Chapter 6

SD as Systems Development

Chapters 3, 4 and 5 have shown that the artefacts and actions of EM and PD are
different from those of SD. This suggests that EM and PD cannot be used as an
approach to developing software in the conventional sense. EM and PD are more
appropriately applied to the creative development of innovative systems than the
methodical transformation of requirements into software that characterizes SD. One
way that EM and PD could be construed as approaches to developing software is if
SD could be viewed as systems development.

This chapter considers how EM and PD might be used as an approach to
developing software based on a generalization of the notions of computer, program
and programming. The conventional view of the computer as an electronic device,
or embodiment of a Turing machine, is generalized to computer as artefact, program
as stored program is generalized to program as system configuration, and program-
ming as SD is generalized to programming as configuring systems that is essentially
the activity of EM and PD. The usefulness of this alternative view is assessed by

considering how it addresses the topical issues in SD and requirements engineering.

6.1 Generalizing computers, programs and programming

The concepts of computer, program and programming have precise and unambigu-
ous meaning in SD. The notion of computer in SD is characterized by the electronic

computer, based on the von Neumann architecture [Asp90, EE90], and Turing’s

137




Chapter 6. 'SD as Systems Development 138

model of a universal machine [Tur36, SW88], consisting of an unbounded store and
finite control unit capable of performing simple operations. Associated with this
notion of computer is the concept of the stored program [Asp90, EE90]: a sequence
of symbols that are the same as data but can be interpreted as actions by the com-
puter. Subject to this interpretation, programming is the process of constructing
the sequence of actions that is the stored program. Constructing the stored pro-
gram is typically facilitated by the generation of SD artefacts, such as the structure,
behaviour and process models and code written in programming languages.

In Chapter 2 the EM notion of the computer as artefact was introduced. The
meaning of the term artefact, as used in this thesis, characterized by the abstract
boundary that separates the world into form and context, was introduced at the
beginning of Chapter 4. The idea of the computer as artefact offers a more gen-
eral concept of the computer than in SD with the electronic computer and Turing
machine being particular computer forms. The goal of both electronic computers
and Turing machines - to perform the sequence of actions in store - can be realized
by other forms given a suitable interpretation of the terms program and program-
ming. This section considers the appropriateness of interpreting programs as system
configurations that store the actions of the system within the arrangement of com-
ponents. Subject to this interpretation, programming is the process of configuring

a computer artefact that typically involves activities like EM and PD.

6.1.1 Computer as artefact

In SD the electronic computer and Turing machine embody the notion of the com-
puter. In the lift project the software developer constructed the structure, be-
haviour and process models during analysis with the intention of using them to
design and implement code to execute on a electronic computer. The electronic
computer largely determines the nature of the models, methods and tools of SD.
It is an empirical fact that almost all electronic computers consist of the same

essential elements [NS76):

e the store containing sequences of actions and associated data (programs);

e the processor capable of performing the actions in store;




Chapter 6. SD as Systems Development 139

e the input and output devices that support interaction between the processor

and environment.

This architecture corresponds to the Turing machine model that contains the essen-
tials of all computers, in terms of what they can do, though other computers with
different memories and operations might carry out the same computations with dif-
ferent requirements of space and time. In particular, the model of a Turing machine
contains within it the notions both of what cannot be computed and of universal
machines - computers that can do anything that can be done by any other machine
[Tur36, SW8S].

In EM and PD the electronic computer and its environment are combined
within the notion of the computer artefact. The meaning of the term artefact as
used in this thesis is given at the beginning of Chapter 4. Central to this is Simon’s
characterization of artefact in terms of form (inner-environment), context (outer-
environment) and purpose (the terms form and context are used by Alexander in a

similar characterization [Ale67]):

An artifact can be thought of as a meeting point - an “interface” in
today’s terms - between an “inner” environment, the substance and or-
ganization of the artifact itself, and an “outer” environment, the sur-
roundings in which it operates. If the inner environment is appropriate
to the outer environment, or vice versa, the artifact will serve its intended

purpose [Sim81].

Adopting this view, the electronic computer and Turing machine are particular
forms of the computer artefact. The form is only half of the computer artefact.
The computer artefact includes the form, such as the electronic computer or Turing
machine, and its context.

The computer artefact is characterized by the goal shared by all computers,
including the electronic computer and Turing machine, to perform the sequence of
actions in store. The early electronic computers satisfied this goal in virtual isola-
tion. However, an increasing number of actions performed by electronic computers

today require corresponding actions in the environment. In combination the store,



Chapter 6. SD as Systems Development 140

processor and input/output devices provide the physical means for satisfying the
goal but the successful operation of the electronic computer depends on appropri-
ate actions in its environment: “the form of an artefact is a collection of natural
phenomena capable of attaining the goal in some range of environments and the
context determines the conditions for goal attainment” [Sim81].

Whereas SD has traditionally placed emphasis on the form of the electronic
computer alone, the computer artefact gives equal importance to form and con-
text. Perhaps the main reason for this emphasis in SD is that few generalizations
can be made about the context of electronic computers because of their many and
varied applications. However, one can say that in general the context of electronic

computers typically consist of two kinds of elements:
e people and
e mechanical (including electromechanical) devices.

In the lift project it was observed that the people surrounding the computer at any
time tended to be organized into communities, such as modellers, product designers,
software developers, lift users and lift engineers. Communities used the computer for
a variety of purposes, for example, the modellers and designers used it for creative
modelling and design whereas the software developers used it for analysis. It is
clear from the artefacts discussed in Chapter 4 that the computer controller would
be situated among mechanical components - doors, motors, pumps, buttons, levers
- in the lift system.

Modellers and designers use the notion of the computer as artefact to consider
alternative computer forms, or to ignore the computer form altogether, during EM
and PD. Simon identifies the two related principles of predictability and generality

that result from the characterization of artefact in terms of form and context [Sim81]:

e it is often possible to predict behaviour from knowledge of the goal and context,

with only minimal assumptions about the form;

e often quite different forms are capable of accomplishing identical or similar

goals in identical or similar contexts.



Chapter 6."SD as Systems Development 141

These principles are utilized in EM: predictability means that modellers can focus
attention on modelling the context to predict the behaviour of the computer form;
generality means that the modeller can consider alternative computer forms so long
as they satisfy the same goal as electronic computers and Turing machines in a given
context.

The EM notion of the computer as artefact was first introduced in Chapter
2 when describing the unusual status given to the tkeden interpreter. In EM the
computer is only significant in so far as it serves as a physical instrument with
which the modeller interacts. This is in contrast to the way in which the computer
is conventionally regarded in classical computer science as a means of implementing
an abstract algorithm or computation. In effect, it is how the user apprehends the
computer as a physical object that matters in EM, not the invisible mechanism
by which the object is specified [BNR95]. As explained in Chapter 2, the view
of computer as artefact is necessary for the 1-agent approach to modelling that is

essential to EM.

6.1.2 Program as configuration

Conventionally the program is the sequence of actions stored in an electronic com-
puter or Turing machine. This is reflected in the dictionary definition of the term
program: “the sequence of actions to be performed by an electronic computer in
dealing with data of a certain kind” (cited in [BR92]). The notion of program and
program execution has a precise and unambiguous meaning with respect to the
von Neumann architecture of the digital computer, consisting of a store, processor
and input/output devices, and abstractions thereof [Asp90]. This section consid-
ers the meaning of the term program when “computer artefact” is substituted for
“electronic computer” in the above dictionary definition [BR92].

When the computer form is an electronic computer or Turing machine the
goal of the computer artefact - to perform the sequence of actions in store - embodies
the stored program principle. When the form is an electronic computer the meaning

of the terms action and store in the goal are precise and unambiguous:

e the actions of the processor are simple read, write and logical operations;




Chapter 6. D as Systems Development 142

o the store is a large number of neighbouring locations each holding a binary

digit denoting an action or data.

Correspondingly, when the computer form is a Turing machine the actions of the
finite control unit are specified in terms of simple operations - read, write and scan
operations - on the store. The store is typically construed as an infinite tape divided
into squares that each hold symbols from a finite alphabet each denoting an action
or data [Tur36, SW88].

It has been shown in previous chapters that the structural and functional
aspects of a stored program are represented by the artefacts constructed during SD.
The structure of the artefacts typically reflect the structure of the stored program:
symbols representing actions organized into sequences. The meaning of the artefacts
is given, for the most part, by the semantic relationship between the symbols in the
artefacts and actions of the processor in a digital computer. Such artefacts were

constructed and used during SD in the lift project:
o C++ programs;
e structure, behaviour and process models;
e structure of the statements of requirements.
Each kind of artefact was associated with a particular purpose in the lift project:

e the principal purpose of the C++ program was to be automatically translated

by the electronic computer into a stored program;

e the purpose of the structure, behaviour and process models was to assist the
software developer in analyzing the requirements of the lift system and repre-

sent the information necessary to design and implement a C++ program;

e the software developer used the logical structure of the statements of require-

ments to construct the structure, behaviour and process models.

