Chapter 5

Implementation to Support

Distributed Empirical Modelling

DEM aims to enable all modellers in a distributed environment to interact collaboratively
with each other in order to establish a working or shared understanding. Such
understanding is crucial for improving interpersonal interaction in general and for shaping
the agency of agents whose roles are associated by A-modellers in particular. In order to
provide a distributed environment for collaboration, a tool supporting DEM (discussed in
the previous chapter) is essential. This tool should be able to support the individual
modelling task of each modeller, the interaction between modellers, and the interference
of the S-modeller in this kind of interaction. It is clear that the tool tkeden', created to
support individual modelling in EM, is unable to cope with all these needs. This

motivates the creation of a new tool to satisfy the further requirements.
5.0 Overview

This chapter discusses the implementation issues involved in creating a tool to provide

modellers with a collaborative distributed environment for supporting DEM. The tool

! Since the scripts of Donald and Scout are interpreted by Eden in tkeden and dtkeden, the term Eden will
be used to represent the integration of Eden, Donald and Scout in this thesis, except where indicated.

126

tkeden, described earlier (Section 2.2), supports only the individual modelling task of the
superagent within the framework of EM. Obviously, this functionality is not sufficient for
a distributed environment supporting collaborative interaction between multiple
modellers. On the other hand, the core part of tkeden, that is, its dependency maintainer,
is still very useful for providing the environment with the advantages of definitive
programming. In view of the limited time available for developing a new tool, the author

decided to reuse this core part and extend it to a distributed environment.

A new tool called dtkeden has thus been developed by the author on the basis of
the dependency maintainer implemented in tkeden. With this tool, modellers are
empowered to interact with their own computer model, which corresponds to their own
observed world, in an open-ended, situated manner. This kind of human-computer
interaction not only facilitates individual understanding through modelling but also
promotes other modellers’ understanding through network communication. In this way,
modellers can interact with each other via computer-mediated communication in order to

support their collaborative interaction in a distributed environment.

In section 5.1, the main technical issues arising from the construction of the
networking environment for dtkeden are discussed. First of all, a star-type logical
network configuration for dtkeden is proposed. Then, the popular concept of client-
server communication is introduced as the fundamental mechanism of network
communication within this configuration. By integrating this mechanism with the socket
program-to-program protocol and the TCP/IP communication protocol, a two-way
network communication is devised for dtkeden. The networking feature can be used to
shape the agency of the agents within an application by integrating a social process and a
cognitive process, as described in the previous chapter. In addition, the problem of

synchronisation arising from network communication between computer models is

127

identified, and a solution (designed by the author) that involves using a request-wait-reply

mechanism with the aid of queued service numbers, is proposed to resolve this problem.

Section 5.2 focuses on the implementation of support for diverse interaction modes
between modellers. The interaction between modellers is one of the main themes for
DEM. Different kinds of interaction should be supported by different interaction modes
for serving particular purposes. For example, an open, shared topic may suit a many-to-
many interaction style, but negotiation-secking in order to solve conflicts between group
members is often invoked in the context of one-to-one interaction. Within the network
configuration proposed in Section 5.1, four interaction modes have been implemented in

dtkeden: broadcast, private, interference, and normal.

In the broadcast model, an open, shared environment for the interaction between
modellers is provided. Any interaction triggered by a modeller is propagated to other
modellers. In contrast to the broadcast model, the private model provides each A-
modeller with an individual channel for one-to-one communication. The inferference
model then enables the S-modeller to interfere with the interaction between A-modellers
in order to create a new context for modellers. The mode that is most characteristic of
DEM is the normal model, which enables each A-modeller, acting as an agent, to interact
with others by accessing authorised observables. This interaction mode exhibits the key
principles of a framework for DEM in their full generality, and highlights the concepts of
cthnomethodology and distributed cognition in particular. Within dtkeden, these four
modes are used alternatively and can be changed at any moment in response to the

context of modellers.

The main topic discussed in Section 5.3 is the reuse of software components. Over
the past decade, the concept of software reuse has become widely promoted in the
software community as a way of reducing development and maintenance costs and

increasing productivity [Pau97, Pre97, Pri93, Som95]. The traditional approach to

128

software reuse usually secks to develop software components that can be reused in their
entirety without adaptation (so called ‘black-box reuse’). In practice, the application of

such black-box reuse in SSD remains a major challenge for software developers [PF87].

