Chapter 2
Empirical Modelling

Empirical Modelling (EM) is a novel approach to human-centred, computer-based
modelling that has been developed at the University of Warwick over the last ten years.
Its character and working principles embrace several different disciplines, especially
psychology, cognitive science and computer science. Since the research for this thesis is
based on the framework of EM, this chapter will begin by clarifying the fundamental

principles and concepts of EM.
2.0 Overview

This chapter reviews and illustrates the concepts and principles of EM that form the
fundamental basis for this thesis. Section 2.1 provides a general introduction to EM
principles through an examination of scenarios that occur in everyday life. First, the
concept of a situated activity, in which human agents solve problems encountered in
everyday life, is introduced. A situated activity is to be distinguished from processes

centred on traditional rationalistic' algorithms. Within a situated activity, the human

! The term ‘rationalistic’ is used in this thesis in the same way that T. Winograd and F. Flores use it in
[WEF86]. It denotes the view that the formulation of systematic rules can be used to capture the principles
of an observed phenomenon in the real world.

16

factor, as the most important dimension of a soft process’, is addressed. By comparison,
traditional rationalism gives little attention to the role of human agents in dealing with
diverse situations through the enaction’ of a soft process in the real world. Moreover, the
need of using the computer as a tool to facilitate the cognitive activity of a human agent is
identified, in particular for a situated activity. Finally, the way in which EM research
seeks to support a human-centred, computer-based approach through situated activity is

highlighted.

Section 2.2 illustrates the framework of EM. Its basic concepts, observable,
dependency, agent and agency, are defined in the first subsection (2.2.1). Subsection 2.2.2
then discusses the enaction of EM on the basis of constructing and maintaining the
correspondences between the ‘mental model” of its actor, called the modeller, the
computer model, and its referent” in the real world. In establishing these correspondences,
the modeller identifies primitive eclements in the referent corresponding to the
fundamental concepts above, records them by introducing appropriate definitions,
functions and actions into the computer model, and also metaphorically explores, expands
and experiences diverse states of the referent by interacting with the computer model. As
a result, the enaction not only enhances the modeller’s understanding of the referent, but
also generates an interactive computer-based model as a by-product. With reference to
software systems development, this by-product is exactly the evolving software system
that is being constructed in the light of the modeller’s current understanding of the

referent. In other words, EM views a software system as a computer-based model, and the

> A soft process in this thesis refers to an intelligence-intensive process, such as developing a software
system, designing a new car model and investigating an accident. By contrast, a #ard process refers to a
formally-defined and well-structured mechanism, such as the manufacturing process of an assembly line
and the procedural instructions for operating a machine.

* The term ‘enaction’ rather than ‘execution’ is used in this thesis for the reason given in [STM93, p.17]: to
highlight the embedding of human and computer-aided human activities in the model.

* The term ‘referent’ refers to the subject in the real world being observed by the modeller. From the
perspective of EM, the referent is open and liable to change. In this thesis, the phrase “the referent
associated with the subject in the real world” is often simplified as the term ‘the referent’.

17

development of this system as modelling. More details will be given in the next chapter

(Section 3.3).

Section 2.3 discusses technical issues supporting the enaction of EM. First, several
tools previously developed for EM are reviewed (Subsection 2.3.1). By using these tools,
the modeller can create a computer model and enact EM in an interactive and exploratory
fashion. Amongst them, the tool tkeden has proved to be particularly successful in
supporting the principles and concepts of EM. Underlying the tool tkeden is the concept
of definitive programming [Yun92], explained in subsection 2.3.2. This kind of
programming captures the dependencies between objects, and between objects and their
properties, by declaring definitions resembling formulae in a spreadsheet. The use of

definitive programming makes it possible to enact EM as a situated activity.

In the final section (2.4), the example of a hotel booking system is used to
demonstrate the concepts and framework of EM. This example, developed using tkeden,
also reveals the advantages of definitive programming in supporting the enaction of EM

and constructing the intended software system as a computer-based model.

2.1 Meeting EM in Everyday Life

It may be difficult for a novice to understand the basic concepts and principles of EM.
This is because EM is not an approach to solving a problem on the basis of traditional
rationalism, where it is presumed that a good solution can be obtained by following a
rigid process and abstract rules. Instead, within EM, the method of solving a particular
problem is based on intelligence captured through practical experience [Bey94] — a

method that human agents tacitly use to solve problems encountered in the real world.

In fact, the fundamental principles of EM are neither elusive nor intricate. Indeed,

it is natural and essential for people to use these principles to solve problems in everyday

18

life, even though they are rarely made explicit. However, in spite of their simplicity, these
principles cannot easily be formulated as rigid processes and rules. One of the best ways
to understand the main principles of EM, therefore, is by considering scenarios in

everyday life. As examples of scenarios:

e A person is driving through London during the rush hour and intends to arrive

home as early as possible.

¢ Friends meet each other in the street and carry on a conversation.

e A student is using a word processor to edit a text file into a particular format.

Although such scenarios involve different situations and serve different goals, they have
one important thing in common: a coherent sequence of situated actions, called a situated
activity in this thesis, that is being constructed by the interaction between a human agent
and his/her environment’. An action is situated if it involves conscious reference to
context and choice of course of action. An action is not regarded as situated if it takes the
form of a prescribed response (that is, “l am not responsible for my choice of action™) or
if it is an unconscious automatic response (that is, “I am not aware of my choice of
action”). For example, in the first scenario, the situated activity for the driver can include
overtaking other vehicles, speeding up when the traffic is good, changing to an alternative
route when the traffic is too busy, and so on. In the same manner, the situated activity for
one of the friends in the second scenario involves listening and replying to the speaker,

changing the subject, getting distracted by other people or things, and so on.

These scenarios show that a situated activity is very different in character from an
activity that is specified by a formal algorithm (such as the operation of a machine by

following its instructions). Within a situated activity, each situated action, described by L.

> Although the term ‘environment’ can be used in a very broad sense, which incorporates external
surroundings and the internal mind, it is used here to refer only to the external surroundings of an
individual, unless otherwise indicated.

