : CLOSED
}

agent landing(_F) {

state
landButton

oracle
floor direction brake

handle
brake destination

protocol
landButton{_F} == ON && _F == floor + direction && brake == OFF -> brake = ON,
landButton{_F} == ON && direction == NIL -> destination = _F,
floor == _F -> landButton{_F} = OFF

}

agent car(_F) {

state
carButton

oracle
floor direction brake

handle
brake destination

protocol
carButton{_F} == ON && _F == floor + direction &% brake == OFF -> brake = ON,
carButton{_F} == ON && direction == NIL -> destination = _F,
floor == _F -> carButton{_F} = OFF

}

223

Appendix C. SUL, MUL and Hydrolift Artefacts

agent shaft() {
state
floor destination direction
oracle
brake
handle
brake
derivate
direction is (floor < destination) 7 UP :
(floor > destination) ? DOWN : NIL

protocol
brake == OFF -> floor = floor + direction,
brake == ON && direction != NIL -> brake = OFF
}

C.1.2 SUL visualization/animation

@ screen | | 1]

u]

DOORS CLOSED i

C.1.3 SUL DoNaLD script

The following DoNaLD script defines the SUL visualization.

%donald

RERIRIRISE®
#LIFT USER#
fisRgARRH

openshape man
within man {
circle head
line body, leftarm, rightarm, leftleg, rightleg
point manpos
int rad
manpos = {0,0}
rad = 15
head = circle(manpos, rad)
body = [manpos - {0,rad}, manpos - {0,50}]
leftarm = [manpos - {0,rad}, manpos - {20,40}]
rightarm = [manpos - {0,rad}, manpos - {-20,40}]
leftleg = [manpos - {0,50}, manpos - {20,70}]
rightleg = [manpos - {0,50}, manpos - {-20,70}]
}

boolean inlift
inlift = false

openshape person
within person {

224

Appendix C. SUL, MUL and Hydrolift Artefacts 225

shape person

point put, one

put = {"/carpos.1 + 100, "/carpos.2 + 150}

one = {800, 10}

person = if “/inlift then trans(scale(”/man, 2), put.1, put.2) else
trans(scale(*/man, 2), one.1, one.2+("/floor*180))

}

220200000 02
#LIFT CAR#
HERRERRR RS

openshape box
within box {
int width, length
point p, g, b, d
line top, bot, left, right
b = {0, 0}
d = b + {width, 0}
p = b + {0, length}
q = b + {width, length}
width, length = 100, 100
top = [p, ql
bot = [b, d]
left = [p, bl
right = [q, d]

}
int floor
floor = 1

point carpos
carpos = {100, 50+(180*(floor-1)) }

openshape car
within car {
point corner
corner = ~/carpos
shape car
car = trans(scale("/box, 2), corner.1, corner.2)
int X, Y
X = 200
real ratio
ratio = 0.4

openshape buttonil
within buttoni {
shape buttonil
boolean light
light = true
buttonl = trans(scale(”/"/box, “/ratio), “/cormer.1+"/X,~/corner.2)

}

openshape button2
within button2 {
shape button2
button2 = trans(scale(”/"/box, ~/ratio), “/corner.i+*/X, “/corner.2+”/ratio*100)
boolean light
light = false
}

openshape button3
within button3 {
shape button3

Appendix C. SUL, MUL and Hydrolift Artefacts 226

button3 = trans(scale("/"/box, “/ratio), “/corner.1+~/X, ~/corner.2+"/ratio*200)
boolean light
light = false

}

openshape button4
within button4 {
shape button4
buttond4 = trans(scale("/~/box, *“/ratio), “/corner.i+*/X, “/corner.2+"/ratio*300)
boolean light
light = false
}

openshape buttonb
within buttonb {
shape buttonb
buttonb = trans(scale(”/”/box, “/ratio), “/corner.i+*/X, “/corner.2+"/ratio*400)
boolean light
light = false