All the above representations were linked together into a closed system by automatic

translation and manual methods of analysis.



Chapter 6. SD as Systems Development 143

By considering alternative computer forms, such as a mechanical device,
a broader view of the stored program emerges. When the computer form is a
mechanical system the goal of the computer artefact - to perform the sequence of
actions in store - requires a broader and more common sense interpretation of the
terms action and store than are associated with electronic computers and the Turing

machine model:

o the actions of the mechanical device are those that are made possible by the
configuration of components, such as open, close, set, reset, raise, lower, fill

and empty;

e the actions are stored within the configuration of components in the mechan-

ical device.

Based on this interpretation the program can be thought of as the configuration
of a system. Designers learn the relationship between the form and structure of
mechanical devices through the experience of developing systems.

By virtue of the symmetrical nature of interactions, the structure encodes the
sequence of actions performed by the system in the same way that the stored program
describes the sequence of actions performed by a digital computer. Interaction, by
definition, involves the synchronization of two actions (this view is adopted in the
process calculi CCS [Mil89] and CSP [Hoa85]). An interaction between the system
and its context involves an action of the system synchronizing with an action in the
context - there is an essential symmetry between form and context. For example, the
lift door opening synchronizes with a user pressing a button. By adopting this view
of interaction it follows that it would indeed be possible, in principle, to determine
the sequence of actions of a system by decoding its structure. The timing of the
actions performed by the system may depend on the context but for every action in
the context the system is ready with its counterpart action.

It has been shown in previous chapters that the configuration of mechanical
systems, like the lift system, can be represented by the artefacts constructed during
EM and PD. The structure of the artefacts typically reflect the system structure:

metaphorical representations of components organized in space. The meaning of the



Chapter 6. SD as Systems Development 144

metaphors are implied by their shape and context. Such artefacts were constructed

and used during EM and PD in the lift project:
e design sketch;
e LSD specification;
e visualization and animation.
Each kind of artefact was associated with a particular purpose in the lift project:

e the purpose of the sketch was to help the designer create a satisfactory design

for the system:;

o the purpose of the LSD specification was to help the modeller conceive the
system in terms of observables and agency without having to think abstractly

in terms of structure and function;

e the purpose of the visualization and animation was to creatively explore the
structural and functional features that emerge from analysis of the LSD spec-

ification.

The artefacts constructed during the lift project were related by the fact that each
tended to be progressively more detailed and more abstract.

There are clearly similarities between the nature of SD artefacts and the
artefacts constructed during the later stages of EM and PD. fn PD the detailed de-
scriptions of components and drawings showing how components are to be arranged
are more formal than the sketches produced during conceptual design. Similarly,
the scripts defining the animation in the later stages of EM define the function of
a system more precisely than the LSD specification or visualization. The general
characteristics of the artefacts constructed later in EM and PD have been identified

in previous chapters:
e the artefacts are less creative and more analytical than the earlier artefacts;

o linguistic patternment is more important in the artefacts than in the earlier

artefacts;



Chapter 6.'SD as Systems Development 145

e the meaning of the artefacts is less situated than the meaning of earlier arte-

facts.

In this way, the SD artefacts in the lift project can be thought of as being similar
in nature to the artefacts constructed later in EM and PD that are more analytical,
linguistic and unsituated than the artefacts constructed earlier in EM and PD.

| The view of a program as a system configuration addresses the essential
difficulties of software - complexity, conformity, changeability and invisibility - as
identified in Brooks’ influential paper entitled “No Silver Bullet: Essence and Acci-

dents of Software Engineering” [Bro87]:
e the complexity of mechanical systems is easier to comprehend than software;

e interfaces between mechanical systems are less of an issue than between soft-

ware elements;

¢ modification is essential to mechanical systems but seen as a problem in soft-

ware;
e mechanical systems are visualizable whereas software is essentially invisible.

A more in-depth discussion of how the concept of the program as configuration

addresses the essential difficulties of software follows in Section 6.2.

6.1.3 Programming as configuring

The conventional notion of programming is associated with the construction of a
program stored in a electronic computer. In SD the construction of a stored pro-
gram is given a precise and unambiguous meaning by the methods and models used
by the software developer. This section considers the meaning of the term program-
ming when “computer artefact” is substituted for “electronic computer” and “stored
program” is substituted for “system configuration” above.

Programming corresponds to SD when the program is stored in an electronic
computer. Programming is traditionally used to describe the activity of coding
within SD. However, since the purpose of the preceding stages of SD is to determine

what is to be coded, the whole process can be construed as programming. In fact,




Chapter 6. §D as Systems Development 146

the SD methods were motivated by the need to elevate programming from a craft
to an engineering discipline [Gib94].

Chapter 2 introduces SD as essentially the process whereby a statement of
requirements is transformed into code. Most SD methods share the same sequence

of stages as were followed during SD in the lift project:

e analysis of the statement of requirements resulting in the construction of struc-

ture, behaviour and process models;

o design of the software components and architectures based on the models

constructed during analysis;
e coding of the design elements in a suitable programming language.

Each of these stages is characterized by a method to be followed by the software
developer and the artefacts that are constructed by following the method. In com-
bination these methods and artefacts are a system animated through the agency
of the software developer. This formal system is linked to the stored program by
the compiler or interpreter that automatically translates the code into binary digits
stored within the electronic computer.

By considering alternative computer forms, such as a mechanical device. a
broader view of programming emerges corresponding to EM and PD. When the
program is a system configuration programming corresponds to configuring the sys-
tem. Configuring a system is traditionally associated with manufacture in PD when
components are arranged and connected together. However, since the purpose of the
preceding stages of PD is to determine the components, arrangements and connec-
tions, the whole process can be construed as configuring the system. The stages that
precede manufacture are what make configuring the system an engineering discipline
instead of a craft [Fer92]. In this way, EM can also be thought of as configuring
systems, although there is no product, because it corresponds to the stages that
precede manufacture in PD.

Chapters 4 and 5 have identified similarities between the artefacts and tech-

niques in EM and the stage of conceptual design in PD. The PD stage of conceptual

design and the related stage of detail design were introduced in Chapter 2:




Chapter 6,’SD as Systems Development 147

e conceptual design involves the creative generation and evaluation of design

concepts;

e detail design involves focusing on the details of the design concept determining

which subsystems and components will provide the desired functionality.

The conceptual design phase is characterized by the creative use of sketches. The
detail design phase is characterized by the use of previous knowledge about compo-
nents, represented precisely and unambiguously as labeled drawings, tables, spec-
ifications, formulae and the like, in order to inform the realization of the design
concept. The system is manufactured using the detailed drawings produced at the
end of detail design.

This progression in conceptual design from the simple to the more detailed

concept of a system corresponds to the process of conceptualization that character-

izes EM [Bey97] described in Chapter 2:

e interaction with artefacts: identification of persistent features and contexts;
e practical knowledge: correlation between artefacts, acquisition of skills;
o identification of dependencies and postulation of independent agency;

o identification of generic patterns of interaction and stimulus-response mecha-

nisms;
e non-verbal communication through interaction with similar environment;
e situated use of language;
e identification of common experience and objective knowledge;

e symbolic representation and formal languages: public conventions for inter-

pretation.

These stages represent a progression from a subjective to an objective view of the
subject. The early stages correspond to the modeller’s view of the subject during
l-agent modelling. In the later stages the modeller develops methods of commu-
nication as typified in n-agent modelling. Finally, the model acquires a meaning

independent of the subject and modeller (0-agent system).



Chapter 6. 5D as Systems Development 148

There are similarities between the process of SD and the later stages of EM
and PD. The later stages of PD involve an engineer using detailed descriptions of
components to determine what arrangements will provide the desired functionality.
Similarly, the later stages of EM involve the modeller writing sections of definitive
script in order to generates the desired behaviour. The general characteristics of the

later stages of EM and PD have been identified in previous chapters:

o the later stages involve less creative exploration of artefacts and the subject

than earlier stages;

e actions in the later stages are more predictable than actions in the earlier

stages;

e the later stages follow general techniques unlike the earlier stages that are

determined more by the specific situation.

In this way, SD can be thought of as corresponding to the later stages of EM and
PD when the subject has been conceived and represented formally.

The earlier stages of EM and PD arguably provide a more appropriate frame-
work for requirements engineering than the traditional view of requirements engi-
neering as an extension to analysis in SD. The traditional view of requirements
engineering is of the process that generates the statement of requirements previous
to SD [Poh96, Dav93, Hof93]. The need to integrate these two activities has resulted
in established SD techniques, such as object-oriented techniques, being adopted in
requirements engineering. In contrast, the view of requirements engineering as EM
and PD is of a continuous process of conceiving a system that progresses in parallel
with evolving artefacts. The similarities between EM and PD and the predictions
for new directions in requirements engineering identified by Siddigi and Shekaran,
in particular the importance of context, are discussed in Section 6.5.