19

Suchman as a dynamic interaction with the actor’s external environment [Suc87], is very
difficult to prescribe in advance®. Examples can be readily found in these scenarios, such
as overtaking other vehicles in the first scenario, answering a question in the second
scenario and relocating a heading that appears at the bottom of a page in the third.
Unpredictable events require human agents — through uniquely human capacities’, such
as intelligence, experience, knowledge and the ability to use tools — to deal with each
emerging situation in ways that cannot be preconceived. For this reason, it is in general
hard to prescribe a situated activity by means of a formal (or semi-formal) algorithm
through which a human agent can interact with a specific environment through

preconceived, fixed and well-defined methods or rules.

In fact, one of the problems with any activity formally defined by an algorithm, if it
is to address the need for greater flexibility and realism, arises from its adherence to
certain rigid steps or fixed methods [Gog94, Tul95]. In particular, the rationalist emphasis
on regarding a specific situation as simply an instance of a more general class of similar
situations abstracts an activity in the real world from its context and turns it into a routine
mechanism. Because of this abstraction, and because of the inherent openness of the real
world, it is hard for a formalised process to express contingent knowledge of the real
world in terms of inductive inference and predetermined stimulus-response patterns

[Agr95, Fey75, Suc87, WF86].

Most software process models based on a formal method require developers to
follow a set of sequential activities that are well-structured and formally defined [Boe88,

Boo94, STM95]. However, it has been increasingly recognised that developers in practice

® As Suchman argues in [Suc87, p.52], plans that are prescribed can be regarded as “resources for situated
action, but do not in any strong sense determine its course”.

"It is very difficult to find the right word to include all details of these capacities, since they are all
intertwined and interdependent. For the sake of convenience, the term ‘knowledge’ will be used to
exemplify these capacities in this thesis. However, this is not intended to suggest that knowledge is the only
capacity of human agents.

20

have difficulty in respecting such rigid protocols [Fit96, Leh98, Rac97, SAGSZ97,
Suc87, Tul95, WF86], since the real environment confronting them is usually intricate,
chaotic and unpredictable. The real activities enacted by developers are to a large extent a
form of situated activity. That is to say, they take situated actions without reference to a
specific algorithm in order to cope with each emerging situation. From this perspective,
the concept of situated activity is arguably necessary in supporting SSD (in fact, it forms
the basis for the amethodical approach to be proposed by the author in this thesis (see

Chapter 1)). More detailed discussion of this issue is provided in the next chapter.

A situated activity is more versatile than a formalised activity for solving problems
in the real world. The most significant reason is because it is centred on human agents
rather than on strict laws, algorithms or so called ‘plans” arising from a particular account
of the world. In effect, most plans are simply used by human agents as a resource rather
than as a source of control in everyday life [Suc87]. In a situated activity, it is most
appropriate to give human agents autonomy for problem-solving purposes. By reflecting
on the surrounding resources, such as known information, individual experience and
knowledge, and the current state of the environment, human agents can conduct reasoning
in their minds to ‘preview’ possible results, and can consequently undertake
corresponding action towards a new expected or unexpected situation. Each action
undertaken, by promptly and tacitly affecting both the internal mind and the external
environment, leads to a new situation and concurrently enables the situated activity to
progress. In other words, situated activity, instead of prescribing preconceived activities
and specifying the stimuli-response relations between human agents and their
environment, highlights the importance of human agents coping with diverse situations in

the real world by taking the context into account.

In short, typical problem-solving in a situated activity, as described here, reveals

two features:

21

e The solution to a problem is context-dependent: it cannot be separated from the
problem’s context and then specified in a rigid way that does not take its

situatedness into account.

e The solution is human-centred: human agents, whose capacities can still not be
circumscribed or predefined through any formal logic or rules, play an essential

role in providing a situated solution.

Certainly, a formalised process can enjoy the benefit of high quality assurance
associated with an engineering discipline. However, the enaction of a situated activity
that is context-dependent and human-centred is arguably necessary in dealing with real
world complexity and uncertainty. Hence, a soft process is most appropriately enacted as

a situated activity, that is to say, taking full account of human agents and the context.

Relying upon situated action definitely has its disadvantages. For one thing, by
virtue of being human, a human agent at the centre of situated activity is inevitably error-
prone and forgetful, learns slowly from experience, and can be seriously distracted by
his/her environment [Hal89, Nor83, RB74]. These human factors are bound to influence
not only the end-result but also the structure of the situated activity. In practice, these
disadvantages caused by human factors also occur in most rationalistic models, but they
are deemed to be too philosophical and open-ended to take into account. For this reason,
most of these models leave the relationship between human agents and the enaction of
situated activity open. In effect, such models take it for granted that the reasoning and
thinking of human agents has the same internal coherence and consistency that would be
expected of a mathematical model. However, this assumption is dubious when such
models are interpreted in the real world, due to the openness of the environment and the

inevitable fallibility of human agents.

The degree of insight the human agent has into his/her situation determines the

quality of a situated action. This insight is expressed in terms of awareness of relevant

22

factors in the situation, and appreciation of the probable implications of action. In effect,
most of drawbacks of situated activity stem from limitations of human agents in respect
of cognitive activities [Nor83], such as understanding, thinking and reasoning.
Fortunately, history shows that the effective use of tools can to a large extent assist
human agents in performing these activities. For example, pencil and paper facilitates
reasoning for most people [FP88], LOGO games facilitate the thinking of children
[FSCSF88], and a physical model facilitates the understanding of physicians and chemists
in solving a problem [RB74, diS88]. Today, it is widely believed that the computer is one
of the best tools for human beings to facilitate the performance of these cognitive

activities [Cro94, DS97, FP88].

However, it is exceedingly difficult to make effective use of the computer to
support cognitive activities. For example, even though computer-based tools are already
used for many rationalistic models, they can only provide limited help. This is because
activity based on a formalised process is dominated by its algorithms independently of its
context. Most tools developed on the basis of the algorithm for supporting the process
cannot help but be context-independent. They are limited to dealing with the static
information prescribed in advance rather than capturing the dynamic information
emerging from the process itself. In other words, any information must be perceived and
specified in the early stages of the process; otherwise the tools can take no account of it.
This prohibits the tools themselves from coping with any unpredictable situation, a norm
in the real world, and inevitably limits their advantages. Diverse CASE (Computer-Aided
Software Engineering) tools exhibit this limitation. In view of the practical evidence,
some researchers doubt whether these tools, based on specific algorithms, can provide

sufficient support for software development in the real world [Blu93, BD93, Bub95].