}
}
? A_car_buttonl buttonl is (carButton_1 == ON) ? "linewidth=5" : "linewidth=0";
? A_car_button2 button? is (carButton_2 == ON) 7 "linewidth=5" : "linewidth=0";
? A_car_button3_button3 is (carButton_3 == ON) ? "linewidth=5" : "linewidth=0";
? A_car_buttond_button4 is (carButton_4 == ON) ? "linewidth=5" : "linewidth=0";
? A_car_buttonb_button5 is (carButton_5 == ON) ? “linewidth=5" : "linewidth=0";

HiRRLRty
#LANDINGS#
223200 220

int ceiling, wall
ceiling = 950
wall = 700

real ratio

ratio = 1.8

openshape flooril
within floori {
shape floori
floorl = trans(scale(~/box, “/ratio), "/wall, “/ceiling-"/ratio*500)
openshape button
within button {
shape button
boolean light
light = false
button = trans(scale("/"/box, 0.2), ~/~/wall, “/*/ceiling-"/"/ratio*450)
}
}

openshape floor2
within floor2 {
shape floor2
floor2 = trans(scale("/box, “/ratio), ~/wall, “/ceiling-"/ratio*400)
openshape button
within button {
shape button
boolean light
light = false
button = trans(scale(”/~/box, 0.2), ~/~/wall, “/~/ceiling-~/"/ratio*350)
}
}

Appendix C. SUL, MUL and Hydrolift Artefacts 227

openshape floor3
within floor3 {
shape floor3
floor3 = trans(scale("/box, “/ratio), "/wall, “/ceiling-~/ratio*300)
openshape button
within button {
shape button
boolean light
light = false
button = trans(scale(”/“/box, 0.2), “/“/wall, “/~/ceiling-"/~/ratio*250)
}
}

openshape floor4
within floor4 {
shape floord
floor4 = trans(scale(”/box, "/ratio), ~/wall, "/ceiling-~/ratio*200)
openshape button
within button {
shape button
boolean light
light = false
button = trans(scale(“/“/box, 0.2), “/*/wall, “/"/ceiling-~/"/ratio*150)
}
}

openshape floor5
within floor5 {
shape floorb
floors = trans(scale(”/box, “/ratio), “/wall, “/ceiling-"/ratio*100)
openshape button
within button {
shape button
boolean light
light = false
button = trans(scale(”/“/box, 0.2), ~/~/wall, “/*/ceiling-~/"/ratio*50)

}
}
? A_floorl_button_button is (landButton_1 == ON) ? '"linewidth=5" : "linewidth=0";
? A_floor2_button_button is (landButton_2 == ON) ? "linewidth=5" : "linewidth=0";
? A_floor3_button_button is (landButton_3 == ON) ? "linewidth=5" : '"linewidth=0";
? A_floor4_button_button is (landButton_4 == ON) 7 "linewidth=5" : '"linewidth=0";
? A_floor5_button_button is (landButton_5 == ON) ? "linewidth=5" : '"linewidth=0";

C.1.4 SUL ADM script

The following script defines the ADM entities for the SUL animation.

%adm
entity door() {
definition
door is (brake == ON) ? OPEN : CLOSED
}

entity landing(_F) {

action
landButton{_F} == ON && _F == floor + direction &% brake == OFF -> brake = ON,
landButton{_F} == ON && direction == NIL -> destination = _F,
floor == _F -> landButton{_F} = OFF

}

Appendix C. SUL, MUL and Hydrolift Artefacts

entity car(_F) {

action
carButton{_F} == ON && _F == floor + direction && brake == OFF -> brake = ON,
carButton{_F} == ON && direction == NIL -> destination = _F,
floor == _F -> carButton{_F} = OFF

}

entity shaft() {
definition
direction is (floor < destination) ? UP :
(floor > destination) ? DOWN : NIL
action
brake == OFF -> floor = floor + direction,
brake == ON && direction !'= NIL -> brake = OFF
}

instantiate new entities
door ()
shaft ()
car(1)
car(2)
car(3)
car(4)

car (5)
landing(1)
landing(2)
landing(3)
landing(4)
landing(5)

C.1.5 SUL sketch

[
 Ahaada
[I

C.1.6 SUL statement of requirements

On each landing there is a button and in the car there is a button for
each floor. The user makes a request for the car to come to his landing
by pressing a button. The shaft mechanism moves the car to his landing
and opens the door. The user enters the car and presses a button. The
shaft mechanism moves the car to the landing he requested and opens

the door. The user exits the car. For safety the door is opened and

228

Appendix C. SUL, MUL and Hydrolift Artefacts 229

closed by the brake ensuring that the door is only open whilst the brake

is on.