The activities of EM and PD are in the same spirit as the ways to attack
the essential difficulties of software identified by Brooks in [Bro87]: buy versus
build; requirements refinement and rapid prototyping; incremental development;

great designers.



Chapter 6.’SD as Systems Development 149

e reusing artefacts instead of constructing new ones from scratch reduces the

cost of invention and at the same time gives continuity;

e exploring the system as it is conceived in EM allows users to clarify their

requirements whilst interacting with an up-to-date prototype;

e conceptualization of a system is essentially an iterative and incremental pro-

cess;
e good conceptual design requires skilled designers.

A more in-depth discussion of the correspondence between the view of programming
as EM and PD and the attacks on the essential difficulties of software follows in
Section 6.3.

6.2 Addressing the essential difficulties of software

In his acclaimed paper entitled “No Silver Bullet: Essence and Accidents of Soft-
ware Engineering” [Bro87] Brooks identifies four essential properties of software -
complexity, conformity, changeability and invisibility - that are the root cause of
problems in SD. In his recent anniversary edition of “The Mythical Man-Month”
[Bro95] Brooks develops his theme of the four essential properties of software - com-
plexity, conformity, changeability and invisibility - by reacting, in particular, to the
rebuttal paper by Harel entitled “Biting the Silver Bullet” [Har92]. This section
considers how these properties are addressed by the view of a program as system
configuration in EM and PD and the associated views of the computer as artefact

and programming as configuring systems.

6.2.1 Complexity

Brooks makes the observation that software entities are more complex for their
size than perhaps any other human constructs because no two parts are alike (at
least above statement level) (Table 6.1). A central principle in SD is that similar
objects are represented abstractly by a single class. However, as Brooks points

out, in this respect, software differs profoundly from computers, buildings and other



Chapter 6. SD as Systems Development 150

[i)ftware | Systems ...
has no two parts that are alike have repeated parts
typically has more states than systems | typically have fewer states than software
complexity increases exponentially complexity increases linearly
complexity is rampant complexity is managed

Table 6.1: Contrasting complexity in software and systems.

systems, where repeated elements abound. In EM and PD the modeller and designer
tend to represent each instance of a part within a system in order to keep a close
correspondence between the subject and its representation.

EM has a principled approach to reducing the number of repeated parts in
an LSD specification that is not based on classification as in SD. The approach
is directly related to the two complementary principles that constitute concurrent

engineering in EM [ABCY94c, ABCY94a, ABCY94b] introduced in Chapter 2:
e specifying agents in LSD by considering them in isolation;
e introducing a context for interaction by animating agents using ADM.

It is the context of agents with the same set of observables, dependencies and pro-
tocols that distinguish them from one another. For example, it is the position of a
person in a lift system that distinguishes them from other people and the position of
a brick in a wall that distinguishes it from other bricks. Consequently a single LSD
agent specification can represent similar agents by considering them in isolation.
The context of agents is the focus of visualization and animation in EM.

Brooks argues that one of the major problems that faces software developers
in SD is in dealing with the enormous number of states that a piece of software
can have. This is especially true of concurrent programs in which subprograms are
changing states independently. Large numbers of states makes it difficult for software
developers to conceive, describe and test software. In EM and PD the modeller and
designer is not concerned with program states but with the observed states of the

subject [BRY90]. Brooks recognizes that software has orders-of-magnitude more

states than computers do. In EM and PD the modeller and designer focuses on




Chapter 6. SD as Systems Development 151

the mechanical and electro-mechanical devices that tend to have fewer states than
electronic computers or software.

As was discussed in Chapter 4, all relationships between software parts have
to be represented explicitly in SD because of its abstract nature. In contrast, rela-
tionships that are implied in the subject are not explicitly represented in the model
or sketch in EM and PD due to the direct correspondence between the subject and
its representation. Brooks observes that, the software elements interact with each
other in some nonlinear fashion, and the complexity of the whole increases much
more than linearly. In EM and PD the complexity of structural and functional rela-
tionships are dealt with by the powerful computational framework provided by the
ADM and the powerful mental processes of the designer familiar with interaction
between components.

Brooks concludes his section on complexity by stating his belief that the com-
plexity of software is an essential property: “descriptions of a software entity that
abstract away its complexity often abstract away its essence” [Bro87]. Complexity
is also important to the product designer who cannot guarantee the quality or safety
of an innovative product based on generalized models alone [Pug91, Pug96, Fer92].
The designer must embrace the unfathomable complexities of nature. Similarly, the

complexities of natural phenomena are taken head-on by the modeller in EM.

6.2.2 Conformity

Brooks argues that, although scientists have to face complexity, they have a firm
faith that there are unifying principles to be found in nature (Table 6.2). He points
out that Einstein argued there must be simple explanations of nature because God
is not capricious or arbitrary.

Brooks believes that no such faith of unification and simplicity comforts
the software developer. Much of the complexity that he must master during SD is
arbitrary, forced by the many human institutions and systems to which his interfaces
must conform. He argues that these differ from interface to interface, and from time

to time, not because of necessity but only because they were designed by different

people, rather than by God.




Chapter 6 SD as Systems Development 152

LSoftware l Systems ...
has no principle of unification has the natural principle of unification
conforms to complex interfaces have few and simple interfaces
is treated as a second-class-citizen parts are treated equally

Table 6.2: Contrasting conformity in software and systems.

In EM and PD modellers and designers share a similar motivation as scien-
tists to seek simple explanations of systems. Although EM and PD are not sciences
in the traditional sense they do involve understanding the nature of objects and
using this knowledge to simulate and build systems. The interface, representing
structure and function, is of little importance in this activity. EM and PD (and
natural sciences) are more concerned with the form and context in combination
than the largely artificial boundary that separates them [Sim81].

As Brooks points out, the problem of unifying system components is often
" left to the software developer because the software is typically the last part of the
system and is considered more flexible than other more concrete parts. In this
way software is treated like a second-class-citizen within the system resulting in
software complexity that could perhaps be better accommodated within mechanical
and electrical components. This is not so in EM and PD; they are not two-tier
development processes. In EM and PD modellers and designers develop descriptions
of software and hardware in parallel as they search for the most appropriate, and

usually simplest, model and design solution.

6.2.3 Changeability

Brooks observes that software is constantly subject to pressures for change (Table
6.3). He concedes that buildings, cars, computers and other systems are also but
that these systems are infrequently changed after their initial design; they are super-
seded by later models that incorporate essential changes in order to meet changes
in customer need and technology. Significant changes in the concept of a manufac-

tured automobile are infrequent; changes in the concept of a manufactured computer

somewhat less so. In turn, Brooks asserts that changes in both the automobiles and




Chapter 6.’5D as Systems Development 153

Software ... Systems ...

is always under pressure to change | concepts are seldom changed

embodies the system function function is determined by its structure
change originates externally change originates from the system context
change is rapid change is slow

Table 6.3: Contrasting changeability in software and systems.

computers are much less frequent than modifications to installed software.

Brooks points out that an often cited reason for the changeability of software
is that the software of a system embodies its function, and that the function is the
part of the system that most feels the pressure for change. The function of a system
is the result of interaction between components and the nature of the interaction is
determined by the details of those components. Thus, small changes to components
in a system result in changes to the system function. In EM and PD the focus is
on the high-level concept of the system, at least in the early stages, rather than the
details of components. So, although the concept of a system changes in EM and PD,
it changes slower than representations of the system function or component details.

Brooks identifies two processes that conspire to cause software to be changed:
® as a software product is found to be useful, people discover novel uses for it;
e software is adapted to take advantage of new technology.

Arguably both these phenomena are less to do with the software, or even the com-
puter that executes the software, and more to do with the context of the computer
[Sim81]. EM and PD provide a broader conceptual framework than SD allowing
modellers and designers to address issues that surround the software, such as us-
ability and technological development.

Brooks concludes that software is embedded in a cultural matrix of appli-
cations, users, laws, and machine vehicles, and that their changes inexorably force
changes upon the software. With this in mind it would seem that the context of

the software and the computer executing the software is the important issue rather

than the software itself. EM and PD is suited to understanding software in context




Chapter 6. SD as Systems Development 154

LSoftware Systems ...

is invisible and unvisualizable are visible and visualizable

is abstract except for representations | are concrete as are its representations

involves reasoning and language involve common-sense and pictures

Table 6.4: Contrasting invisibility in software and systems.

and using this knowledge in order to develop software.

6.2.4 Invisibility

Brooks argues that software is invisible and unvisualizable and that this is in contrast
to systems that are inherently visible and visualizable (Table 6.4). He goes on to
say that geometric abstractions used in building systems (as used in EM and PD)
are powerful tools: “The floor plan of a building helps both architect and client
evaluate spaces, traffic flows, views. Contradictions and omissions become obvious.
Scale drawings of mechanical parts and stick-figure models of molecules, although
abstractions, serve the same purpose. A geometric reality is captured in geometric
abstraction” [Bro87].