From this perspective, it is important to use the computer in ways that best support

the cognitive activity of human agents in response to the openness and unpredictability of

23

situated activity. Recognising this, EM seeks to provide an approach that enables a human
agent engaging in a situated activity fo use the computer as an open-ended artefact to
explore, expand and experience his/her understanding of a situation, as gauged by their
ability to construe phenomena and anticipate the consequences of action. This human-
centred, computer-based approach has been promisingly applied to Al [Bey98],
educational technology [Bey97], concurrent engineering [ABCY94|, creative software
development [Nes97], geometric design [Car98], and requirements understanding [SB9S].
Ongoing research is applying this approach to decision support systems, business process

modelling, program comprehension [BS98] and software reuse.

2.2 The Framework of EM

EM is associated with enacting a soft process characterised by the features of situated
activity, but also drawing on the special capabilities of the computer to overcome the
limitations of human cognition. This section gives more details of what EM is and how it
works. First, the basic concepts of EM are identified. Then, the process of enacting EM is
described, and close attention is given to two key activities involved in this process:

observation and experiment.

2.2.1 The Basic Concepts of EM

Due to the openness of the real world, it is very difficult and provides little help to specify
a situated activity in a preconceived form. For example, in the scenario of driving home
(see Section 2.1), it is not sensible to preconceive the presence of a dog on the driver’s
way home or that the radio broadcasts that a world crisis is over. For this reason, it scems
to be plausible that a situated activity can only be described in a situated manner, that is,
situation by situation. In other words, a situated activity can only be understood by

modelling the interaction between its enactor and his/her environment with reference to

24

the situations that pertain moment by moment rather than by appealing to an abstract
conception of his/her behaviour. For this purpose, it proves useful to construe a situation

in terms of the following concepts: observables, dependency, agency and agent.

e An observable is a characteristic of a subject to which an identity can be

attributed.

e A dependency represents an empirically established relationship between

observables.

¢ An agent is an instigator of change to observables and dependencies.

e An agency represents an attributed responsibility (or privilege) for a state change

to an agent.

The above concepts are very general and broad. For example, the highway code
can be regarded as accounting for car-driving in terms of observables (such as traffic
signs, indicators, and traffic lights), dependencies (such as the relationship between the
car’s speed, and the speed-limit signposts and traffic lights), agents and agency (for
example: a driver is responsible for stopping his/her car when he/she sees a traffic light
on red). It is not too difficult to identify similar concepts in methods for SSD: for
example, entities and relations in an entity-relation model [Che76], and objects and
classes for an object model [Boo94, CY90]. However, as in the highway code, the
intention behind these models is to use these concepts to specify a process that is in
essence a situated activity in a preconceived form. As explained above, this is inadequate
and provides limited help for the real process, which cannot be specified in advance. In

contrast, EM makes effective use of these concepts in an open-ended fashion.

An observable in EM can be physical or abstract in nature, as illustrated by the
following examples: the power of the newly designed engine, the position of the

approaching aeroplane, the cry of the white seagull, and the time on Big Ben. In

25

conceiving a situation encountered in a situated activity, a family of relevant observables
is implicated. In modelling situation-by-situation, the presence of observables can be
intermittent rather than persistent, so that an observable can appear or disappear at any
moment in response to each situation that is being construed. For instance, in the driving
scenario, an observable, such as the dog, appears to the driver only whilst it is running

past his/her car.

A dependency in EM is not merely a constraint upon observables, but reflects how
the act of changing the value of one particular observable is perceived to change the
values of other observables predictably and indivisibly. In this respect, dependencies play
a significant part in construing a phenomenon [Bey98]. For example, in the driving
scenario, it is found that the view in the rear mirror is determined by following traffic,
and the car’s acceleration depends on the position of the accelerator pedal. In a procedural
interpretation, dependencies invoke hierarchical processes that can propagate the effect of
redefining the state of any observable to all relevant observables directly or indirectly
dependent on this redefined observable. For example, the brake lights are on when the
brake pedal is depressed, and the brake pedal is depressed when the driver’s foot pushes
down on the pedal. Moreover, like an observable, a dependency need not be permanent
but can instead be provisional. For example, on an icy road, the direction of motion of a

skidding car no longer depends on the position of the steering wheel.

In EM, identifying agents and their agency is “associated with attributing state-
change to what is construed as their primary source” [BeyMsc]. Beynon argues that
agency is “in the mind of the external observer” and is “shaped by the explanatory
prejudices and requirements of the external observer, and by the past experience of the
system” [BeyMsc|. A typical question that helps to identify agents and agency is: “who

are/is responsible (or who have/has privilege) for this state-change?” In the driving

26

scenario, the dog and the driver are agents when the responsibility (or privilege) for state

changes, such as control over their movement, is attributed to them.

It should be noted that the concepts of agent and agency in EM are quite different
from traditional agent models in the Al field, where an agent is generally defined as an
entity and its ability to perform a preconceived behaviour is called agency. The specific
entity is often granted or ascribed human-like mental states and is capable of interacting
with its external environment in terms of these mental states [DBP93a, Rao94, Sho93,
WIJ95, BT94|. Hence, these models stress the conceptualised mechanism of an agent. In
contrast, EM merely acknowledges the fact that agents come to be recognised by the
modeller, and regards agency as being shaped by repeated observations, interactions and

experimentation (see Section 4.3 for more details).

When these concepts are used in a situated, open-ended manner, the challenge of
construing a situation is to provide for their computer support. In EM, definitive notations
have a basic role in providing such support. A definitive notation is a simple
programming notation for formulating definitions. A definition is a formula of the form x
= f(yl, y2,...) similar in character to a formula in a spreadshect® [Yun92]. The value of
the variable x (dependent) is always equal to the evaluation of the user-defined function
with the current values of these variables y1, y2, ... (the dependees’). Any change to the
value of a dependee will give rise to a re-evaluation of the value of the dependent. For
example, the definition ‘A is B+C’ indicates the dependency of A on B and C so that any

change in the value of either B or C will cause a re-evaluation of A.

8 More complicated definitions could be considered from the perspective of higher-order dependency
[GYCBC96], which is being investigated by D. Gehring. This kind of definition is not taken into account in
this thesis.

