Contents

List o	f Tables	iv
List o	f Figures	V
Ackn	owledgments	. viii
Decla	rations	ix
Abstr	act	X
Abbr	eviations	xi
Chapt	er 1 Introduction	1
1.1	Research Motivation and Aims	1
1.2	Thesis Outline	11
1.3	Research Contribution	14
Chapt	er 2 Empirical Modelling	16
2.0	Overview	16
2.1	Meeting EM in Everyday Life	18
2.2	The Framework of EM	24
2.2	2.1 The Basic Concepts of EM	24
2.2	2.2 Enacting EM	28
2.3	Technical Issues of EM	36
2.3	3.1 Tools for Supporting EM	36
	3.2 Definitive Programming	
2.4	An Example illustrating EM	43
Chapt	er 3 Empirical Modelling and Software System Development	49
3.0	Overview	51

3.1	Open Development versus Closed World	54
3.2	Knowledge Construction versus Knowledge Representation	60
3.3	EM as an Open Development Model for SSD	66
Chapt	er 4 Distributed Empirical Modelling	73
4.0	Overview	74
4.1	The Need for DEM	77
4.2	A Framework for DEM	86
4.2	2.1 Constructing the Framework of DEM	86
4.2	2.2 The Collaborative Relationship between Modellers in DEM	99
4.3	Agency in AI, EM and DEM	104
4.4	Design and Evolution for SSD	112
Chapt	er 5 Implementation to Support Distributed Empiri	
5.0	Overview	126
5.1	Network Communication in dtkeden	129
5.1	1.1 A Distributed Architecture with Client/Server Communication	130
5.1	2 Synchronous Communication for dtkeden	136
5.2	Interaction Modes in dtkeden	145
5.3	Adaptable Reuse in dtkeden	153
App	endix 5-A: The use of LSD notation	168
App	endix 5-B: Virtual Agents	171
Chapt	er 6 Case Studies	173
6.0	Overview	173
6.1	A Railway Accident in the Clayton Tunnel	175
6.2	The Application of the Virtual Agent Concept	185
6.2	2.1 Reengineering ADM	185
6.2	2.2 Other Examples	189
6.3	Examples of Interaction Modes	193
App	endix 6-A: An LSD Account for the Railway Accident	197
App	endix 6-B: An Example of a Generic Observable (GO) – train	203

Chapte	er 7 Distributed Empirical Modelling for Requiren	nents
	Engineering	206
7.0	Overview	206
7.1	Requirements Engineering	208
7.1.	1 An Overview of Requirements Engineering	209
7.1.	2 Difficulties Within the REP	215
7.2	Reengineering the REP	222
7.3	A Situated Process of Requirements Engineering	232
7.3.	1 A Framework for the REP	232
7.3.	2 Applying DEM to SPORE	236
7.4	Two Examples of SPORE	242
7.4.	1 An ATM Software System	242
7.4.	2 A Warehouse Distribution System	253
Chapte	er 8 Conclusion	261
8.1	Research Summary	261
8.2	Research Limitations	269
8.3	Further Work	271
8.3.	1 Possible Applications of DEM	271
8.3.	2 An Further Extension to DEM	273
8.3.	3 The Improvement of dtkeden	274
8.3.	4 Evaluation of Computer-mediated Interpersonal Interaction	275
Bibliog	graphy	276
Glossa	rv	295

List of Tables

3-1	The summarised features of S-, E- and P-type software	00
4-1	A summary of the descriptions of S1-, S2-, E- and I-modelling	91
5-1	A comparison of GOs and ADTs	. 165
5-B	Different ways to declare a virtual agent	. 172
6-1	An account of the Clayton Tunnel railway accident	. 175
7-1	The problems identified by participants for an ATM system	. 243
7-2	Individual insights of different participants for an ATM system	. 245
7-3	Initial requirements from some participants in VORD	. 251
7-4	A comparison between SPORE and VORD	. 253

List of Figures

1-1	(a)	developer-centred SSD with users involved for consulting	4
1-1	(b)	developer-centred SSD with users involved for decision-making	4
1-1	(c)	SSD with users involved for co-development	4
2-1	Th	ne virtual correspondence within EM	29
2-2	Th	ne architecture of Tkeden	38
2-3	A	snapshot of the computer model for the hotel booking system	45
2-4	A	snapshot of the computer model for a hotel booking system after	
	fu	rther experiments	48
3-1		ne interdependent and inseparable relationship between an internal ocess and an external process	59
3-2	Kı	nowledge representation and knowledge construction for the	
	de	veloper	60
3-3	Th	ne situated structural coupling of observables	63
4-1	Gı	ruber and Sehl's shadow-box experiment	79
4-2	Th	ne relationship between the s-modeller and agents (the sole	
	mo	odeller in the system level)	86
4-3		ne relationship between the modellers and agents (modellers in the imponent agent level)	87
4-4	A	framework for DEM based on E-modelling	88
4-5	A-	modellers acting as internal observers in a	
	be	ing-participant-observer way	92
4-6	A	framework for DEM based on I-modelling	97
4-7	A	visualisation of a vehicle cruise control system 1	101
5-1		star-type logical configuration for the network communication in keden	131
5-2	Α	typical client/server communication model	133