Brooks continues by saying that the reality of software is not inherently
embedded in space making visualization difficult in SD: ”[software] has no ready ge-
ometric representation in the way that land has maps, silicon chips have diagrams,
computers have connectivity schematics. As soon as we attempt to diagram soft-
ware we realize that it suggests no particular set of symbols for representation or
conventions for organizing symbols” [Bro87]. Languages in EM are developed with
a particular mode of observation in mind [ABCY94c]. In this way the definitive
languages in EM are not arbitrary but correspond to a way of observing the world.
The difference between the languages of EM and the pictorial-language of PD is
that definitive languages have an operational interpretation as well as a real-world
meaning.

In concluding his section on the invisibility of software Brooks comments on
the effect this essential property of software has on mental processes and communi-

cation: “In spite of progress in restricting and simplifying the structures of software,



Chapter 6. SD as Systems Development 155

Attack ... EM ...

uses off-the-shelf software products | reuses existing artefacts

cuts cost of development speeds modelling by reuse

utilizes spreadsheets and databases | tool is based on spreadsheet principles

combines use and programming combines use and modelling

Table 6.5: EM themes associated with buy versus build.

they remain inherently unvisualizable, and thus do not permit the mind to use some
of its most powerful conceptual tools. This lack not only impedes the process of

design within one mind, it severely hinders communication between minds” [Bro87].

6.3 Attacks on the essential difficulties of software

As well as identifying the four essential properties of software in [Bro87], discussed
in the previous section, Brooks recommends four promising ways to attack the es-
sential difficulties of software - buy versus build, requirements refinement and rapid
prototyping, incremental development and great designers - to be included in future
approaches to SD. This section considers how these attacks relate to the view a
programming as configuring systems in EM and PD and the associated views of the

computer as artefact and program as systems configuration.

6.3.1 Buy versus build

Brooks draws attention to the important development in the software industry of
off-the-shelf software tools, environments and modules: “Every day it is becoming
easier, as more and more vendors offer more and better software products for a
variety of applications, for software developers to buy existing software instead of
developing it themselves” [Bro87] (Table 6.5).

As was identified in previous chapters, and observed during the lift project,
EM and PD are based on the free-trade of modelling and design elements that saves
on resources and provides the building-blocks for models and designs. This trade

operates at two levels:



Chapter 6. SD as Systems Development 156

e conceptual elements used in design and modelling;
e physical elements used to realize designs.

This free-trade in PD has been noticed by others: “The limits of design are culture-
bound: all successful designs rest solidly on specific precedents. Because inventors
and designers nearly always devise new combinations of familiar elements to ac-
complish novel results, links to known technology are inevitably present. The in-
evitability of the old in the new is no check on originality however. The possible
combinations of known elements is subject to endless variation” [Fer92].

Brooks identifies the spreadsheet and simple database systems as perhaps
the most powerful general off-the-shelf tools. He argues that these powerful tools,
so obvious in retrospect and yet so late appearing, lend themselves to myriad uses,
some quite unorthodox. The main software tool used for EM so far is the tke-
den interpreter. The tkeden interpreter shares the same general principles as the
spreadsheet [Bey97] and gives the modeller access to scripts rather like a database
[BCY94]. These principles have proven their importance in a variety of EM projects,
including the lift, OXO [BJ94] (Chapter 2), sailboat [NBY94] (Appendix B), railway
[ABCY94c], classroom simulation [Dav96] and VCCS [BBY92] projects.

Brooks believes that the increase in off-the-shelf software tools, environments
and modules will blur the distinction between programming and use: “the single
most powerful strategy for many organizations today is to equip the computer-naive
intellectual workers who are on the firing line with personal computers and good
generalized writing, drawing, file, and spreadsheet programs and then to turn them
loose” [Bro87]. The EM tkeden interpreter and associated definitive languages, such
as DoNaLD, ADM, EDEN and SCOUT, aspire to embody the principles underlying

such a collection of tools.

6.3.2 Requirements refinement and rapid prototyping

Brooks agrees with the widely held belief that the hardest single part of developing
software is deciding precisely what is wanted: “No other part of the conceptual work

is as difficult as establishing the detailed technical requirements, including all the



Chapter 6. SD as Systems Development 157

Attack ... EM ...

addresses what is to be built models what is observed
determines what client wants involves understanding the subject
involves rapid prototyping uses visualization and animations
helps conceive the system to be built | parallels natural conceptualization

Table 6.6: EM themes associated with requirements and prototyping.

interfaces to people, to machines, and to other software. No other part of the work
so cripples the resulting system if done wrong. No other part is more difficult to
rectify later.

Therefore, the most important function that the software developer performs
for the client is the iterative extraction and refinement of the product requirements.
For the truth is, the client does not know what he wants. The client usually does
not know what questions must be answered, and he has almost never thought of
the problem in the detail necessary for specification. Moreover, the dynamics of a
system are hard to imagine. So it is important to plan for extensive interaction
between the client and software developer during SD” [Bro87] (Table 6.6).

It was suggested in Chapter 3 that EM might be construed as a process
that precedes conventional SD corresponding to requirements engineering, a theme
that is taken up later in this chapter. EM is an interactive process dufing which
a representation of the subject is constructed by the modeller. From this process
emerges a definitive script that specifies the system structure and function ‘precisely
and unambiguously. Such a description is used to simulate the system using the
tkeden interpreter and forms the basis of further analysis using conventional SD
techniques.

Brooks identifies the tools and approaches to rapid prototyping as one of
the most important and successful attacks on the essence of software. He defines a
system prototype as something that simulates the important interfaces and performs
the main functions of the intended system, while not necessarily being bound by the
same hardware speed, size, or cost constraints: “Prototypes typically perform the

mainline tasks of the application, but make no attempt to handle the exceptional



Chapter 6. SD as Systems Development 158

Attack ... EM ...

associates complexity in nature with software | models natural phenomena
advocates top-down approach begins with high-level concept
results in early working system maintains up-to-date working model

Table 6.7: EM themes associated with incremental development.

tasks, respond correctly to invalid inputs, or abort cleanly. The purpose of the
prototype is to make real the conceptual structure specified, so that the client can
test it for consistency and usability” [Bro87).

The computer model in EM has much in common with the system proto-
type. It provides some of the behaviour of the subject for the purpose of helping
understand the subject. However, the system prototype is typically defined with
specific interfaces and functionality in mind whereas in the computer model in EM
the interfaces and function are not necessarily preconceived. The modeller is able to
step-in as super-agent to resolve problems caused by exceptional tasks or unexpected

input and incorporate them into the model on-the-fly.

6.3.3 Incremental development - grow don’t build software

Brooks gives an account of the history of SD by associating a metaphor for devel-

opment with each era:
e writing programs;
e building programs (specifications, assembly of components, scaffolding);
e growing programs.

He mentions that the growing metaphor reflects the development of increasingly
complex software: “In nature we find constructs whose complexities thrill us with
awe. The brain is intricate beyond mapping, powerful beyond imitation, rich in
diversity, self-protecting, and self-renewing. The secret is that it is grown, not
built” [Bro87] (Table 6.7).

But surely it is better to build rather than grow if the building blocks are

available? In EM and PD a model or sketch is built using existing elements if




Chapter 6. 5D as Systems Development 159

they are appropriate. This is much less costly in resources than creating elements
from scratch. However, when modelling and design elements are not available they
have to be synthesized from the basic general concepts of observables, agents and
components. Growing a new concept requires ingenuity resulting in something that
has an almost mystical quality with the potential for creative discovery, as discussed
in previous chapters.

Brooks recommends adoption of the top-down approach to SD: “Mills [Mil71]
first proposed that any software should be grown by incremental development. That
is, the system should first be made to run, even if it does nothing useful except call
the proper set of dummy subprograms. Then, bit-by-bit, it should be fleshed-out in
a step-wise fashion, with the subprograms being fleshed-out in turn. This approach
necessitates a top-down approach to design in which each added function and new
provision grows out of what is already there” [Bro87].

This top-down approach has its counterpart in EM and PD with the design
of a concept followed by the consideration of detail. However, the importance of
combining top-down with bottom-up design is identified by Pugh [Pug91, Pug96]. It
1s no good arriving at a concept that is not cost-effective, or perhaps even impossible,
to manufacture. Whilst designing the concept for a system the designer should never
lose touch with how the concept is to be realized.

Brooks emphasizes the benefits of having an up-and-running system early
on in the SD process by using the top-down approach. In EM the modeller is
able to animate high-level concepts of a system. Moreover, the modeller is able to
animate low-level elements of a system because of the environment provided by the
tkeden interpreter. This means that EM can provide the benefits of an up-to-date

running program during top-down and bottom-up design.

6.3.4 Great designers

Brooks argues that the central question in how to improve the software art centres on
people (Table 6.8). This accords with the importance of the modeller and designer
in EM and PD as identified in Chapter 3.

