Chapter 3

Empirical Modelling and Software

System Development

Software system development (SSD) is a process whereby human agents — including
developers, users and other participants — construct and use a software system for their
practices. The basic approach of traditional software engineering (SE) is broadly to
formalise the development process abstractly without reference to the particular
characteristics of the product to be developed. This promotes a conventional perspective
on SSD where there is a clear separation between the abstract development process and
the developed product (that is, the software system). To formalise this process, it is
divided into several phases to be performed in a linear order'. Each phase is characterised
by engineering practice, that is, it involves the application of proven methods, techniques
and tools in a systematic and cost-effective fashion. Through such a well-defined phase-
based process, it is expected that high-quality software can be produced with finite
resources and to a predicted schedule. When a system being developed is well defined, its
complexity is relatively low, and the overall project and technical risk are reasonably well
understood, such a linear process meets this expectation. Unfortunately, these conditions

are rarely achieved in the real world, and the worst thing is that changes in the real world,

" n a broader sense, a spiral model [Boe88] is also enacted in a linear order.

49



including people, information, technology and the process itself, are rapid and inevitable.
Thus, a key challenge of SSD, especially for ill-defined and volatile software systems, is
not to develop high-quality software product in a one-off shot but rather to adapt its

process and its products to a rapidly changing environment [cf. Flo87, Fis93].

This thesis challenges the separation between the development process and the
developed product associated with the conventional perspective on SSD. It proposes a
radically different strategy for SSD in which the product-under-development is concretely
represented by interactive artefacts throughout the development process. The presence of
this concrete representation of the product-under-development leads to a development
process that is no longer abstract, broadly preconceived and product-independent, but is
situated, open-ended and product-specific in nature. For this reason, this thesis does not
attempt to achieve greater understanding of the development process through
formalisation and description in order to gain better control of SSD’. Instead, the
development process in this thesis is viewed as a collection of situated activities that arise
in the construction and use of the required software system in the real world. From this
perspective, the investigation of SSD in this thesis is focused on the interactions between
human agents, and between human agents and the product-under-development, as
represented by interactive artefacts that reflect the evolving software system (cf. [Flo87,
Gog97, Leh98]). Although this broader view of SSD is still in its infancy, the discussion
about SSD in this chapter and other chapters (Chapter 4, 5 and 7) exhibits its potential to
enhance the suitability and adaptability of the development process and the software

system to be developed.

% Such attempts have led to the investigation of what are currently called information systems development
methodologies [AF95, HKL95].

50



3.0 Overview

The purpose of this chapter is to highlight the powerful potential of using EM as an open
development model for SSD. As explained in the previous chapter, EM is, in essence, a
situated activity: an interactive and situated process without presumed sequential phases
and rigid algorithms. In contrast to the ‘linear thinking” (in Pressman’s term [Pre97]) of
the phase-based development process, EM entails ‘experimental thinking” whereby
iterative experiments are invoked to adapt the system to the changing environment in an
interactive and exploratory fashion. This experimental process is suitable for developing
open, ill-defined software systems, whilst linear thinking has difficulty in adapting

systems to a rapidly changing environment.

Section 3.1 compares EM with a phase-based process model, with particular
reference to the enacted process itself and its enactor. This comparison initially focuses
on the fundamental principles of both EM and a phase-based process model. On the basis
of traditional rationalism, a phase-based model is concerned with setting patterns of
activities by applying engineering principles and concepts for guiding and managing the
process of SSD. It is assumed that the enacted process can benefit from these formally-
defined, well-structured activities, but this process also suffers from the difficulties of
adaptation to the rapidly changing real world due to its adherence to these fixed rigid
activity patterns. In contrast, EM concentrates on creating and communicating experience
for the modeller through the process of constructing a computer-based model for
informing the development of the software system [BCSW99]. Because of its
situatedness and openness, EM activity is highly adaptable to the real world, though

sometimes at the cost of efficiency and effectiveness.

This section also takes the human dimension of enacting a process model into

account. Since the subjectivity of a human agent can influence the enacted process to a

51



significant extent, most models are intended to minimise this influence in order to ensure
the expected quality of the developed system. These models stipulate fixed patterns of
activitiecs with rigid algorithms that have paramount importance in guiding and
controlling the enactor’s behaviour. In contrast, EM is dominated by the modeller and
his/her experience. No pattern of activities is given for guiding the process of EM, so that
the modeller is able to undertake activities in a situated manner in order to cope with

diverse situations arising from the process.