C.2 MUL artefacts
C.2.1 MUL LSD specification

agent door() {
state
door
oracle
brake
derivate
door is (brake == ON) ? OPEN : CLOSED
}

agent landing(_F) {
state
landButton
oracle
floor direction brake
handle
brake destination
protocol
landButton{_F} == UP && _F == floor + 1 && brake == OFF -> brake = ON,
landButton{_F} == DOWN &% _F == floor - 1 && brake == OFF -> brake = ON,
landButton{_F} != OFF && direction == NIL -> destination = _F,
floor == _F -> landButton{_F} = OFF
}

agent car(_F) {

state
carButton

oracle
floor direction brake

handle
brake destination

protocol
carButton{_F} == ON && _F == floor + direction && brake == OFF -> brake = ON,
carButton{_F} == ON && direction == NIL -> destination = _F,
floor == _F -> carButton{_F} = OFF

}

agent shaft() {
state
floor destination direction
oracle
brake
handle
brake
derivate
direction is (floor < destination) ? UP :
(floor > destination) ? DOWN : NIL
protocol
brake == OFF -> floor = floor + direction,
brake == ON && direction '= NIL -> brake = OFF
}

Appendix C. SUL, MUL and Hydrolift Artefacts 230

C.2.2 MUL visualization/animation

screen

:

DOORS OPEN

B
AR
=

C.2.3 MUL DoNaLD redefinitions

The following DoNaLD script redefines the SUL visualization as the MUL visual-
ization by redefining the person shape to represent three people.

%donald

#RRBRARARBRE
#LIFT USERS#
##gpnnnny

boolean inlift, inliftB, inliftC
inlift = false
inliftB = false
inliftC = false

openshape person
within person {
shape person, person2, person3
point put, one
label pi1, p2, p3
pl = if “/inlift then label("i", put) else
label("1", {one.1,one.2+("/floor*180)})

P2 = if “/inliftB then label(" 2", put) else
label(" 2", {one.1,one.2+("/floorB*180)})

p3 = if “/inliftC then label(" 3", put) else
label(" 3", {one.1,one.2+("/floorC*180)})

put = {"/carpos.1 + 100, "/carpos.2 + 150}

one = {800, 10}

person = if “/inlift then trans(scale(”/man, 2), put.1-30, put.2) else
trans(scale(~/man, 2), one.1-30, one.2+("/floor*180))

person2 = if ~/inliftB then trans(scale("/man, 2), put.1, put.2) else
trans(scale(*/man, 2), one.1, one.2+("/floorB*180))

person3 = if “/inliftC then trans(scale(”/man, 2), put.1+30, put.2) else
trans(scale(~/man, 2), one.1+30, one.2+("/floorC*180))

C.2.4 MUL ADM redefinitions

The following ADM script redefines entities in the SUL animation by instantiating
new user entity definitions and redefining the landing entity.

%adm
entity userIn(_U) {

Appendix C. SUL, MUL and Hydrolift Artefacts 231

definition
floor{_U} is floor

action
Rand(2) == 1 && door == OPEN -> delete_userIn(_U); floor{_U} = floor; userOut(_U),
Rand(2) == 1 -> execute("carButton_"//str(Rand(5))//" = ON;'")

}

entity userQut(_U) {

action
Rand(2) == 1 && door == OPEN && floor == floor{_U} -> delete_userOut(_U); userIn(_U),
Rand(2) == 1 -> execute("landButton_"//str(floor{ U})//" = UP;"),
Rand(2) == 1 -> execute("landButton_"//str(floor{ _U})//" = DOWN;")