Brooks identifies the importance of methodology but also realizes its limita-




Chapter 6. SD as Systems Development 160

Attack ... EM ...

centres on people addresses communication between people

advocates creativity involves creative exploration

is not method based | has no explicit method

centres on individuals | is essentially a l-agent activity

Table 6.8: EM themes associated with great designers.

tions (Section 5.4.2): “We can get good designs by following good practices instead
of poor ones. Good design practices can be taught. Programmers are among the
most intelligent part of the population, so can learn good practice. However, the
difference between poor conceptual designs and good ones may lie in the soundness
of design method, the difference between good designs and great ones surely does
not. Great designs come from great designers. Software construction is a creative
process. Sound methodology can empower and liberate the creative mind; it cannot
inflame or inspire the drudge” [Bro87].

Brooks points out that “the most exciting breakthroughs have been made by
individuals. Although many fine, useful software have been developed by committees
and built as part of multipart projects, those software systems that have excited
passionate fans are the products of one or a few designing minds, great designers”
[Bro87]. There are clearly parallels between individuals designing software and 1-

agent modelling in EM.

6.4 Software and SD in the future

In a report entitled “Where is Software Headed?” [Lew95] experts in the field of SD
from both academia and industry give their predictions for the future of software
and SD. This section considers how the views of computer as artefact, program as
system configuration and programming as configuring systems in EM and PD relate

to their visions of the future of software and SD.



Chapter 6."SD as Systems Development 161

6.4.1 Networked computing and concurrency

A general prediction is the continued move towards networked computing: comput-
ing with applications, data, and processing power all dispersed across a network.
The conceptual framework underlying conventional SD is based on abstract models
which make it difficult to describe and reason about such systems. Networks evolved
not for any theoretical reason but because use centred around a single processor and
data store was found to be impractical. In EM the notion of the computer as a sys-
tem should make it easier to understand networks and distributed computing.

Simon recognizes the practical and empirical nature of the development of
the early timesharing networked systems: “The research that was done to design
computer timesharing systems is a good example of the study of computer behaviour
as an empirical phenomenon. Only fragments of theory were available to guide the
design of a time-sharing system or to predict how a system of a specified design
would actually behave in an environment of users who placed their several demands
upon it. Most actual designs turned out initially to exhibit serious deficiencies, and
most predictions of performance were startlingly inaccurate.

Under these circumstances the main route open to the development and
improvement of time-sharing systems was to build them and see how the behaved.
And this is what was done. Perhaps theory could have anticipated these experiments
and made them unnecessary. In fact they didn’t, and I don’t know anyone intimately
acquainted with these exceedingly complex systems who has very specific ideas as to
how it might have done so. To understand them, the systems have to be constructed
and observed” [Sim81]. Such an approach to development accords with systems
development in EM and PD.

Concurrency is closely associated in computing with networked or distributed
systems. For a network to work each part must have some independence of operation.
So, the prediction of a continued move towards networked computing implies a
move towards parallel computing. However, Hill, Larus and Wood [HLW95] point
out that the conventional programming model is based on the uniprocessor. They
argue for a shared address space model for parallel computation. Central to EM

is the notion that variables correspond to actual physical features that all share a




Chapter 6. SD as Systems Development 162

common “address space” within the real-world. Conflicts among changing variables
are tesolved in EM by understanding the correspondence between variables and
observables in the subject. A fuller account of concurrency in EM is given in [BSY8S,

Nes93, S1a90].

6.4.2 Software agents

A central principle of EM is to establish a close correspondence between the com-
puter system and the system perceived or imagined by the software developer. This
is achieved by in EM by describing the system in terms of observables and agents.
Inevitably, parts of the system acquire names that corresponded to concepts in EM,
such as agent and observable. This accords with the predictions of Vetter [Vet95] of
the emergence of software agents: distributed computer programs that are capable
of carrying out specialized functions on the behalf of humans such as a “knowbot”
which intelligently finds information of interest to users over a collection of hetero-
geneous networked computers. The development of such agents in conventional SD
is difficult because the behaviour of the agents depends to a large degree on their

environment, which does not generally suit formalization.

6.4.3 Object standards and technology

Another general prediction is the continuation of the Object concept into the future
of SD. Meyer [Mey95] says of Object technology “it is here to stay”. Consequently
there is pressure to make the Object the standard software entity. However, Laplante
[Lap95] questions the suitability of the existing Object concept arguing that it is
deeply rooted in concepts that evolved in the 1970s with the revolutionary language
CLU and in the theories of information hiding attributed to Parnas. This is not to
say that the Object is a bad idea, but that it would be worth reviewing the concept in
the context of the needs of today. Pree and Pomberger [PP95] argue that establishing
standards in Object technology too early could lead to the perpetuation, instead of
the solution, of the software crisis. The EM notion of agent offers an alternative to
the existing Object concept.

In his book “Object-oriented Software Construction” [Mey88] Meyer presents



Chapter 6."SD as Systems Development 163

a number of standard principles that are traditionally associated with modularity

in object-oriented software development:

e the principle of linguistic modular units states that modules must correspond

to syntactic units in the language used;

e the principle of few interfaces states that every module should communicate

with as few other modules as possible;

e the principle of small interfaces (weak coupling) states that if any two modules

communicate at all they should exchange as little information as possible;

o the principle of explicit interfaces states that whenever two modules A and B

communicate, this must be obvious from the text of A or B or both;

e the principle of information hiding states that all information about a module

should be private to the module unless it is specifically declared public.

In this sense, a module is a more appropriate representation of a software entity
than an entity in the real-world. However, texts on object-oriented approaches to
SD, including [SM88, SM92] by Shlaer and Mellor, tend to emphasize the direct
correspondence between the concept of Object and objects in the real-world. The

principles of modularization are seldom observed of entities within the natural world:

e they do not necessarily correspond to a descriptive statement, such as a defi-

nition or specification;

e they are not necessarily restricted by the size or number of interfaces they

have to other objects (if they can be considered as having interfaces at all);
o they are not necessarily restricted to when they can act;
o they are not necessarily able to make features private.

This suggests that the association between the principles of modularity and real-
world objects is inappropriate.
In addition to standards there seems to be a general consensus as to the

direction in which Object technology should develop in the future. These include




Chapter 6. 'SD as Systems Development 164

network stores of Objects to be used in different applications, and specialized Object
(horizontal) as well as the traditional application (vertical) development. Pree and
Pomberger [PP95] warn that building such higher level standards on the antiquated
Object concept will force software developers to produce unnecessarily complicated
and unprofessional solutions for problems that could otherwise be solved more ef-
ficiently. The EM notion of agent has been adapted by experts in the search for
efficient solutions to problems within their own specialist domains, including engi-
neering, SD and education.

Perhaps the main reason why Objects have remained so popular in SD is
because they help with the problem of complexity. Laplante says that SD has always
been about finding better mechanisms for abstraction to support greater complexity
predicting that this trend is set to continue. However, he believes the trend should
move away from the use of Objects. Objects achieve their abstraction by generating
complex code and relying on complex tools that depend on high-speed modern
computers to hide these inefficiencies. Laplante predicts that abstraction will be
achieved in the future by tools which harness complex and powerful mental processes
to deal with the problem of complexity. Tools based on graphics and real-time
interaction instead of formal languages. This principle of providing essentially simple
tools and languages that harness the powerful mental processes of the modeller and

designer is central to EM and PD.

6.4.4 Product-oriented development

Yet another general prediction is about the move away from the process-oriented
approach of conventional SD towards a product-oriented approach in the future.
Weide [Wei95] argues that poor design is a major culprit in the software crisis. Many
believe it is poor adherence to established engineering processes that is the problem
and that this will be improved through proper management. However, Weide makes
the point that this assumes that product quality derives largely from process quality.
Processes in mature engineering disciplines are of course very important but they
came only after successful design had been repeated and observed. EM and PD

supports the product-oriented instead of the process-oriented approach by allowing



Chapter 6. 5D as Systems Development 165

experts to apply the design knowledge of their own disciplines in developing software.

6.5 Requirements engineering in the future

In a report entitled “Requirements engineering: the Emerging Wisdom” [SS96] Sid-
digi and Shekaran identify the direction in which requirements engineering is head-
ing. They predict that the next wave of requirements techniques and tools will
account for the problem and development context, accommodate incompleteness,
and recognize the evolutionary nature of requirements engineering. This section
considers how the views of computer as artefact, program as system configuration
and programming as configuring systems in EM and PD relate to the future of
requirements engineering. Siddiqgi is director of the Computing Research Centre
and professor of Software Engineering at Sheffield Hallam University. He is also a
founding member of the IEEE International Conference on Requirements Engineer-
ing and a permanent member of its steering committee. Shekaran has led a variety
of research and development efforts in requirements engineering as a manager in

Microsoft.

6.5.1 Emerging importance of context

The importance of context in requirements engineering is a theme that runs through-
out the report by Siddigi and Shekaran.