° The new word “dependee’ corresponding to ‘dependent’ is made up to denote that the value of a dependent
variable is determined by those of its dependee variables.

27

The observables and dependencies associated with the current situation can be
expressed by a set of definitions called a definitive script. The ordering of definitions in a
script is unimportant. A redefinition of a variable automatically brings all its dependents
in a definitive script to a new state through a propagation process that re-evaluates all its
dependents. For example, in the definitive script *X is Y+A; A is B+C’, any change in the
value of either C or B will cause a re-evaluation of X (more details of implementation

issues are given in the next section).

2.2.2 Enacting EM

EM is a powerful form of interactive modelling. It allows the modeller to use the
computer to create an artefact'’, an interactive computer-based model with something of
the character of an engineering prototype. In order to enact EM, the modeller must first
build up a virtual correspondence (as shown in Figure 2-1) between the computer model
and its referent. In enacting EM, the modeller ‘embeds’ knowledge about observables,
dependencies, agents and agency in the computer model. Interacting with the computer

model allows the modeller’s insight into the situation to be accessed.

Such a computer model of a situation is versatile — it can be used in dealing with
many different subjects. The subject is typically an intelligence-intensive process (a soft
process in the terminology of this thesis), such as developing a software system,
understanding requirements, designing a geometric model, or investigating an accident. In
using EM in SSD, it is envisaged that the same model may be used for understanding

requirements of a software system and for its subsequent development.

1% An artefact used for a situated activity can be a physical model, a graphic drawn on a piece of paper, a
computer model, and so on. However, within the framework of EM, it is recommended that the artefact can
be constructed as an interactive computer model in order to make the best use of the computer’s
advantages, as discussed in the previous section. Therefore, the terms ‘artefact’, ‘computer model’ and
‘computer-based model” are used interchangeably in this thesis.

28

affect Observable affect
Dependency

interact interact

m _ Virtual correspondence The rierferent

The computer model

Figure 2-1. The virtual correspondence within EM

It is convenient to conceive the virtual correspondence in Figure 2-1 as established
by two auxiliary correspondences. These auxiliary correspondences connect the
modeller’s ‘mental model” of the current situation with the computer model and with the
referent respectively. The concept of a mental model is introduced to acknowledge the
fact that the modeller generally has insights, beliefs, and expectations of the situation (cf.
the characterisation of knowledge in footnote 7) that have yet be taken into account or are
in conflict with the computer model or the referent. The correspondence between the
mental model and the referent is established by the interaction depicted on the right-hand
side of Figure 2-1. This interaction between the modeller and the referent enables
information exchange and creation. Each change that occurs in the referent, whether it is
triggered by the modeller or not, may affect the mental model. The correspondence
between the mental model and the computer model is established by the interaction
depicted on the left-hand side of Figure 2-1. In this case, the modeller is empowered to
interact with the artefact, and may also be affected by any change in the artefact. The

insight gained by the modeller through establishing the virtual correspondence is

29

expressed in coherence between an abstract explanatory model — or construal'’ — in the
modeller’s mind, the physical embodiment of this construal in the computer model, and a

situation in the referent.

In constructing the virtual correspondence, the modeller can identify primitive
clements in the domain being modelled corresponding to the fundamental concepts
above, and then record them by introducing appropriate definitions, functions and
actions'” into the computer model. A typical step in this process involves the
identification of a dependency and the introduction of the definition into the computer
model. From the modeller’s perspective, a definition is “recording a dependency between
the observables”. From a computational perspective, the abstract semantics of introducing
such a definition is typically similar to that of introducing a new formula into a
spreadsheet to which a visualisation of cell values is attached. In particular, the
dependencies amongst observables are automatically maintained (that is, any change in a
dependee is propagated to all its dependents. More details are given in Section 2.3.2).
Unlike traditional programming codes, definitions do not have to be entered and
organised sequentially. Because of these properties, the construction of such computer-

based artefacts is a useful vehicle for exploring and developing insight.

EM is a means of constructing knowledge in an experiential rather than a
declarative fashion: the modeller’s insight is expressed as coherence between
expectations in the mind and the experimentation that can be performed on the computer
model and/or in the referent. The principle resembles ‘what if® experiments with a

spreadsheet. The modeller introduces new definitions to impose a change of state upon

"D, Gooding introduces the term ‘construal’ in analysing Faraday’s experimental practices. He regards a
construal as “a means of interpreting unfamiliar experience and communicating one’s trial interpretations”
[Go090, p.22] and argues that “a construal cannot be grasped independently of the exploratory behaviour
that produces it or the ostensive practices whereby an observer tries to convey it” [Goo90, p.88].

12 Actions are specified as procedures that are triggered by changes in the values of a particular variable.
[Bey97].

30

the embodied construal, that is, the computer model. Almost simultancously, the new
state of this construal is mediated to the user through the visual interface, and evokes a
change of state in the mind of the modeller. When this change of state is consistent with
the modeller’s expectations, it serves to reinforce the modeller’s confidence in the way in
which a situation has been construed. When the change of state confounds expectations,
the modeller must determine whether the situation has been construed in an inappropriate
way, for example by giving an incorrect definition, or whether a hitherto unsuspected
behaviour has been identified. In the latter case, there is a creative and often surprising

element of discovery that is rarely encountered in conventional modelling.

In fact, the modeller not only enriches but also to some degree embodies his/her
mental model through the continuous interactions with the computer model. This is
because the computer model is incrementally developed to correspond to the mental

model and then to the referent. More details are provided in the next chapter.

Theoretically, the enaction of EM is unbounded since it is not possible to take all
situations associated with a particular subject into account. As in everyday life, the
modeller continually confronts different unpredictable situations. A new situation can
cause a discrepancy between the modeller’s mental model, the computer model and the
referent in Figure 2-1. The modeller may interact with both the computer model and the
referent in order to resolve such discrepancies. Situated interaction of this nature
reflexively constitutes the situated activity of enacting EM, which cannot be prescribed

by algorithms in advance. It also accounts for the openness of EM itself.