Section 3.2 explores the issue of knowledge manipulation in process models for
SSD and in EM. Most traditional process models can be seen as emphasising either
knowledge representation or knowledge construction. Process models oriented towards
knowledge representation, such as the object-oriented model [Boo94], structured analysis
and design [SS95, Pre97] and the entity-relation model [Che76], focus on the process of
recording and communicating the knowledge of human agents (including the developer
and the user). They seek to capture the knowledge in advance as completely and
accurately as possible and to specify the captured knowledge by using context-free
abstractions, for example through textual and diagrammatic metaphors. Process models
oriented towards knowledge construction, in contrast, do not rely on the completeness
and consistency of the knowledge that is represented in advance and separated from the
context of the enacted process. These models, such as prototyping [Rei92] and Rapid
Application Development (RAD) [Mar91], seek ways to construct knowledge with
reference to the context, and hence focus on the process that enriches the knowledge of
human agents in a situated manner. Attempting to take both knowledge representation
and knowledge construction into account, EM aims to create a computer-based model to
represent the modeller’s knowledge associated with the intended system and to use
situated modelling to enrich the knowledge. Graphical metaphors and dynamic interaction

between the modeller and the computer-based model are exploited for the purpose of

52



knowledge representation. More significantly, EM enables the modeller to facilitate
knowledge construction in a situated manner by using the computer-based model as an

interactive, open-ended artefact.

EM is in accord with new trends in process models for SSD, such as prototyping
[Rei92, Mar91, And94] and scenario-based analysis [DF98, RSB98, SDV96, WPJH98],
in seeking to improve the knowledge of the developer (and/or the user) rather than to
prescribe the developer’s behaviour [DF98]. Such an improvement can only be achieved
to a limited extent, however, if the construction of the developer’s knowledge and the
construction of the represented knowledge in a representational medium are
accomplished independently (cf throwaway prototyping in [And94]). Instead, EM
enriches the modeller’s knowledge by ‘what if” experiments resembling sensitivity
analysis in a spreadsheet and at the same time interactively reconstructs the represented
knowledge in response to changes in the modeller’s knowledge. This enrichment by
means of an interactive representational medium (that is, a computer-based model) gives

EM the potential to enhance the developer’s knowledge to an even higher degree.

Section 3.3 considers the use of EM as an open development model (ODM) for
SSD. First, three kinds of software classified by M. M. Lehman are discussed: S, E and P-
type [Leh94b]. Special attention is given to the E-type software, which is unbounded, ill-
defined and liable to change in its operational domain in the real world. Lehman argues
that the software itself is a model whose development and maintenance (that is, its
evolution, to use his term) must be performed through feedback emerging from its
operational domain. Unlike Lehman’s feedback system, EM creates the software as a
computer-based model in which not only feedback but also experience gained through
experiments can be used as resources for the evolution of the software. Moreover, with
the user of the developed software system in the role of the modeller, and with the aid of

definitive programming, EM enables the software system to evolve in its operational

53



domain. In this way, the problem of tacit knowledge can perhaps be resolved to a
significant extent, and the gap between the developer’s and the user’s views of the system
can be greatly narrowed. This section ends with a discussion of the limitations of EM as

an ODM for SSD.

3.1 Open Development versus Closed World

SSD is a soft process referring to the entire life cycle of software production and
evolution from the initial concept through definition, design, programming,
implementation, operation, maintenance and enhancement, to the eventual retirement of
the software [STM95]. In order to enact this complicated process, a flexible and practical

process model is needed.

As already explained, most process models for SSD are established on the basis of
linear algorithms derived from traditional rationalism [WF86]. The difficulties involved
in enacting these models in the real world have been identified in [CS90, PR95, Rac97].
In contrast, EM treats the software system being developed as a computer-based model,
and thus develops this software system by situated modelling (a form of situated activity,
as introduced in Section 2.1). By means of this situated modelling, the knowledge
associated with the system is incrementally embedded into the computer-based model
through successive experiments and observation. When the modeller is satisfied that the
knowledge embedded in the model is well-matched to the real world domain, the

software system presented by the computer-based model is exactly the intended system.

It is very difficult to answer the question: is EM a process model? On the one hand,
EM meets the demand that a process model can be enacted to construct a software
process for SSD [Rol93]. On the other hand, unlike a process model, EM does not
circumscribe the structure of the process by using rigorous algorithms. Apart from the

principles and concepts described in Chapter 2, no instrument-like guideline is given for

54



enacting EM. To clarify the difference between EM and most traditional process models,
it is helpful to compare their essential foundations. This comparison is unfolded at two
different levels: one is concerned with the process per se and the other is associated with

the modeller, that is, the enactor of the process.