Siddigi and Shekaran point out that increasingly practitioners are realizing
the traditional approach to SD analysis, involving the decomposition of the problem
into parts and the composition of parts, is not appropriate because the process
and parts are situated. They argue that the biggest drawback of this reductionist
view of partitioning things into smaller parts is that the context will influence the
decomposition.

This limitation of the reductionist view is addressed in the philosophical
foundations of EM. Traditional empiricism is essentially reductionist based on the
principle that phenomena can be reduced into elements of experience. The philo-

sophical foundations of EM, described in Chapter 2, are embodied in “Radical Em-



Chapter 6. 'SD as Systems Development 166

piricism.” Radical Empiricism is based on the presumption that the world is a whole,
or “conjunction”, with no natural boundaries dividing it into elements: “Concep-
tion disintegrates experience utterly” ([Jam96] p.70), ”[it] performs on conjunctive
relations the usual rationalistic act of substitution - [taking] them not as they are
given in their first intention, as parts constitutive of experience’s flow, but only as
they appear in retrospect, each fixed as a determinate object of conception, static,
therefore, and contained within itself” ([Jam96] p.236). How the world is divided is
mostly arbitrary depending on the individual.

Siddiqi and Shekaran introduce the views of Jarke and Pohl [JP94] for whom
the juxtaposing of vision and context is at the heart of managing requirements:
“[Jarke and Pohl] define requirements engineering as a process of establishing visions
in context and proceed to define context in a broader view than is typical for an
information-system perspective. Jarke and Pohl partition context into three worlds:
subject, usage, and system. The subject represents a part of the outside world in
which the system - represented by a structural description - exists to serve some
individual or organizational purpose or usage” [SS96.

There are clearly parallels between requirements engineering, in the sense of
Jarke and Pohl, EM and PD. At the beginning of this chapter the ideas of form and
context were introduced along with the notion of computer as artefact in EM and
PD. Jarke and Pohl’s subject, usage and system correspond to context, purpose and
form introduced earlier in this chapter with respect to the notion of the computer
as artefact. The term subject, as used by Jarke and Pohl, has the same meaning as
the term used throughout this thesis and defined in Chapter 3, that is, the object
or system being modeled, designed or analyzed.

Siddiqi and Shekaran identify that, whereas in the past most researchers
have focused on functional (or behavioural) requirements, the recent trend has been
to direct attention to nonfunctional requirements issues. This recent development
brings requirements engineering more in line with PD in which the designer has
to consider nonfunctional requirements, such as size, weight, ergonomics, documen-
tation and aesthetics, during conceptual design. The similarity between PD and

EM identified in previous chapters suggests that EM also deals with nonfunctional



Chapter 6. SD as Systems Development 167

requirements.

For some time now, argue Siddigi and Shekaran, the SD community has re-
alized the need to broaden its view of requirements to consider the context within
which the system will function, with conceptual modelling being the first step:
“Borgida, Greenspan, and Mylopoulos’ work [BGMS85] on the use of conceptual
modelling as a basis for requirements engineering was a major signpost in directing
researchers to this perspective” [SS96]. Conceptual modelling and design are cen-
tral to EM and PD. Both EM and PD involve the process of identifying a high-level
concept of the subject and then progressively filling in the detail. This process is
sensitive both to the context of the modeller and designer and to the context of the
subject.

Siddiqi and Shekaran draw attention to Jackson’s alternative way to look at
context [Jac95]: “Jackson faults current SD methods for focusing on the character-
istics and structure of the solution rather than the problem. Software, according to
Jackson, is the description of some desired machine, and its development involves the
construction of that machine. Requirements are about purpose, and the purpose of
a machine is found outside the machine itself, in the problem context” [SS96]. Jack-
son’s views correspond to those in EM and PD: software as a machine description
corresponds to the view of a program as a system configuration or representation
thereof; development of software as machine construction corresponds to the view of
programming as configuring the arrangement of components in a system. The link
between purpose and communities within the context has already been mentioned
previously in this chapter with respect to the view of the computer, program and
programming in EM.,

Siddiqi and Shekaran conclude their account of views on requirements engi-
neering with perhaps the most radical of all and yet probably the one that has most
in common with EM and PD: “Goguen argues that requirements are information,
and all information is situated and it is the situations that determine the meaning of
requirements. Taking context (or situations) into account means paying attention
to both social and technical factors. Focusing on technical factors alone fails to

uncover elements like tacit knowledge, which cannot be articulated. Therefore, an



Chapter 6.’SD as Systems Development 168

effective strategy for requirements engineering has to attempt to reconcile both the
technical, context insensitive, and the social, contextually situated factors.

For Goguen ... requirements emerge from the social interactions between the
users and analysts. This goes beyond taking multiple viewpoints and attempting
to reconcile them because it does not attempt, a priors, to construct some abstract
representation of the system. Current methods of eliciting tacit information, such as
questionnaires, interviews and focus groups are inadequate, as Goguen points out.

Instead, he advocates “ethnomethodology” [Gog96]. In this approach, the
analyst gathers information in naturally occurring situations where the participants
are engaged in ordinary, everyday activities. Furthermore, the analyst does not
impose so-called “objective” preconceived categories to explain what is occurring.
Instead, the analyst uses the categories the participants themselves implicitly use
to communicate” [SS96].

There are clearly parallels between Goguen’s view of requirements engineer-
ing [Gog94, Gog9d6, Gog93] and EM and PD: in EM and PD the system begins as
a concept within the mind of a single modeller or designer and then is refined into
a detailed description of a physical system that can be understood by many. EM
is based on the principle of developing languages, such as DoNaLD, SCOUT and
ARCA (Chapter 2), that are appropriate for describing particular domains rather
than enforcing the use of a single general-purpose language consisting of precon-
ceived concepts. This suggests that an approach to requirements based on the

principles of EM and PD would have much in common with the vision of Goguen.

6.5.2 End of requirements as contract

Siddiqi and Shekaran argue that the view of the requirement as contract is rapidly
becoming outdated: “Most requirements engineering work to date has been by or-
ganizations concerned with the procurement of large, one-of-a-kind systems. In this
context, requirements engineering is often used as a contractual exercise in which
the customer and the software developer organizations work to reach agreement on

a precise, unambiguous statement of what the software developer would build.

Trends in the last decade - system downsizing, shorter product cycles, the




Chapter 6. 'SD as Systems Development 169

increasing emphasis on building reusable components and software architectural
families, and the use of off-the-shelf or outsourced software - have significantly re-
duced the percentage of systems that fit this profile. The requirements-as-contract
is irrelevant to most software developers today” [SS96].

The artefacts of EM and PD provide an alternative to the outdated pre-
cise unambiguous statement of requirements. In Chapter 3 it was argued that the
properties of the statement of requirements - familiarity, unambiguity, explicit mean-
ing, completeness, consistency and convergence - make it ideal for communication
and providing a basis for analysis, however, the properties discourage the creativity
needed for new systems. The creative properties of the EM and PD artefacts -
novelty, ambiguity, implicit meaning, emergence, incongruity and divergence - make
them ideal for individuals to model and design the systems of today but make them

unsuitable as contracts.

6.5.3 Supporting market-driven inventors

Siddiqi and Shekaran identify that the bulk of the software developed today is
based on market-driven criteria: “The requirements of market-driven software are
typically not elicited from a customer but rather are created by observing problems
in specification domains and inventing solutions. Here requirements engineering is
often done after a basic solution has been outlined and involves product planning
and market analysis. Classical requirements engineering offers very little support
for these problems. Only recently have researchers acknowledged their existence”
[SS96].

This approach reflects that of EM and PD. The first phase of PD is market
analysis during which the product design specification (PDS) is formulated. The
PDS acts to constrain the essentially creative phase of conceptual design during
which the designer invents a system that satisfies the specification. Similarly, in
EM the modeller has an idea of the purpose of a system during modelling. In both
EM and PD the model or design of a system is not elicited from somebody else
but is instead created by the modeller or designer based on an understanding of the

context for the system.



Chapter 6. SD as Systems Development 170

6.5.4 Coping with incompleteness

Siddiqi and Shekaran point out that a complete statements of requirements is a
rarely achievable ideal: “Omne impetus for the switch to the evolutionary develop-
ment model was the recognition that it was virtually impossible to make all the
correct requirements and implementation decisions the first time around. Yet most
requirements research agenda continue to emphasize the importance of ensuring
completeness in requirements specifications. However, incompleteness in require-
ments specifications is a simple reality for many practitioners. Goguen echoes this
view in his criticism of the prescriptiveness of current methods that insist on com-
plete specifications.” [SS96].

The findings of previous chapters accord with this view of Siddiqi and Shekaran.
In Chapter 3 it was shown that the statement of requirement is complete in SD.
The requirements are necessarily complete with respect to the models of analysis
so that the formal artefacts of SD and the associated methods combine to form
a closed system with which the software developer can derive code. However, it
is inevitable that the requirements will change during the development of software
[SB82] making such a system approach inappropriate. In EM and PD creativity
replaces methodology and creative artefacts replace analytical ones. There is no
need for the requirement of a system to be complete in EM or PD.