Obviously, the main crux of enacting EM lies in maintaining the virtual
correspondence. With reference to the right-hand side of Figure 2-1, the modeller’s
interaction with the referent is not constrained by an explicit interface. Like an
experimenter, the modeller may not be aware of what actions can affect the states of the

referent. The interaction with the referent is open subject to empirically established

31

knowledge of the observables that can be changed, and the associated dependencies.
Interaction with the computer model on the left-hand side must be supported in the same
manner. For this purpose, the computer model must have automatic dependency
maintenance, that is to say, the model must be appropriately restructured in an automatic
fashion in response to any change to its elements. This feature allows the realisation of
the maintenance of the virtual correspondence. The necessary supporting technique is

provided in the next section.

EM does not claim that using a computer model as an artefact is the only way to
model a situation. After all, the human brain, supported by paper and pen, has performed
the same task quite effectively for hundreds of years. However, as explained in the
previous section (2.1), the computer has unusual potential as a supporting tool for helping
to overcome human cognitive limitations in information processing. Many cognitive
activities of human agents, such as reasoning and remembering, can be greatly improved
by externalising them to the computer. For example, in a ‘what if® experiment in a
spreadsheet, the modeller can ‘observe’ rather than ‘imagine’ or ‘conjecture’ possible
results from the artefact. This helps the modeller to reason more quickly and with more
confidence. In this sense, the computer model does serve as an artefact for improving

human cognition [Nes97, Rus97].

However, it is evident that most cognitive activities of human agents are too
complicated and sometimes insufficiently predictable to be completely automated.
Recognising this fact, EM makes best use of the capacity of the computer by delegating
to it routine and structured tasks that involve complex calculation and huge demands on
memory. At the same time, EM highlights the role of human agents in a situated activity,
allowing the modeller to carry out intuitive and situated procedures, such as the
identification of observables, dependencics, agents and agency. In this respect, the

enaction of EM is consistent with C. Tully’s concern about the mechanism of enacting a

32

software process model, which on the one hand is “a symbiosis of human agent and
computer” and on the other hand should be such as “not to hint at particular roles for

either partner” [Tul88, p.3].

Both auxiliary correspondences are reached through various interactive activities,
such as observation, experimentation, creation and so on. Since the first two are the

primitive and critical activities in EM, a more detailed explanation of them is given here.

e Observation

In EM, observation, which refers to the modeller’s ability to apprehend features of a
particular situation directly, is vitally important. Without it, cognitive activity reverts to a
traditional form: the modeller relies on imagination or conjecture without any assistance
from suitable tools. Observation can be invoked on both sides of Figure 2-1, that is, to
observe both the referent associated with a subject in the real world and the computer
model. At least two correlated psychological events relating to the enhancement of the

modeller’s insight are necessarily involved: perception and connection (cf. [Hal89]).

Perception is concerned with identifying features in the computer model and/or in
the referent. Connection involves associating these features with the mental model. The
performance of each event is deeply bound up with factors affecting cognition, such as
past experience, subjective belief, the understanding of a situation, and so on. At the same
time, the result of performing both events leads to an alteration in the modeller’s mental
model and to the formation of a new state which influences subsequent activities. In other
words, through observation, the modeller can not only construe the current situation but

can also enrich his/her resources for dealing with future situations.

Perception and connection play significant roles in establishing the virtual
correspondence between the computer-based model and the referent in the real world.

They account for the way in which information about the referent is propagated to the

33

computer model via the mental model, and vice versa. By this means, the referent can be
metaphorically represented by the computer-based model. For example, placing a lamp
on a desk can be represented and understood as placing a circle (representing the lamp)
inside a rectangle (representing the desk). In the same manner, the state of the computer
model can be referred to the state of the referent. For example, changing the position of

the rectangle in the computer model can be referred to moving the desk.

It may be claimed that observations are also carried out in enacting traditional
process models. In a narrow sense, a kind of observation is indeed performed. However,
in these models, observation is intended to pin down elements whose nature is context-
dependent within a particular context. These elements, ¢.g. entities and relations for an
entity-relation model [Che76], and objects and classes for an object model [Boo94,
CY90], are preconceived, prescribed and then isolated from the proceeding process until
— in view of a new functionality or context — a further change of these clements is
required. In other words, this kind of observation serves to draw a line to separate the
developed model from the referent. Accordingly, the developed model, which prescribes
a frozen domain, becomes well suited for the use of orthodox tools and methods that are
devised for implementation. This separation can make the implementation more effective

and robust, but at the price of being less adaptable (details are given in Chapter 3).

e Experimentation

The choice of the epithet empirical reflects the pivotal role that experimentation plays in
EM. In effect, it plays a ‘creator’ role for modelling a situation in EM, since it always
‘creates’ diverse new states with surprising discoveries that can enrich the procedure of
modelling a situation. Without experimentation, modelling a situation will be reduced to
‘imagining’ reliable patterns of state change in the same way that behaviour in
conventional programming is preconceived in response to each particular situation. In this

case, the method of modelling will degenerate into what Feyerabend in his book Against

34

Method has characterised as a ‘scientific” approach, which in fact is not easily capable of

discovering new ideas [Fey75].

Modelling a situation is the most clusive but fundamental aspect of the EM
approach. As Beynon argues [Bey98], a situation should not be “interpreted as referring
to an abstract computational state, but to something resembling a ‘state of mind’ that
derives its meaning from a relationship between a human agent and an external focus of
interest and attention”. Modelling a situation involves devising diverse interpretations of
the relationships between this situation and its diverse state changes. To do this, an
animation of knowing-by-doing through ‘what if” experiments is introduced. Instead of
reasoning (or imagining) possible results in his/her brain according to the current
situation, the modeller changes the state of the computer model (doing) to bring about a
new state of his/her mind (knowing). In this way, the modeller can enhance his/her
understanding of the situation and perhaps even make surprising discoveries by exploring

unfamiliar territory.

Theoretically, experimentations can be invoked both in the computer model and the
referent. However, EM puts greater emphasis on the computer model. This is partly
because in many cases performing an experiment in the real world is very difficult and
expensive, as is illustrated by the example of developing a new air traffic control system.
More importantly, the modeller can make the best use of the power of the computer as an
interactive modelling medium to achieve the principled theme of EM: to explore, expand

and experience the modeller’s understanding associated with the subject.

It should be noted that although observation and experimentation have been
discussed separately here, they are inseparably invoked by the modeller in order to
maintain the correspondences between the modeller’s mental world, the computer-based

model, and the referent in the real world.