}

entity landing(_F) {

action
landButton{_F} == UP && _F == floor + 1 && brake == OFF -> brake = ON,
landButton{_F} == DOWN && _F == floor - 1 && brake == OFF -> brake = ON,
landButton{_F} != OFF &% direction == NIL -> destination = _F,

floor == _F -> landButton{_F} = OFF
}
instantiate new entities
userIn(1)
userIn(2)
userIn(3)

C.2.5 MUL sketch

[
_/-v\/\/\/\/\
Q O

C.2.6 MUL statement of requirements and models

On each landing there is an up and a down button. In the car there
is a button for each floor. Users make requests for the car to come to
their landing or go to another landing by pressing these buttons. The
shaft mechanism moves the car towards a destination landing stopping
whenever the brake is applied. The brake is applied whenever the car
arrives at a landing requested by a user (for requests from landings the
direction matters). Oun arriving at the destination landing the shaft

mechanism selects the next destination. The shaft mechanism releases

Appendix C. SUL, MUL and Hydrolift Artefacts

the brake and starts the car moving again. For safety the door is opened

and closed by the brake ensuring that the door is only open whilst the

brake is on.
open open door
button g shaft %=
El =
g close close door
isa E
" apply apply brake
land [y 3 3 +
e 5| § generate opening
s release generate closing
g release brake
car e
| buton brake == select change destination

arrive reset button
generate applying

=
=

191
Furkjdde

Bursops

3 Surses
g

continue generate releasing
generate moved

Surssaxd

move generate arriving
move car
generate waiting
or continuing

posow
Runuos

Fuiague

Furssoid

wait generate request
change direction
generate waiting
or continuing

C.3 Hydrolift artefacts
C.3.1 Hydrolift LSD specification

agent door() {
state
door
oracle
brake
derivate
door is (brake == ON) ? OPEN : CLOSED
}

agent landing(_F) {
state

landButton
oracle

sensed brake
handle

23

F4

Appendix C. SUL, MUL and Hydrolift Artefacts 233

brake

protocol
landButton{_F UP &% sensed{_F - 1} == UP && brake == OFF -> brake = ON,
landButton{_F DOWN && sensed{_F + 1} == DOWN &% brake == OFF -> brake = ON,
sensed{_F} != NIL -> landButton{_F} = OFF

} ==
} ==
i

agent car(_F) {
state
carButton
oracle
chan2
handle
chani
protocol
carButton{_F} == ON -> chani
chan2 == _F -> carButton{_ F}

-F,
OFF

}

agent pump() {
state
change target
oracle
brake pressure chanil
handle
brake pressure chan2
derivate
k = 100,
change is (pressure < target) ? k :
(pressure > target) ? -k : 0
protocol
target == pressure + change && brake == OFF -> brake = ON,
change == 0 -> target = chanixk,
pressure == target -> chan2 = target/k,
brake == OFF -> pressure = pressure + change,
brake == ON && change != 0 -> brake = OFF

C.3.2 Hydrolift visualization/animation
screen SRR

i
LIt
. B e

C.3.3 Hydrolift DoNaLD redefinitions

The following DoNaLD script redefines the MUL visualization as the Hydrolift vi-
sualization by adding shapes for the pump and valve.

#u#HHR
#PUMP#

Appendix C. SUL, MUL and Hydrolift Artefacts

#ERARR

openshape pumpshape
within pumpshape {

circle base

point pos

int radius

boolean on

base = circle(pos, radius)
pos = {460,350}

radius = 40

on = false

line one, two

peint pi, p2, p3, p4

int const

one = [p1, p2]

two = [p3 , p4]

const = 29

pl = pos - {const, const}
p2 = pos + {const, const}
p3 = pos + {-const, const}

P4 = pos + {const, -const}

}

? A_pumpshape_one is (change > 0) ? "linewidth=5" : "linewidth=0";
? A_pumpshape_two is (change > 0) ? "linewidth=5" : "linewidth=0";
? A_pumpshape_base is (change > 0) ? “"linewidth=5" : "linewidth=0";
ittt