Siddigi and Shekaran identify the real challenge of coping with incomplete-
ness as how to decide what kinds and levels of incompleteness the software developer
can live with: “To this end we need techniques and tools to help determine appro-
priate stopping conditions in the pursuit of complete requirements specifications -
enabling such clarifications to be postponed to a later development stage” [SS96]. In
EM and PD the modeller and designer can see the level of detail in an artefact thus
allowing them to judge when their representation of a system is complete. Visual-
ization of software by viewing it as a system configuration should allow for similar
techniques as in EM and PD with the potential for developing automated tools to
help in the task.



Chapter 6. SD as Systems Development 171
6.5.5 Integrating design artefacts

Siddiqi and Shekaran point out that software developers need faster ways to conve-
niently express the problem to be solved and the known constraints on the solution:
“Often, getting to [the expression of the problem] fast outweighs the risk of over-
constraining the design ... requirements engineering becomes more of a design and
integration exercise in this context. We need “wide-spectrum” requirements tech-
niques that can capture and manipulate design-level artefacts, such as off-the-shelf
components” [SS96].

This corresponds to the generative phase of EM and PD described in Chapter
5in which the modeller and designer bring together existing artefacts and synthesize
new artefacts. Previous chapters have identified the inherent continuity in EM and
PD resulting from the reuse of existing artefacts and parts thereof. Reuse means
that generation of artefacts is typically done quickly. Tools such as tkeden help in
this process by allowing artefacts to be combined and animated without restricting
the modeller to preconceived combinations of artefact parts.

Siddiqi and Shekaran identify that there have been very few concrete results
to date in providing support for the task of evaluating alternative strategies for
satisfying requirements. However, they do note the burgeoning interest and activity
in requirements tracing may offer some solutions in the near future. The direct
correspondence between subject and representation in EM and PD facilitates tracing
of artefact features back to features of the sub ject. After the generation of a sketch
in PD it is evaluated against criteria based on the PDS. Similarly, the artefacts

generated in EM are explored with respect to the sub ject.

6.5.6 Making requirements methods and tools more accessible

Siddiqi and Shekaran observe that many practitioners today use general tools like
word processors, hypertext links, and spreadsheets for many requirements engineer-
ing tasks: “Given the wide variety of contexts in which requirements are determined
and systems are built, researchers may be well-advised to focus on specific Tequire-
ments subproblems and consider building automation support in the form of add-ons

to existing general-purpose tools. Less accessible to practitioners are methods that



Chapter 6. SD as Systems Development 172

prescribe a major overhaul of an organization’s requirements process and the use of
large, monolithic tools” [SS96].

The tkeden interpreter in EM embodies the general principles of the spread-
sheet. The interpreter improves on the conventional spreadsheet by providing means
to define dependencies and the metaphorical representation of variable values in
scripts. The modeller is free to extend the basic interpreter by adding more scripts
that define underlying algebras for representing the subject within different contexts.
The tkeden interpreter, and the approach to modelling upon which it is based, has
proved accessible to people from various backgrounds. It integrates well into differ-
ent disciplines, such as engineering and education, and is learned quickly by people
in those disciplines. Evidence is in the form of a variety of EM projects in different
disciplines, including the lift, 0XO [BJ94] (Chapter 2), sailboat [NBY94] (Appendix
B), railway [ABCY94c], classroom simulation [Dav96] and VCCS [BBY92] projects.

6.6 Conclusion

This chapter has shown that SD can be viewed as systems development. Central to

this is the generalization of the concepts of computer, program and programming

in SD:
e computer as artefact;
e program as system configuration;
e programming as the process of configuring systems.

An important result of viewing SD as systems development is that EM can be
thought of as an approach to developing software. Evidence in support of EM as an
approach to developing software is provided in the way of a favourable assessment
of how it addresses topical issues in SD and requirements engineering.

There are those who would argue that there is nothing wrong with the con-
ventional view of SD. After all, there are powerful tools and techniques based on

the traditional concepts of computer, program and programming in SD:

e computer as an electronic computer;




Chapter 6.5D as Systems Development 173
e program as a sequence of actions stored in a digital computer;

e programming as the process of constructing the sequence of actions in a digital

computer.

There is evidence of these techniques and tools being used successfully in industrial
software projects [BH95].

The fact remains that the software industry is in crisis despite the use of
powerful methods and automated tools in SD. Reports on the software industry,

such as those by Gibbs and Jones [Gib94, Jon95], present a bleak picture:

e for every six new large-scale software systems that are put into operation two

others are canceled;

o the average SD project overshoots its schedule by half with larger projects

doing even worse;

e three quarters of all large systems are termed operating failures which means

that either they do not function as intended or are not used at all.

This crisis is not a recent phenomenon. In the autumn of 1968 the NATO Science
Committee convened some fifty top academics and industrialists to discuss the grow-
ing problem within the software industry. It was decided during this meeting that
SD must be turned into an engineering discipline to solve the software crisis. Gibbs
observes that, although this realization was made around a quarter of a century ago,
software engineering generally remains a term of aspiration.

It might be argued that at least SD has the essential theoretical founda-
tion required for an engineering discipline whereas EM does not. Shaw, cited in
[Gib94], argues that engineering disciplines share common stages of evolution. She
has observed parallels between software engineering and chemical engineering. Like
software developers, chemical engineers try to develop processes to create safe high
quality products as cheaply and quickly as possible. Unlike most programmers, how-

ever, chemical engineers rely heavily on scientific theory, mathematical modelling,

proven design solutions and rigorous quality control methods.




Chapter 6. 5D as Systems Development 174

The state of the software industry nevertheless suggests that perhaps the
existing theoretically based computer science is not necessarily the right science for
industrial SD. Shaw [Gib94] makes the point that, in comparison with established
engineering disciplines, software engineering is less mature. She argues that software
engineering is more like a cottage industry than a professional engineering discipline.
Although the demand for more sophisticated and reliable software has boosted some
large-scale projects to the commercial stage she argues that theoretical computer
science has yet to build the experimental foundation on which software engineering
must rest. EM provides the flexibility for experimentation and the emergence of
theories that are appropriate to particular application domains that is arguably
lacking in theoretical computer science.

The conceptual framework of computer science has been extended in the past
to address the topics outlined previously in this chapter. Indeed, advances over the
years based on additions to the traditional concepts of the computer, program and

programming have led to breakthroughs in SD [Bro87]:
e high-level languages;
e object-oriented programming;
e artificial intelligence and expert systems;
e program verification;
e “automatic” programming;
e graphical programming;
e environments and tools.

However, Brooks argues that these advances address the accidental difficulties of
software: “those difficulties that today attend its production but are not inherent”
[Bro87]. Promising attacks on the essential difficulties of software have more in spirit

with EM than SD, as discussed previously in this chapter. Though it is possible

that the current paradigm of theoretical computer science could be extended even




Chapter 6. SD as Systems Development 175

further, Kuhn [Kuh70] warns that over-extending a paradigm eventually leads to its
collapse and replacement by another more appropriate set of concepts.

It might be argued that the new concepts of computer, program and program-
ming in EM are too radical and signify too great a departure from the traditional
paradigm of computer science. Milner identifies the need for a common framework
in which to unite many formalisms: “Computer scientists, as all scientists, seek a
common framework in which to link and organize many levels of explanation; more-
over, this common framework must be semantic, since our explanations are typically
in formal language” [Mil93]. Others call for a complete overhaul of the paradigm
of computing: “A new paradigm ... must fundamentally change the way we look at
problems we have seen in our past. It must give us a new framework for thinking
about problems in the future. It changes our priorities and values, changes our ideas
about what to pay attention to and what to consider important” [Lie96].

In conclusion, EM can be thought of as an approach to SD so long as the
generalized concepts of computer, program and programming are accepted. As
the above arguments and counter-arguments indicate, there seems to be no way of
predicting whether the new paradigm will be adopted by the SD community. Kuhn
argues that changes from an existing paradigm to a rival paradigm depend on the
unfathomable social structure of the community and the social processes by which
the community is persuaded to adopt the new paradigm [Kuh70]. But whether or
not EM is adopted is surely not as important as the need for the SD community
to be actively searching for alternative paradigms in case the existing paradigm
does not lead to the all-important science that will form the necessary foundation
of software engineering. The existing paradigm might evolve into a paradigm that

solves the software crisis, but can the industry afford to wait and see?

6.7 Limitations of EM for developing software

Having concluded in the previous section that EM can be viewed as an approach to
developing software it is important to point out a number of practical limitations of
EM in this respect. These limitations are characteristic of EM, and do not necessar-

ily apply to approaches to systems development in general. They are consequences



Chapter 6. SD as Systems Development 176

Unsuccessful Successful

No historical software measurement data Accurate software measurement

Failure to use automated estimating tools | Early use of estimating tools

Failure to use automated planning tools Continuous use of planning tools
Failure to monitor progress in milestones Formal progress reporting
Failure to use design reviews Formal design reviews

Failure to use code inspections Formal code inspections
Generalists used for critical tasks Specialists used for critical tasks

Failure to use formal configuration control | Automated configuration control

User requirements creep > 35% User requirements creep < 15%

Table 6.9: Patterns of large software systems: failure and success.

of an approach that emphasizes creativity and generality in systems development.