First, a useful starting-point is provided by P. Brédner’s observation concerning

two cultures in engineering:

One position, ... the ‘closed world” paradigm, suggests that all real-world
phenomena, the properties and relations of its objects, can ultimately, and
at least in principle, be transformed by human cognition into objectified,

explicitly stated, propositional knowledge.

The counterposition, ... the ‘open development” paradigm, does not deny
the fundamental human ability to form explicit, conceptual and
propositional knowledge, but it contests the completeness of this
knowledge. In contrast, it assumes the primary existence of practical
experience, a body of tacit knowledge grown with a person’s acting in
the world. This can be transformed into explicit theoretical knowledge
under specific circumstances and to a principally limited extent only ...
Human interaction with the environment, thus, unfolds a dialectic of
form and process through which practical experience is partly formalised
and objectified as language, tools or machines (that is, form) the use of
which, in turn, produces new experience (that is, process) as basis for

further objectification. [Bro95]

Although this observation is concerned with the contrast between two cultures and
their paradigms in engineering, the distinction may also be applied to models for SSD.
The ‘closed world” paradigm is characterised by the tradition of rationalism and logical
empiricism that can be traced back to Plato. This tradition has been the mainstream of

Western science and technology, and has demonstrated its merits in ‘hard sciences™. A

3 T. Winograd and F. Flores define ‘hard sciences’ as “those that explain the operation of deterministic
mechanisms whose principles can be captured in formal systems™ [WF86, p. 14]. This thesis also uses this
term in the same sense.

55



major influence on computer research into process modelling was Miller, Galanter and
Pribram’s famous book, Plans and the Structure of Behaviour [MGP60]. The authors
examined everyday life and tried to represent it in a formal way. They proposed the

concept of a Plan to explain their observation:

A Plan is any hierarchical process in the organism that can control the

order in which a sequence of operations is to be performed [MGP60,

p.16].
This definition highlights the view that a Plan for everyday life is a process controlling
the behaviour of both the human and the machine. They maintained that the behaviour of
the human could be represented in a hierarchical structure as a program in a computer.
This understanding obviously corresponds to the theme of the ‘closed world” paradigm
and has been widely accepted as the rationale of many process models in computer
science. Also, 1t can be found in the simulation of human behaviour in the Al field
[Agr95, Dre79, Hau97] and in the modelling of the software development process in the
Software Engineering (SE) field [STM95, Som95, Pre97]. These models begin with the
interpretation of a Plan as “a relatively fixed repertoire of commonly employed structure
of action” [Agr95]. Then, they investigate the possibility of abstracting or formalising a

process as a hierarchical plan for guiding the computer and the human as well.

A process that follows a plan in this sense should be predictable and repeatable.
That is, by following the same plan, the actions in each process should generally be of the
same nature and should lead to a similar final result [Jal97]. However, the continuously
changing environment and uncertainty of human agents make the predictability and
repeatability of the ‘closed world’ paradigm untenable®. This central problem becomes

even more significant as more far-reaching research attempting to automate complicated

* The lack of repeatability has been used to criticise the view that SSD is an engineering discipline [DS97,
Ste94, XIA98].

56



processes in the real world is undertaken. As argued by P. Feyerabend in [Fey73], a fixed
plan decreases the freedom for taking actions and accordingly blocks the emergence of
new concepts. He highlighted the disadvantages through an examination of historical

episodes and an abstract analysis of the relations between idea and action [Fey75]:

... the principles of critical rationalism ... and the principles of logical
empiricism ... give an inadequate account of the past development of

science and are liable to hinder science in the future [Fey75, p.179].

Modern science has developed mathematical structures which exceed
anything that has existed so far in coherence and generality. But in order
to achieve this miracle all the existing troubles had to be pushed into the
relation between theory and fact, and had to be cancelled, by ad hoc
approximations and by other procedures [Fey75, p.64, original

emphasis].
Similarly, L. A. Suchman also illustrates the impotence of a Plan in coping with
unexpected real-world situations by examining the interaction between the human and a
photocopier with embedded instructions. She argues that such an attempt to abstract a
process away from the particular environment in which it is situated is of limited
applicability in the real world [Suc87]. J. A. Goguen also maintains that “rigidly
following a fixed process model can severely limit adaptation” [Gog94]. Similar

criticisms can be found in [Agr95, Dre79, Kir91, Rei65, RK95, Tul95, Weg97].