5-3	The communication between the S-node and the A-nodes	. 135
5-4	The intercommunication mechanism between Eden and Tcl/Tk	. 138
5-5	The asynchronous communication in dtkeden	. 141
5-6	A synchronous model for remote communication in dtkeden	. 143
5-7	Decomposing large group communication into small group	
	communication on the basis of the DEM framework	. 147
5-8	An example of particularisation and generalisation	. 158
6-1	The modelling environment for the railway accident	. 177
6-1(a	A golbal view of the Clayton Tunnel	. 177
6-1(b	The second driver's view of the Clayton Tunnel	. 178
6-2	A signalman's view of the Clayton Tunnel	. 178
6-3	A snapshot of the entity passenger in ADM	. 186
6-4	A snapshot of the Eden scripts generated for the entity passenger	
	by the original version of the ADM translator	. 187
6-5	A snapshot of the Eden scripts generated for the entity passenger	
	by the author's revised version of the ADM translator	. 188
6-6	The application of reusable definitive patterns in the classroom	
	simulation system	. 190
6-7	A snapshot of virtual electronic laboratory	. 191
6-8	The partial hierarchical structure of the modified classroom	
	simulation system	. 192
6-9	Interaction in the broadcast mode	. 195
6-10	Interaction in the interference mode	. 195
6-11	Different contexts of a jugs game in the private mode	. 196
7-1	Requirements formulation: from fragments to requirements	. 224
7-2	The interdependency between SSD & REP	. 226
7-3	The SPORE framework	233
7-4	The experimental interaction of a participant	237
7-5	A collaborative working environment for cultivating requirements.	. 240
7-6	The ISM of a bank customer	. 244
7-7	A collaborative working environment for an ATM system	. 244
7-8	The ISM of a bank manager (snapshot)	246

7-9	VORD process model	249
7-10	Viewpoints for an ATM system in VORD	250
7-11	Event scenario for service access	252
7-12	A modified event scenario for service access	252
7-13	A collaborative working environment for manual redistribution	
	between warehouses	259
7-14	(a) Detailed view of the forms used in the warehouse artefacts	260
7-14	(b) Detail of panels representing observables (handles or oracles)	
	for some warehouse agents	260

Acknowledgments

This thesis would not have been written without the encouragement and guidance of my supervisor, Meurig Beynon. Thank you Meurig for picking me up out of the depths of despair, for enlightening me the profound knowledge of Empirical Modelling, and for giving me invaluable help throughout the research and writing of this thesis.

I would also like to thank all the members of the Empirical Modelling Group at Warwick University for providing a stimulating research environment. To Steve Russ I owe extra special thanks for many discussions and comments during my research and on thesis drafts. To Suwanna Rasmequan and Ashley Ward I owe thanks for their friendly help in various aspects of my work and proof reading.

Finally, my deepest gratitude goes to my parents for their love and support throughout my work, and my wife, Lisa, who has cared for our daughters, Sophy and Mimi. Without their assistance and support, I could not possibly go through these most challenging years of my life.

* * * * * * * *

Further thanks goes to Diane Sonnenwald for her constructive comments during the viva and to Meurig Beynon and Steve Russ for their useful help on this final version.

Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree. The work in this thesis has been undertaken by myself except where otherwise stated.

The perspective on distributed Empirical Modelling expressed in this thesis has been published in [BS99]. The various aspects concerning the application of distributed Empirical Modelling to requirements engineering has been represented in [SB98, SCRB99]. The view of Interactive Situation Model relating to software system development has been proposed in [BS98, BCSW99]. The example of the railway accident in the Clayton Tunnel has previously appeared in [SB98, BS99].

Abstract

Empirical Modelling (EM) is a new approach for software system development (SSD) that is particularly suitable for ill-defined, open systems. By regarding a software system as a computer model, EM aims to acquire and construct the knowledge associated with the intended system by situated modelling in which the modeller interacts with the computer model through continuous observations and experiments in an open-ended manner. In this way, a software system can be constructed that takes account of its context and is adaptable to the rapidly changing environment in which the system is developed and used.

This thesis develops principles and tools for distributed Empirical Modelling (DEM). It proposes a framework for DEM by drawing on two crucial theories in social science: distributed cognition and ethnomethodology. This framework integrates cognitive and social processes, allowing multiple modellers to work collaboratively to explore, expand, experience and communicate their knowledge through interaction with their networked computer models. The concept of pretend play is proposed, whereby modellers as internal observers can interact with each other by acting in the role of agents within the intended system in order to shape the agency of such agents.

The author has developed a tool called dtkeden to support the proposed DEM framework. Technical issues arising from the implementation dtkeden and case-studies in its use are discussed. The popular star-type logical configuration network and the client/server communication technique are exploited to construct the network environment of this tool. A protocol has been devised and embedded into their communication mechanism to achieve synchronisation of computer models. Four interaction modes have been implemented into dtkeden to provide modellers with different forms of interpersonal interaction. In addition, using a virtual agent concept that was initially devised to allow definitions of different contexts to co-exist in a computer model, a definitive script can be interpreted as a generic observable that can serve as a reusable definitive pattern. Like experience in everyday life, this definitive pattern can be reused by particularising and adapting it to a specific context. A comparison between generic observables and abstract data types for reuse is given.

The application of the framework for DEM to requirements engineering is proposed. The requirements engineering process (REP) – currently poorly understood – is reviewed. To integrate requirements engineering with SSD, this thesis suggests reengineering the REP by taking the context into account. On the basis of DEM, a framework (called SPORE) for the REP is established to guide the process of cultivating requirements in a situated manner. Examples of the use of this framework are presented, and comparisons with other approaches to RE are made.

Abbreviations

AI – Artificial Intelligence

DEM – distributed Empirical Modelling

EM – Empirical Modelling

ODM – Open Development Model

RE – Requirements Engineering

REP – Requirements Engineering Process

SPORE – Situated Process of Requirements Engineering

SSD – Software System Development