6.7.1 Quality

It is becoming increasingly clear to practitioners that approaches to SD in the future
must provide support for quality control [Jon95, Gib94]. It is an empirical fact
that testing to find and fix bugs is the most expensive and time-consuming aspect
of SD [Jon95, Boe85]. It follows then that the most effective way to reduce the
cost and time of software projects is to reduce the number of software defects that
reach the test phase of SD. Jones is clear about the importance of quality control:
“From a technical point of view, the most common reason for software disasters
is poor quality control.” Table 6.9 from [Jon95] shows the direct link between
successful software projects and the use of defect prevention planning and pretest
defect-removal activities.

EM is limited as an approach to SD because it does not provide support
for quality control. EM does not provide techniques for dealing with metrics, us-
ing estimating and planning tools, monitoring milestones, formally reviewing and
inspecting designs, or controlling configurations. Chapter 2 introduces EM as a
means by which the modeller represents their conception of the subject as it evolves
[Bey97). Since the techniques used in quality control assume preconceptions about

the subject, embodied in methods and automatic tools, it would be unprincipled to



Chapter 6. 'SD as Systems Development 177

include such techniques within EM except in the most general form.

Pugh’s views on quality control in PD provide a useful insight into the issue
of quality control in EM and SD. Pugh points out that quality control in PD is
traditionally based on mathematics and detailed knowledge about components. This
parallels quality controlin SD, indicated in Table 6.9 by the use of formal techniques
and the associated low requirements creep (less than 15 percent). Pugh argues
that the abstract mathematical models and detailed knowledge about components,
required to control quality in PD, does not exist in the case of innovative products.
In these cases quality can only be specified in general terms, where imposing quality
control can have the undesired effect of producing an unsuccessful conventional
design instead of a successful innovative one. This accords with the status of quality
and its control within EM.

Pugh clarifies his position by contrasting total design with the Quality Func-
tion Deployment (QFD) approach to design that, rather like SD, is based on the
customer requirement. The difference, as identified by Pugh, is that total design
can be performed without a requirement whereas QFD cannot: “QFD evolution is
customer requirement/product driven, while the work described in the design core
is driven by more fundamental issues, and can be operated in situations where ini-
tially there is no product, and hence no ‘voice of the customer’ ” [Pug91]. Pugh
sees QFD as becoming increasingly powerful procedure as the design becomes con-
ceptually static. In the same way, the view of EM as an approach to SD is of a
process whereby the customer requirement evolves in parallel with the development
of the software so that quality control can play an increasingly significant role as

development progresses.

6.7.2 Management

It is widely recognized that an improvement in managing software projects has to
be made within the software industry. Jones points out that the first six factors
in Table 6.9 associated with software disasters are specific failures in the project-
management domain, and the next three can be indirectly assigned to poor man-

agement practices: “The fact that project-management is the source of so many



Chapter 6.-SD as Systems Development 178

problems with software applications means that problems first become visible to
customers and upper-management too late for effective damage recovery. Lack of
historical measurement of software projects and failure to initially use estimating
tools or carefully monitor progress are widespread. This means that projects that
get into serious trouble are not identified until very late in development” [Jon95].

EM in this thesis is limited as an approach to SD because it does not pro-
vide support for managing the process of development. In other words, EM does
not provide support for organizing technical resources and people with the aim of
improving the process of development [Pug96]. This thesis has focused on using EM
to develop products. By interpreting agents as modellers, designers and software
developers EM can be used to model the social and technical context for develop-
ment. Though this topic is outside the scope of this thesis, concurrent engineering
in EM is discussed in these terms in [ABCY94c, ABCY94a, ABCY94b].

Pugh’s views on management in PD provide a useful insight into the issue of
management in EM and SD. In Pugh’s model of design it is assumed that the core
phases, as described in Chapter 2, are universal, common to all kinds of design and
that it is other areas of design activity that give designs their distinctive character
[Pug96]. That is to say, different kinds of design may require different kinds of
information, techniques and management. Pugh identifies the area of management
as of special importance because design activity requires information, resources, and
support to be invested in action in the most effective way. This accords with the
view of EM being a general approach to systems modelling that is common to many
kinds of development including SD.

Pugh’s most recent model, the business design activity model, attempts to
locate the PD activity firmly within the overall structure of business [Pug96]. The
idea is that the design core is constrained not only by the elements of the product
design specification - the product design boundary - but also by the elements of the
business structure - the business design boundary. If the constraints of the business
design boundary are too severe, it will be necessary to take corporate action, re-

structuring the business to provide designers with more information, more resources,

and more support. This notion of management as a context is an appropriate way




Chapter 6. SD as Systems Development 179

to think of the relationship between management and EM.

6.7.3 Methodology

The methodical nature of the SD process is paradoxically both its strength and
its weakness. This thesis has shown that the conventional methodical approach to
developing software discourages creativity. However, when the requirements for a
system are stable the methodical approach can be extremely powerful and successful.
This accords with the association, shown in Table 6.9, between a low requirements
creep (less than 15 percent), the use of automated tools and formal activities. Per-
haps the greatest advantage of a methodical approach is that software developers
need only be specialists in the SD method and not in particular real-world domains,
such as designing lift systems, sailing, playing OXO and constructing jigsaws.

EM is limited in comparison to SD because it is not a method. EM is
not a prescribed sequence of actions to be performed by the modeller. Chapter 2
introduces EM as a means by which the modeller represents their conception of the
subject as it evolves [Bey97]. Such a process is necessarily iterative in nature and its
details are determined by the complex interactions between the modeller and their
environment as they learn about the subject (1-agent modelling). Since methods are
reconstructions of previous conceptions of subjects, embodied in general techniques
and automatic tools, it would be unprincipled to include methods within the general
scheme of EM.

The lack of methodology in EM would probably discourage many practition-
ers from adopting it as an approach to developing software. However, there are

those who believe there has been a general over-emphasis on methodology:

e Kaplan warns that, by pressing methodological norms too far, we may inhibit

bold and imaginative adventures of ideas [Kap64] (5.4.2);

e Siddiqi and Shekaran predict a shift away from the requirements as the ba-
sis for methodical transformation into code towards creating requirements by

observing problems in particular domains and inventing solutions [Sid94];

o Milner argues that the general belief that all systems have to be designed



Chapter 6./SD as Systems Development 180

within the rich conceptual frame of an existing methodology is wrong and
that new methods can be discovered experimentally through building systems

[Mil86].

These views accord with the notion that EM can be performed without a method
and that methods emerge through doing EM that are specific to particular domains
with their own conceptual frameworks.

There are parallels to be drawn between EM and PD with respect to method-
ology. Part of the success of the Pugh’s model of design is that it provides a guide
to design rather than prescribes how design should be done: “I regard the model’s
structure as being analogous to a child’s climbing frame: it provides the framework
on which to climb, it imparts confidence and safety, yet it doesn’t prescribe or pre-
determine the methods by which the child gets to the top of the frame or indeed
around inside it” (Pugh [Pug91] p.50). This accords with the view of EM as a

framework for systems development rather than a prescriptive method.

6.7.4 Scale

Future approaches have to scale up to address the problem of SD in large-scale
projects. Jones’ findings show that most small software projects are successful, but
that risks and hazards of cancellation and major delays rise quite rapidly as the
application size increases: “the development of large applications in excess of 5,000
function points [or approximately 500,000 source code statements in a procedural
programming language] is one of the most hazardous and risky business undertakings
in the modern world” [Gib94].

EM is limited as an approach to SD because it does not scale up to large
projects. One reason for this limit to scaleability is technical: visualizations and
animations have to be simple given the current computer and tkeden interpreter
technology. Although alternative technologies are being considered it seems that
this limitation will always exist if the desired flexibility of the EM tools is to be
kept. Another reason for the limit to scaleability is to do with the principles of EM:
the modeller must be able to perceive the correspondence between the artefacts and

subject. Since this correspondence is central to EM it would be unprincipled to have




Chapter 6. SD as Systems Development 181

artefacts that were incomprehensible because of their size and complexity.

The relationship between EM and SD is similar to the relationship between
conceptual and detail design in PD with respect to scaleability. There is clearly a
difference between the sketch of a bridge produced during conceptual design and
the drawings for the construction of the bridge. The sketch is much simpler and
can be easily comprehended by the designer whereas the final drawings are orders of
magnitude more complex and typically incomprehensible except by analysis. More-
over, the simple conceptual sketch is essential to the eventual detailed description
and construction of the bridge. The process and artefacts of EM can be thought of

as the conceptual design and sketch in PD. The method and artefacts of SD can be

thought of as the techniques of analysis and the detailed drawing in PD.