35

2.3 Technical Issues of EM

Since EM highlights the importance of empirical experience arising from repeated
observation and experimentation, it fulfils the requirements for enactability described by

Tully in [Tul88]:

If we set out to develop models, formalisms or representations [for SSD],
then there is a strong case that they should be enactable — that is, should
take form of ‘process programs’. Enactability simply means that human
beings involved in the software process receive computer guidance and
assistance in what is an extremely complex activity. Put another way,
models are not just used ‘off-line’, as a means of studying and defining
processes, but also ‘on-line” while processes are being carried out, as a

means of directing, controlling, monitoring and instrumenting them.
In order to support the enactability of EM, the technical issues of supporting the
principles and concepts of EM, especially the development of computer-based tools, must

be considered.

2.3.1 Tools for Supporting EM

EM aims to enable the modeller to extend, expand and experience his/her mental world
through the interaction with the computer model. To build up such an interactive artefact,

several tools have been developed and these will be summarised briefly.

LSD (Language for Specification & Description) [Bey86] is an open-ended
notation used to account for the referent in the real world. It provides a description of
“those observables that are bound to an agent (stafte), those that it is conditionally
privileged to change (handle), and those to which it responds (oracle)” [BR94]. It also
includes an account of the dependencies between observables perceived by the agent
(derivates) and of the actions it is conditionally privileged to perform (protocol). It should

be noted that this description indicates the modeller’s provisional construal of subjects

36

and accordingly should not be viewed as a circumscribed specification, such as a

requirements specification as defined in [LK95].

Within the enaction of EM, the LSD notation is useful for recording the
identification and classification of agents, agency and observables associated with the
modeller’s observation of the referent and the model. In effect, an LSD account records
the modeller’s construal of state changes. Many different possible state changes and
patterns of behaviour may be consistent with this construal. For this reason, an LSD
account is not executable. To interpret an LSD account, the modeller needs interactive
tools to realise and explore state changes consistent with the description. The tools ADM

and tkeden, complementary to LSD and necessary for the enaction of EM, serve this
purpose.

The tool ADM (Abstract Definitive Machine) is used to study parallel state-change,
synchronisation of agent actions and openness in an LSD account [Sla90]. The modeller
can manually transform an LSD account to an executable program in the ADM. An
animation is then devised to give operational meaning to interaction between the LSD
agents (such as what an agent can refer to in a particular state and how it can act to
change the state). In this way, the modeller using the ADM can dynamically intervene
and redirect the execution of this animation by interacting with this model in order to

improve his/her understanding.

Another tool tkeden, one of the most successful tools for EM, is developed on the
basis of the fundamental principles of EM. Its basic architecture is shown in Figure 2-2.
In tkeden, there is a window-based interface based on a Tcl/Tk interpreter. This interface
provides the modeller with an interactive environment to introduce new definitions into
the computer model, and thus to observe their influence on the model’s visualisation.
Each definition is read into the Tcl/Tk interpreter as data and is stored prior to further

manipulation. Visualisation of the computer model is established through two

37

observational tools: DoNaLLD [ABH86] and Scout [Dep92]. The former is a two-

dimensional line drawing tool, and the latter deals with the issues of screen layout.

DoNaLD/Scout
Observational tools definitive scripts

(DoNaLD/Scout) ¢ | (with dependency maintainer)

Eden interpreter

Visualisation

A
DoNaLD/Scout Eden notation
notation

Interactive Interface
(within an Tcl/Tk interpreter)

Describes T ¢ Observes

Figure 2-2: The architecture of tkeden

The core part of tkeden is an interpreter called Eden [YYS88, Yun90]. This is both
a definitive language for specifying definitive state transitions and also a virtual machine
for maintaining the dependencies of given definitions in an interactive way. Each
definition is maintained in the form of formulae resembling those in a spreadsheet. When
the value of a dependee is changed, EDEN automatically propagates the change to its
dependents and re-evaluates the values of these dependents. The premise that
dependencies are automatically maintained is related to an indivisible state change
propagated so as to reflect change in the referent rather than in a control mechanism in
the programming sense. Nothing in such a model is preconceived, because no one knows

what definitions will subsequently be introduced by a user.

Both tools, the ADM and tkeden, are interactive tools for supporting EM. They
can be used independently and serve different purposes. The ADM focuses on the
concurrent systems modelling needed in order to exhibit appropriate behaviours
consistent with the LSD account. In contrast, the tool tkeden is more concerned with the

visualisation of state-changes to observables and dependencies. It is often useful to

38

combine concurrent systems modelling with visualisation. For this purpose, translators
from the ADM to tkeden (adm and adm3 — see Section 6.2.1) have been developed.

These allow an LSD account to be semi-automatically translated to a tkeden model.

2.3.2 Definitive Programming

One of the most important techniques behind tkeden is definitive programming,
contributed by Y.P. Yung’s PhD research [Yun92]. This technique, which refers to
definition-based programming, secks to “capture the dependency information of the
properties within an object and between objects by means of definitions™ [Yun92, p.5].
As described earlier, a definition is a formula of the form x = f (y1, y2, ...). The value of

the variable x is always obtained by evaluating the formula.

Definitive programming uses definitive notations to establish a state-transition
model in the computer. A definitive notation is a programming notation' that can be used
for formulating a set of definitions. DoNaLD and Scout are two examples of definitive
notations. A state of the model is then represented by a set of definitions — a definitive
script — and a transition is accomplished by modifying the definitive script. This
modification can involve overwriting an existing definition (redefinition) or just adding a
new definition. Each such modification changes the current state of the model and leads

to a new state by automatically re-evaluating the script.

To illustrate the concept of state transition in a model, consider the computer model
that is constructed by EDEN by building up a definitive script step-by-step (in the syntax
of EDEN and followed by its output) by introducing the following sequence of

dependencies:

B 1t is described as a “programming notation’ rather than a “programming language’ because it represents
only part of the information needed for general-purpose programming [Yun92, p.6].