In accordance with the ‘open development” paradigm, the above authors all address
the inadequacy of setting fixed patterns of activities with rigid algorithms in guiding or
even controlling human behaviour in the real world. To overcome this drawback, some
researchers argued that the focus of a process model should be on the interaction between
the human and the environment rather than on the activities of the human in a particular
environment [Agr95, Bro87, Flo95, LR98, RB74, RK95]. They suggest that a process

focusing on this kind of interaction should be able to involve as much improvisation as

57



possible in coping with a wide variety of contingencies. In other words, SSD should not
follow fixed activity patterns but instead be freely carried on by the interaction between

. . 5
the enactor and his/her environment”.

In the same manner, EM rejects fixed activity patterns for SSD and centres on the
interaction between the modeller and his/her environment (including the computer-based
model and the referent in the real world). In each situation that is encountered, the
modeller in EM is empowered to interact with his/her environment in an open-ended
manner in order to maintain the virtual correspondence between the computer model and
the referent in the real world as shown in Figure 2-1. Through such situated interaction,
the computer-based model that is built up in the process of understanding the software

system can come to fulfil the functionality of the required software system.

Apart from the openness and situatedness of the process itself, another key factor
affecting the process of SSD is its enactor. Most process models pay less attention to this
factor®. In EM, each state change of the enacted process is due to the invocation of an
improvised interaction between the modeller and the computer model (or the referent in
the real world) rather than the execution of prescribed activities. In this activity, no
situation encountered in the enacted process is predictable in detail. The modeller has to
advance the process by means of situated activities that construct the process of SSD.
This human-centred concept is in harmony with the increasingly recognised fact that the

human being is an important factor leading to the success of SSD [Pre97, LR9S, You98].

In fact, as further examination discloses, when a process model is enacted, a

complementary process that resides inside the mind of the modeller is simultaneously

3 The enactor’s environment could involve human agents, such as other developers and users. In addition, in a
broader sense, both the developer and the user can be an enactor and affect the process of SSD (cf.
participatory design in [Mum95]).

% Although some models, such as ETHICS [Mum95], have highlighted the importance of participants in the
process of SSD, they are more concerned with formalising the process to be followed by participants rather
than reflecting what participants do in their practices for SSD.

58



developed. To clarify this, the former, which changes the state of the environment

(including the referent and the computer-based model), is called the external process, and

External Current Next

process state state

Internal
process

Figure 3-1. The interdependent and inseparable relationship between
an internal process and an external process.

the latter, which affects the modeller’s knowledge, is called the infernal process. It is self-
evident that both processes are intertwined and inseparable as illustrated in Figure 3-1.
This close relationship highlights the fact that the modeller’s knowledge (or experience)
guides the external process in response to a situation in the real world, and the result from
the external process in turn improves the modeller’s knowledge through the internal
process. Both processes affect each other, and this gives rise to changes in the modeller’s

mental model, the computer-based model and the referent in the real world.

Hence, the modeller’s role in EM is indispensable in construing the phenomena
occurring in the referent, in constructing the computer-based model, and, more
significantly, in interacting with both the referent and the model in order to maintain their
virtual correspondence. It is important to note that the emphasis on the human dimension
should not lead to the formalisation of the modeller’s behaviour, since this contradicts the
principle of open development. Instead, the focus must be on the modeller per se. This
shift is supported by J. Radford and A. Burton in their comments on simulating human
behaviour: “if our aim is to simulate, and thereby gain more insight into, human
behaviour, we should begin with the human rather than his behaviour” [RB74, p.349].
That is to say, the primary emphasis should be on the cognitive activity that underlies

behaviour rather than on human behaviour itself.

59



3.2 Knowledge Construction versus Knowledge

Representation

SSD is knowledge'-intensive [Rob99]. From conceptualisation, description and
organisation to transmission, the enaction of a process model is concerned with the
manipulation of the knowledge associated with the system being developed. Knowledge
manipulation for SSD generally involves two processes: knowledge construction, which
captures knowledge associated with the system for the developer, and knowledge
representation, which records the developer’s knowledge by means of representational
media® such as documents and programs. Figure 3-2 depicts the relationship between the
developer and these knowledge manipulation processes for SSD. It should be noted that

these processes can operate in parallel and without synchronisation.

+The developer’s

Knowledge

representation construction
Record Inform
Interpre
The r al world
= domain

A representational medium

Figure 3-2. Knowledge representation and knowledge construction
for the developer

7 The term ‘knowledge’ is used loosely to include any structure of information which is constructed by
coupling information obtained in one context with other information obtained in a different context [Pre97].

8 The term ‘representational medium’ is used as in [Hut93], in a very general way, to indicate any form of
media that can be interpreted as a representation of something.