#VALVE#

f:2020 22 % 314

openshape diaphragm
within diaphragm {

}

line pipel, pipe2, pipe3, pipe4, pipe5
point one, two, three, four, five, six, seven, eight
int height, width

point pos

height = 300

width = 100

pos = {200, 200}

two = pos + {0, height}

three = pos + {-width, 0}

four = pos + {-width, 100}

pipel = [pos, two]

pipe2 = [three, four]

five = four + {0, 100}

six = three + {0, height}

pipe3 = [five, six]

seven = five - {100, 0}

eight = four - {100, 0}

pipe4 = [seven, five]

pipe5s = [eight, four]

openshape valve
within valve {

circle base

int radius

base = circle("/diaphragm/four, radius)
radius = 10

line valvepos

point end

int change

234

Appendix C. SUL, MUL and Hydrolift Artefacts 235

boolean open

change = if open then ~/diaphragm/width else 0
end = “/diaphragm/five + {change, 0}

valvepos = [“/diaphragm/four, end]

open = false

C.3.4 Hydrolift ADM redefinitions

The following ADM script redefines the entities in the MUL animation by instanti-
ating the entity definitions for the pump and sensor and changing the definitions of

the landing and car entities.

%adm

entity landing(_F) {

action
landButton{_F} == UP && sensed{_F - 1} == UP && brake == OFF -> brake = ON,
landButton{_F} == DOWN && sensed{_F + 1} == DOWN && brake == OFF -> brake = ON,
sensed{_F} != NIL -> landButton{_F} = OFF

}
entity car(_F) {
action
carButton{_F} == ON -> chanl = _F,
chan2 == _F -> carButton{_F} = OFF
}

entity sensor(_F) {
definition
sensed{_F} is (pressure
(pressure

_Fxk && change ==k) ? UP :
_Fxk && change == -k) ? DOWN : NIL

[
[

1

entity pump() {
definition
k = 100,
change is (pressure < target) ? k :
(pressure > target) ? -k : 0

action
target == pressure + change && brake == OFF -> brake = ON,
change == 0 -> target = chani*k,
pressure == target -> chan2 = target/k,
brake == OFF -> pressure = pressure + change,
brake == ON && change !'= 0 -> brake = OFF
}

instantiate new entities
sensed_0 = 0

sensoxr (1)

sensor(2)

sensor(3)

sensor(4)

sensor(5)

sensed_6 = 0

pump ()

Appendix C. SUL, MUL and Hydrolift Artefacts 236

C.3.5 Hydrolift sketch

O
/\/_\/\/\/\/\
[{

C.3.6 Statement of requirements and models

On each landing there is an up and a down button. In the car there
is a button for each floor. Users make requests for the car to come
to their landing or go to another landing by pressing these buttons.
The shaft mechanism consists of sensors for detecting the direction of
the car, sonar for communicating between a pump and the car, and a
guage situated with the pump at the base of the shaft for detecting the
pressure of the water in the shaft. The sonar has a channel from car to
pump (channel 1) and a channel from pump to car (channel 2) which
carry floor numbers. The pump moves the car towards a destination
landing stopping whenever the brake is applied. The brake is applied
whenever the car arrives at a landing requested by a user (for requests
from landings the direction matters). The landing buttons are reset
locally and the car buttons are reset by a signal on sonar channel 2. On
arriving at the destination landing the pump selects the next destination
from those transmitted on sonar channel 1. The pump releases the brake
and starts the car moving again. For safety the door is opened and closed

by the brake ensuring that the door is only open whilst the brake is on.

Appendix C. SUL, MUL and Hydrolift Artefacts

hutton

Fuissard

direction

FmAdde <

Fussaud

channel 1

open
close

apply

release

receive
send

select

arrive
(landing)

arrive
(pump)

continue

move

open door
close door

apply brake
generate opening

generate closing
release brake

reset button
queue destination

change destination
and direction
generate waiting
or continuing

reset button
generate applying

generate receiving
generate applying

generate releasing
generate moved

generate arriving
move car
generate waiting

or continuing

237