39

1. Rectangle-area is Rectangle-length * Rectangle-width; writeln(Rectangle-area);
9 @14
2. Rectangle-length is 10; Rectangle-width is 20; writeln(Rectangle-area),

= 200

3. Rectangle-length is 15; writeln(Rectangle-area);

= 300

4. Cuboid-volume is Rectangle-area * Cuboid-high; Cuboid-high is 10; writeln(Cuboid-
volume);

- 3000

(332

5. Rectangle-length is 12; writeln(Rectangle-area, “,”, Cuboid-volume);

= 240, 2400

The initial state of the computer model is established by giving a definition of observable
Rectangle-area (step 1). By adding new definitions (step 2) and redefining an old
definition (step 3), the state of the model is changed. Three different outputs, resulting
from the first three steps, for the same observable Recfangle-area indicate that the re-
cvaluation is automatically executed. Given state 4, in addition to the explicit
dependency between Cuboid-volume, Rectangle-area, and Cuboid-high, an implicit
dependency between the observables Cuboid-volume, Rectangle-length and Rectangle-
width is also established. This implicit dependency is demonstrated in the output of the
last step in which the change to observable Rectangle-length (step 5) is propagated to the

observable Cuboid-volume.

In other words, when a redefinition of an observable in a definitive script is given,

a re-evaluation of the observables that are dependent on this observable is automatically

' In tkeden and LSD, the symbol ‘@’ denotes “undefined’.

40

invoked. The automated mechanism of maintaining the dependency between observables
provides a very important basis for programming in an interactive and exploratory

fashion [Yun92].

For SSD, this interactive programming technique enables the modeller to establish
an incomplete computer-based model and improve the model incrementally. In this sense,
programming becomes a matter of solving a problem rather than translating a
specification. The translation of a specification can be accomplished in a single pass by a
top-down or bottom-up approach without referring to the knowledge emerging from the
on-going process. Instead, the problem-solving process as a situated activity must make
progress incrementally in response to its situation and the emerging knowledge. Solving a
jigsaw puzzle is a good example of the piece-by-piece solution of a task. A divide-and-
conquer strategy is often used in this case. The most easily identified and more
geometrically significant pieces of a jigsaw, such as the four corners, might be put in
place first in order to provide further valuable information. Most solvers continue to add
to the jigsaw piece by piece in response to the current state arising from the completed
segments, rather than complete the jigsaw in a particular sequential order, such as from
the upper-left comner to the lower-right corner, without referring to the emerging

knowledge.

The value of a variable within definitive programming can be undefined and can
be automatically revised. This feature enables the programmer to define variables in
accord with their semantics. For example, even though its two dependees (length and
width) are not defined yet, the definition of the area of a rectangle can be given (as in step
1 above). Hence, the task of programming can be accomplished by local adjustment (that
is, by a piece-by-piece strategy). The incremental development feature is difficult to
achieve for traditional programming, in particular for procedural programming. This is

because, for traditional programming, any change to a program typically must be

41

performed from a global viewpoint, since it could affect other parts of this program.
However, with definitive programming, e¢ach local change is propagated to the whole
program and leads to the necessary re-evaluation. For example, changing the value of
Rectangle-length (in steps 2 and 3) will cause the values of Rectangle-area and Cuboid-

volume (in steps 4 and 3) to be re-evaluated.

For most traditional programming methods, an undefined variable is not allowed.
For example, step 1 can cause an error of data type during compilation in most traditional
programming languages [Ous98], if both variables Rectangle-length and Rectangle-width
are undefined. In addition, according to the sequential algorithm provided by any of these
methods, the definitions given in steps 2 and 3 do not change the value of Rectangle-area.

In other words, dependency maintenance is not supported by these methods.

Moreover, the exploratory programming empowers the modeller to experiment
with the computer model in order to enhance his/her understanding. Design is a trial-and-
error learning activity [Som92, VI1i93]. It is valuable to explore diverse situations in order
to capture a deeper understanding of a problem and its solution through a variety of
experiments. Giving a redefinition, that is, an experiment, the modeller can see —
experience — a state change in the computer model [Bey94]. In the light of these
immediately experienced state changes, the modeller can modify or qualify the virtual
correspondence and, more significantly, reconstruct his/her understanding. In this respect,
the theme of EM to a large extent accords with the concerns of constructivism'™:
knowing-by-doing, a very important concept widely used in education [Puf88]. The
invocation of experiments on the computer model, as actions on the subject in a
constructive model, is an interactive, situated mechanism whereby the understanding can

be extended, expanded and experienced.

15 Constructivism is characterised as “the continual restructuring of the relation between self and world,
where world implies both palpable and ideational reality” [Puf88, p.17].

42

In summary, definitive programming is very helpful for the modeller seeking to
enact EM in the form of situated activity. As described earlier, the openness of situated
activity enables human agents to cope with varied situations by taking situated actions
[Suc87]. In the same manner, it is necessary for the modeller to interact with the
computer model in an open-ended manner. Moreover, in order to ease the limitations of
human cognitive activities, it is helpful to use the computer as an artefact to improve
understanding of a problem and its solution. With the aid of the interactive and
exploratory features embedded in definitive programming, EM can serve these purposes

in a significant way.
2.4 An Example illustrating EM

In order to illustrate the concepts of EM and the use of those tools mentioned in the
previous section, the example of developing a hotel booking system is discussed here. To
make a reservation, the customer must tell the hotel receptionist both the arrival date and
the departure date. At the same time, the receptionist checks the availability of all room
slots (12 rooms) in the reservation tables for those dates. If there is an available room, the
receptionist puts the customer’s name into the room slot for each day of the intended stay.
According to the observation in the real world, two agents are identified by the modeller

in response to his/her observation from the process of making a reservation:
e The customer who wants to make a reservation;
¢ The receptionist who is dealing with the customer’s request.