60



Most traditional process models tend to concentrate on knowledge representation.
They take it for granted that the developer can construct knowledge by successfully
collecting and interpreting the information in the real world domain. They exploit
systematised algorithm-based formats, for example in the form of an entity-relation
model [Che76] or object model [Boo94], to represent the constructed knowledge. These
representational media, that rely mainly on textual and diagrammatic metaphors’, can
specify the software system and its behaviour in a relatively context-free manner. If the
specification fails to reflect the real-world context, this indicates that something in the
real world domain is misunderstood. A reinforcing backtrack for locating and correcting
errors should then be invoked. In this respect, the representational medium serves as a
metaphorical presentation of the real world domain and representation of the modeller’s

knowledge associated with the system being developed.

However, in practice, there are debates about the completeness and consistency of
the knowledge embedded in a representational medium. For example, on the basis of
biological experiments, H. R. Maturana argues that symbolic representation cannot serve
as the knowledge of an organism to control the way the organism behaves [Mat80]. He
claims that an organism can adapt by coupling its structure with its external environment
to generate its behaviour. That is to say, the knowledge that controls the behaviour of an
organism is context-dependent and open to change. T. Winograd and F. Flores provide a
similar argument for the design of an intelligent system that is restricted to representing
knowledge by the acquisition and manipulation of the adopted facts. They remark that
“knowledge is always the result of interpretation, which depends on the entire previous
experience of the interpreter and on situatedness in a tradition” [WF86, p.74, original

emphasis]. C. Crook also argues that “knowledge is not so neatly circumscribed as to

° In practice, metaphors in the form of texts and diagrams have been widely used in computer science for
describing and sharing knowledge [Joh94]. Specification is a well-known example.

61



allow complete and unambiguous stuffing under some human lid” [Cro94, p. 95]. Similar
arguments can be found in [Slo90, Cla97, Suc87]. The evidence of these researchers
suggest that any attempt to give a full account of knowledge using representational media

is inadequate.

Recognising the inadequacy of representing the developer’s knowledge by context-
free abstractions, some process models, such as prototyping [Rei92, And94] and the spiral
model [Boe88] shift their focus from knowledge representation to knowledge
construction, where the developer’s knowledge is informed by its context in the real
world domain. These models indicate that the developer must construct knowledge in a
situated manner. From this perspective, knowledge evolves and is open to change.
However, specification-based models can only support the openness and evolution of the
developer’s knowledge to a limited degree. In part, this is because documentation is
mainly used for recording and is awkward to change. More importantly, it is difficult to
describe context-dependent knowledge adequately by using text-based documentation.
Hence, these models tend to contribute to the developer’s implicit knowledge, based on
practical experience, rather than to an explicit detailed specification. The concept of
knowledge construction is consonant with A.diSessa’s concept of knowledge in pieces
(knowledge can only be constructed piece by piece) [diS88], and the theme of

constructivism: knowing-by-doing (knowledge is gained through practical work) [Puf88].

Knowledge construction is useful for enriching the modeller’s knowledge in a
situated manner, and knowledge representation is helpful for organising the collected
information into relations. Accordingly, EM regards the two approaches as
complementary and seeks to take them both into account. To do this, EM uses the
computer-based model as an interactive, open-ended artefact both to represent and also to
enrich the modeller’s knowledge in a significant way. For knowledge representation, it

exploits graphical metaphors used in the visualisation of the computer-based model

62



together with definitive scripts (described in Chapter 2). More importantly, the
knowledge represented in the computer model can be explored through interaction with
the model. The interactive exploration not only discloses the system’s behaviour and the
relationship between components, but also enables the modeller to connect knowledge
with experience. This practical experience is more useful than the text- and diagram-
based metaphors in other models for understanding the represented knowledge in the

representational medium (that is, the computer model).

Moreover, the computer-based model in EM is more powerful than the text- and
diagram-based metaphors in other models in dealing with changes in the represented
knowledge. This is because any change is liable to have implication for the whole system,
and the scale of these changes is likely to be reflected in revising the representational
media (for instance, in editing a document). However, EM can deal with this problem in a
significant way. In EM, any change to the model automatically and interactively leads to
a structural change to the model that couples the update (that is, the added definitive
script) with the current structure using dependency maintenance, as described in Section

2.4. For example, the structure of observables shown in Figure 3-3(a) is reconstructed to

Ais B+C;
Cis 3*D+2*E;
Fis G*H,
Bis6; T
D is 23; o+ B is 4*F,
E is 30; D is HH8;

Gis9; e

e T
TR T A

(a) (b)

Figure 3-3. The situated structural coupling of observables

63



Figure 3-3(b) when a new definitive script is added. In other words, given the computer-
based model, the modeller can revise the representational medium in an interactive

manner. This is very hard to do in most traditional models.

In effect, this structural coupling of the computer-based model is very useful for
supporting knowledge construction. For knowledge construction, the modeller’s
knowledge associated with the developing system continually changes in response to the
emerging information from the real world domain. It is very difficult for most traditional
representational media, such as documents and prototypes, to keep up with this rapid
change (cf. the throwaway prototyping in [And94]). With the aid of structural coupling,
EM can to a large extent support the interactive reconstruction of the computer-based

model.

In addition, EM aids knowledge construction in a significant way. With reference
to the openness and evolution of the modeller’s knowledge, the structural coupling in
EM, as described above, can provide the modeller with sufficient support. The focus here
is on the enrichment of the modeller’s knowledge through EM. Through ‘what if
experiments resembling sensitivity analysis in a spreadsheet, the modeller can produce
sufficient resources for the refinement of his/her knowledge (see Section 2.2.2). In this
context of modelling a situation, the relationship between the computer-based model and
the modeller in knowledge construction is exceedingly subtle. On the one hand, the
modeller creates the computer model to represent his/her knowledge associated with the
referent in the real world. On the other hand, corresponding to the interaction with the
computer model, the modeller gains additional resources to (re)construct his/her new
knowledge. In other words, both the represented knowledge that is embedded in the

computer model and the modeller’s knowledge are intertwined and complementary.

In practice, a benefit of knowledge construction is that it links the modeller’s

knowledge to experience rather than simply informs the modeller’s knowledge from the

64



context. This is highlighted in A. diSessa’s discussion of science education. He stresses
that the use of the computer for improving the student’s learning involves building and
integrating pieces of knowledge in order to achieve the best connection to experience
[diS88]. Obviously, the enrichment of the modeller’s knowledge by means of interacting
with a computer-based model accords well with this constructivist outlook. It also meets
the need, identified by Naur [Nau95], for incorporating experiential knowledge to
complement the knowledge that is defined and processed by ‘logic and rules’. Similar

arguments can be found in [Bur91, Cro94, LW9I1, Rei97, Sal87].

The enrichment of the developer’s knowledge through practical experience has
increasingly attracted attention in SSD, as software systems have become bigger and
more complicated. Prototyping [Rei92, Mar91, And94] and scenario analysis [DF98,
RSB98, SDV96, WPJH9S8]| are very popular illustrations of this theme. However, both
approaches, by making use of static rather than interactive representational media,
inevitably isolate the represented knowledge from the developer’s knowledge. In contrast,
EM enables the modeller to interact with the computer-based model in a situated manner.
In this way, the computer-based model that serves as an open-ended artefact not only
facilitates the construction and integration but also the exploration and extension of the
modeller’s knowledge. In turn, the enriched modeller’s knowledge can to a large extent
enhance the knowledge represented by the computer-based model. EM thus supports SSD
that is guided by the progressively enriched knowledge of the developer. This meets the
need, highlighted by J. Goguen in his discussion of requirements understanding [Gog96],

for development techniques that harness rather than reject subjectivity.

65



3.3 EM as an Open Development Model for SSD

In [Leh94b, Leh97, LR98], M. Lehman identified three types of software system: S-type,
E-type and P-type. S-type software has a well-defined domain which can be completely
represented by a fixed specification. Correctness is absolutely needed for the specification
and its implementation. On the other hand, for an E-type software system, its application
domain is, of necessity, bounded to programs, but its operational domain in the real world
is unbounded and keeps changing. Such a system cannot be developed completely and
precisely, and thus correctness becomes meaningless [Leh94a]. Consequently, the
criterion of E-type software acceptability becomes user satisfaction with each execution

of this software system rather than absolute correctness to a fixed specification. Other

details are summarised in Table 3-1.

S-type

It is completely defined by a fixed specification.

When revision is required, it is viewed as a new specification, and the
resulting program is viewed as a new program.

It needs absolute correctness with respect to the specification.

E-type

It is a model of the application in its real world domain; as such, the solution
system contains a model of itself.

It and its operational domain are conceptually unbounded and continually
change.

Its consequences under execution are unpredictable.

Human involvement in the application process and its computerised model
excludes precise and complete theories/models of domain and application
properties, and makes the change in the process and the model unpredictable.
Its development process is an evolutionary process which requires interactions
between many human-populated agencies involving a wide variety of
knowledge, understanding, experience and authority.

P-type

It is used to solve specific problems.
It is intermediate between the S- and E-types.