Next, the modeller defines each of the agents in LSD. The LSD account of the customer

and the receptionist agents could be as follows:

43

agent customer (¢) {
state customer giveDate (¢) /* the customer ¢ intends to make a reservation */
oracle reservation_ok (c, d1, d2) /* the reservation for the customer ¢ during d1 and d2 is ok */
handle customer giveDate (¢) /* the customer ¢ provide dates of arrival day and departure day */
protocol
reservation_ok (¢, d1, d2) ==FALSE => customer giveDate (¢) = TRUE;
reservation ok (¢, d1, d2)==TRUE => customer giveDate (¢) = FALSE;
3

agent receptionist {
oracle customer arrival day (¢, d1), customer depart day (¢, d2), room_slot (n,d)
handle
customer arrival day (c, d1) /* customer ¢ is expected to arrive at day d1 */
customer depart day (c, d2) /* customer ¢ is expected to depart at day d2 */
room_slot (n, d) /* the content of room slot n at day d */
reservation ok (¢, d1, d2)
derivate
customer_arrival day (¢, d1) = customer_giveDate (¢) ? input(c, d1) : @
customer depart_day (¢, d2) = customer giveDate (c) ? input(c, d2) : @
room_availability (n, d1, d2)
= (3d, d1<=d<d2, room slot (n, d) ! =) ? “reserved” : “available”
protocol
customer_arrival day (¢, d1) != @ && customer depart_day (¢, d2) =@ &&
reservation ok (¢, d1, d2) == @ && (In, room_availability (n, d1, d2) == “available™)
=>reservation ok (c, d1, d2) = TRUE, (room_slot (n, d) == ¢, Vd, d1<=d<d2)
customer_arrival day (¢, d1) != @ && customer depart_day (¢, d2) =@ &&
reservation ok (¢, d1, d2) == @ && (¥n, room_availability (n, d1, d2) == “reserved”)
=>reservation ok (c, d1, d2) = FALSE

It should be noted that these definitions are personal and subject to revision during the

enaction of EM.

Now, the modeller can create a computer model corresponding to the LSD account.
A general rule is to replace derivates by definitions and protocols by actions. For

example, the following Eden definitions are given:

all rooms availability is [roomAV 101, roomAV 102, roomAV 103, roomAV 104,
roomAV 201, roomAV 202, roomAV 203, roomAV 204,
roomAV 301, roomAV 302, roomAV 303, roomAV 304];

roomAV 101 is check room availability(1, d1, d2),

roomAV 102 is check room availability(2, d1, d2),

roomAV 304 is check room availability(3, d1, d2),

Also, visualisation using the observation tools is taken into account during the creation of
the model. For example, a Scout screen corresponding to the reservation table is created

as shown in Figure 2-3.

44

SHLTEET

111 LI 103 104
Hi. 5w EiA#. Buohss
o1l e 3 oM
Wi, Lerainn B Edwsids
a g I M
Hr. Esnk Hewn. Black Hr. Wegrar

DATE: 18/ 04// 99

Figure 2-3. A snapshot of the computer model for the hotel
booking system

To animate the process of making a reservation as described above, the modeller
can select a date and a room slot and then enter the customer’s name. After the
interaction, it is found that data lists in the form of a reservation book used by the
receptionist are needed in order to save the entered data. Hence, the following definitions

: 16
arc given

Year99 is [Jan99, Feb99, Mar99, Apr99, May99, Jun99, Jul99, Aug99, Oct99, Nov99, Dec99];
Jan99 is [day010199, day020199, ..., day310199],
Feb99 is [day010299, day020299, ..., day280299];

Dec99 is [day011299, day021299, ..., day311299];
day010199 is array(12),

day311299 is array(12),

Thus, the modeller can create procedures to store the customer’s name in the data

lists above when the name is entered into a room slot for a specific date.

Moreover, it is found that identifying the reservation table as an agent is helpful in
introducing automatic checks on data integrity. For example, the agent’s protocol can be

configured to prevent the receptionist from mistaking the availability of a room slot when

'S The current EM tools do not support the functionality of a database, so data manipulation is difficult. This
so far is a limitation of EM (see Section 3.3). For the sake of simplification, the details of data manipulation
are omitted here and in most examples given in this thesis.

45

making a reservation. An appropriate LSD account for the reservation table agent is

defined as follows:

agent reservation table (d1, d2) {
state
room_slot (n,d) /* the availability of room n at date d */
room_availability (n, d1, d2) /* the availability of room n during the period of d1 and d2 */
handle reservation_error /* the same room slot is allocated to different customers */

derivate
room_availability (n, d1, d2)
= (3d, d1<=d<d2, room slot (n, d) ! =) ? “reserved” : “available”
protocol

room_slot (n, d) != ¢ && reservation_ok (¢, d1, d2) !=TRUE && input_roomslot (n, d, ¢) == TRUE
=>reservation_error = TRUE;

At the same time, for the LSD account of the receptionist agent, the definition of the
observable room_availability(n, dl, d2) is removed and the following protocol is given in

response to the new added agent.

handle input roomslot(n, d, ¢) /* the receptionist intends to input the cusomer name ¢ into room slot n for day d */
protocol
reservation_error == TRUE => input roomslot (n, d, ¢) = FALSE;

The decision made by the modeller to identify a reservation table agent indicates that the
modeller views making a reservation and the rules of making a reservation as

conceptually distinct.

The modeller can continually use the computer model to explore, expand and
experience his/her understanding of the intended system through ‘what if” experiments

for diverse purposes. For example, the following experiments have been conducted:

1. What if each of the room slots is coloured to indicate its availability?

2. What if the customer changes his/her arrival date?

3. What if the receptionist needs to reallocate one or more reserved rooms to

make optimal use of the hotel’s accommodation?

46

4. What if the customer asks for information about a room, such as price, bedding

style, windows’ orientation, and so on?

5. What if a reserved room slot is re-reserved for another customer?

Each experiment could change both the LSD account and the computer model. In the case
of experiment 1, the following is added into the LSD account of the reservation table

agent:

state room_slot colour (n, d1, d2)
derivate
room_slot_colour (n, d1, d2) = (room_availability(n, d1, d2) = = “available™)? “grey” : “yellow”

In addition, the computer model is modified for invoking experiments 1 and 4. Figure 2-4

shows a snapshot of the revised computer model.

In the same manner, more experiments can be invoked by means of definitive
programming for improving the understanding of the intended system. This
understanding helps to maintain the virtual correspondence between the computer-based
model and the system used by the receptionist in the real world. In most cases, the
exploratory and interactive process of enacting EM must be stopped at some moment in
order to deliver the developed system to the user. However, the openness of the
developed system can still be persistent, and this in turn allows the user as the modeller to
continue the enaction of EM during the use of the system in the real world. (More details

are provided in the next chapter).

47

Price par wight: T
wapplemmt . sxtre bad far choldren

Figure 2-4. A snapshot of the computer model for a hotel
booking system after further experiments

48