Table 3-1. The summarised features of S-, E- and P-type software [Leh94b]

Traditional process models, which emphasise correctness, are obviously well suited

to developing a S-type software system. According to prescribed, fixed specifications,

66




these process models seck to develop the right software (validation) and the software
right (verification). They provide proven methods, techniques and tools for optimising the
process of developing such a system in order to ensure the completeness and accuracy of
the developed software. However, for an E-type software system, these models can only
provide limited help, since its specification provides only a provisional description and is
liable to change. In particular, human involvement makes such change much less

predictable.

Hence, Lehman suggests that it is helpful to view an E-type software as “a model
of the application, its participants (human and mechanical), the operational domain, and
activities in that domain™ [Leh98, p.41]. Such a model is incomplete, unbounded and casy
to change. There is inevitable and irresistible pressure on this model for change on an
increasingly extensive scale; hence, one must regard the evolution of this model (that is,
its development and maintenance) as a system in the system-theoretic sense. Lehman
argues that the system behaves as a self-stabilising feedback system in which feedback, as
the most important resource for evolving the model, is derived from the operational
domain of the software in the real world. Through feedback leading to corrective or
adaptive changes to the E-type software, one can obtain a degree of intellectual control
over the software’s evolution, thereby mastering it and achieving its sustained

improvement.

From this perspective, it is clear that EM is well-suited to be employed for the
evolution of E-type software. For example, EM appreciates that a software system is
unbounded and apt to change. No fixed, complete and precise specification is needed to
guide the evolution of the software system. Instead, the evolution is driven, controlled
and directed by the modeller. Also, any feedback emerging from its operational domain

can be captured and incorporated into the software in an interactive, situated manner. In

67



other words, EM offers the support for change management and human involvement that

are important features for the evolution of E-type software highlighted in Table 3-1.

More importantly, EM does not simply regard an E-type software system as a
model, but creates it as a computer-based model. This shift is very powerful in supporting
Lehman’s concern for evolving a software system as a feedback system. A seed model is
created in the computer at the beginning in response to the modeller’s initial
understanding of the software system being evolved. Like a developer’s initial
understanding, this computer-based seed model is also incomplete, imprecise and liable to
change. When feedback in the form of knowledge emerges from the operational domain
of the software system, EM enables the modeller to incorporate the captured knowledge
into the computer-based model (that is, the software) by definitive programming and
structural coupling described in the last section. In this way, a feedback mechanism is
provided by EM in an interactive, situated manner. More significantly, this mechanism
leads to the evolution not only of the computer-based model but also of the software that

is to be developed, which is presented in this model.

The computer-based model created by EM can also serve as an open-ended artefact
for the modeller to facilitate the evolution of the software. Through ‘what if” experiments,
EM enables the modeller to explore, expand and experience his/her understanding of the
software through situated modelling (see Section 2.2). As a result, this improved
understanding guides the evolution of the software. It should be noted that a computer-
based model is very different in character from a computer program. Whereas the latter
fulfils a preconceived and specified function, the former can serve as an open-ended aid

to conception and design [BCSW99].

A SSD model for open development, in P. Brodner’s sense (see Section 3.1), must
be able to tackle the continuous change to the software system in order to interactively

manage the knowledge emerging from the process. In this regard, EM has a potential to

68



cope with continuous change at least as effectively as the feedback system proposed by

Lehman.

An open development model (ODM) must also support the interaction between an
individual developer or user of the system and his/her external environment, and must
allow him/her to first capture the practical experience emerging from the interaction and
then embed this experience into the system to inform subsequent interaction. In
particular, an ODM should allow the software system’s user to guide the evolution of the
software in response to his/her practical experience. If it fails to support this user-centred
evolution, a model cannot be an ODM. This is because, whilst the developer must
struggle to ¢licit the user’s practical experience, the problem of tacit knowledge still
exists. Unfortunately, most conventional process models, even the feedback system
discussed above, take insufficient account of user-centred evolution. Within these models,
the developer is still regarded as the only person who is empowered to shape the software
system. This developer-centred bias is evident from the fact that most software systems
are provided to the end-user in the form of execution codes. Performance considerations
apart, the key reason is to prevent the end-user from modifying the system since it is
assumed that the end-user is not competent to do so (more details are given in Section

4.4). On this account, the developer-centred models are too weak to be an ODM for SSD.

In contrast, EM, which regards a software system as a computer-based, open-ended
model, is able to support the user-centred evolution by means of definitive programming.
Like the modeller, the software’s user, if sufficiently qualified, is empowered to embed
his/her practical experience into the software system simply by introducing new
fragments of definitive script as described in Chapter 2. In this way, the software system
is open to change in an interactive, situated manner in response to the captured

knowledge emerging from practical experience, even in its operational domain.

69



In summary: EM treats a software system as a computer-based model that — in the
light of definitive programming — can evolve through modelling. Knowledge arising from
practical experience, including that generates from the operational domain (through
feedback, in Lehman’s term) and by ‘what if” experiments, is interactively incorporated
into the system by situated structural coupling (see Section 3.2). The system evolves with
the modeller’s understanding, and is always liable to undergo further evolution. For this
reason, it is plausible to say that EM serves as an ODM for SSD, in particular for E-type

software systems.

Not surprisingly, EM, and its supporting tool tkeden in particular, has its
limitations as an ODM for supporting SSD. Some of these limitations have been
completely or partially overcome by the author’s research, but the others still require

further work. These limitations are summarised as follows.

1. EM does not support the interaction between multiple modellers.

In a sense, EM can be viewed as a modelling process for an individual, as
described in section 2.2. The modeller is the unique user in the enaction of EM. In the
same manner, the tool tkeden, supporting EM, is also developed for individual
modelling. However, as highlighted by Lehman, the evolution of E-type software
generally requires the interaction between many human agents [Leh98]. This limitation
motivates one of the main research tasks in this thesis: to extend the framework of EM to

a distributed environment.

2. EM provides no formalised method.

In general, EM is a sort of experience-based modelling technique. In order to free
the modeller from rigid algorithms imposed on his/her activities, no formalised method
for SSD, apart from some fundamental principles and concepts, is given in EM. On the

one hand, the experienced modeller can benefit from the freedom to cope with diverse

70



situations in practice. On the other hand, the naive modeller is often puzzled by the
enaction of EM. This dilemma is concerned with a trade-off between the needs of both
kinds of modellers. In fact, according to the discussion earlier (Section 3.1 and 3.2), it is

very difficult to say whether or not this is really a limitation for SSD.

3. EM does not support project management and quality control.

The most important purposes for using a phase-based process model are to manage
the project of SSD and promote the quality of the developed software system [Blu94a,
Gib94, Som95]. EM takes no account of either purpose. In the software industry, this
limitation might discourage many practitioners from using EM as a model to develop
software systems, especially those software systems which have constraints, ¢.g. time and

budget, even though EM provides the advantages of open development.

4. EM has difficulty in supporting a large-scale project.

An immediate cause of this limitation is the supporting tool tkeden. Since tkeden
is the subject of ongoing research, insufficient account has yet been taken of its
scaleability, and complex dependency between observables, e.g. higher-order dependency
such as is discussed in [GYCBC96], is not supported. It is clear that both problems could
be relieved if alternative advanced techniques were exploited. However, such relief would
only be partial if the heavy load of modelling for a large-scale project is still attributed to
only one modeller. It is clear that distributing the heavy load of modelling to many
modellers (see Section 4.1), and improving the modelling technique, for example, by
providing reusable definitive scripts (as proposed in Section 5.3), are useful ways to

overcome this limitation.
5. Tkeden does not support component reusability.

Since no kind of modularity is enforced on the computer-based model in tkeden,

reusable components are difficult to establish. Typically, definitive scripts must be given

71



piece-by-piece, even though some pieces are very similar. For example, in the case of a
hotel booking system (described in section 2.4), each room slot has almost the same
description, but to a large extent the modeller cannot reuse a definitive script to generate
the needed scripts. This limitation prevents the modeller from structuring the developing
system and leads to an increase of program size. Hence, maintaining the developed
system becomes much harder. The author’s research in this thesis helps to address this

limitation.

6. Tkeden does not offer powerful tools to support data manipulation.

The only data structure supported by tkeden is the list. For data-intensive software
systems, the weak support for data manipulation leads to complications. For example, in
the case of the hotel booking system, the reservation data for each room slot on each day
is stored in a list. Any manipulation of these lists requires extra effort from both the
modeller and the computer. Without the support of a powerful tool for data manipulation,
¢.g. through the use of a database, it is not casy to use tkeden for developing data-

intensive software systems.

7. Tkeden provides limited support for user interface design.

User interface design has increasingly become one of the most important
requirements for supporting SSD. Most modern programming languages, such as VB and
Java, take this support for granted. In addition, since the interaction between the modeller
and the computer-based model is the most important activity in enacting EM, support for
user interface design can provide the modeller with useful benefits. Unfortunately,

tkeden can only provide such support to a limited extent.

72