Section 5.3 offers an alternative to black-box reuse: adaptable reuse, which
involves the reuse of software components by adaptation®. This mirrors the way in which
a human being reuses experience by adapting it to similar situations in everyday life. This
adaptable reuse hopefully loosens the boundary of reusable components and makes reuse
more widely applicable. A particular kind of adaptable reuse can be achieved in EM
through the concept of virtual agent implemented in dtkeden. First, the concept of virtual
agent is proposed, and then the method of using it to facilitate adaptable reuse is
discussed. A new kind of observable — the generic observable (GO) — is proposed to
represent a set of definitions (that is, a definitive script) that can be reused through
adaptation in this sense. The remainder of this section discusses the difference between
using Abstract Data Types (ADTs) and GOs for developing reusable software

components.

5.1 Network Communication in dtkeden

As explained in Section 4.2, network communication has an enabling role in supporting
DEM. Within the framework for DEM, the S-modeller, as the external observer, and the
A-modellers, as the internal observers, are empowered to perform empirical modelling by
means of interaction with each other as well as interaction with their own computer

models. In order to provide such a distributed, computerised interactive environment,

% The concept of adaptable reuse should not be confused with so called “white-box” reuse. See Section 5.3 for
more details.

129

network communication®, connecting together all the computer models of modellers, thus

has the highest priority in the implementation of dtkeden.

This section illustrates the technical issues and problems encountered in
implementing the distributed architecture of dtkeden. In the first subsection, this
architecture is discussed on the basis of a star-type network configuration and
client/server communication. The problems raised by asynchronous communication are
identified and solved by the new synchronous communication mechanism implemented

in dtkeden. The details are given in the second subsection.

5.1.1 A Distributed Architecture with Client/Server

Communication

Since network communication is now ubiquitous in everyday life, the investigation of
distributed systems has become an increasingly important trend in the software
community. A distributed system normally consists of a set of software components
located on different machines® and a network allowing these software components to
communicate with each other to produce an integrated computing facility [CDK94,
Hug97]. One of the fundamental issues in developing a distributed system concerns the
architecture of network communication. From the perspective of software development,
the architecture involves at least two parts: a logical network configuration and the
techniques of network communication. The former determines the distribution of
software components of the system, and the latter enables these components to

communicate with each other via a physical network.

3 In this thesis, “network communication” and “data communication” are interchangeable terms to denote an
information technique whereby electronic data can be transferred from one hardware device to another
through physical network facilities.

* In principle, it is not really necessary for all software components to run on different machines, but their
communication with each other definitely must go through a communication network.

130

Referring to the framework for DEM shown in Figure 4-6, a star-type logical
network configuration — probably the most common of all configurations [CCH80] — is
exploited for network communication in dtkeden (see Figure 5-1). This star-type
network configuration represents a logical interconnection between software components
and is independent of the network communication topology, which illustrates the physical
interconnection between the hardware components in which the software components
reside [Hug97]. From the perspective of developing distributed systems, the logical
configuration of software components is much more important than their physical

configuration [CCHB80].

S-modeller

A-modeller

Figure 5-1. A star-type logical configuration for the network
communication in dtkeden

There are two kinds of nodes in this star-type configuration. At the points of the
star, A-nodes are created to represent A-modellers as shown in Figure 4-6. Each A-node
can communicate with the S-node, at the centre of the star in Figure 5-1, via the network.
Where the communication between two A-nodes is concerned, dtkeden does not provide
a direct dialogue between them. Instead, this kind of communication is achieved through
the involvement of the S-node, that is, by using the S-node as a message transferring

centre to transmit the message’ from one A-node to another. This kind of A-node-to-A-

3 1t should be noted that a message in dtkeden typically takes the form of a definitive script, possibly
together with auxiliary functions and actions. Contrast the common use of ‘message’ in object-oriented
programming to refer to a method invocation [Boo94].

131

node-via-the-S-node communication is provided through a built-in procedure in dtkeden.
The modeller at the A-node can simply call this procedure to interact with the specified

modeller at another A-node.

The S-node representing the S-modeller is responsible for the transmission of all
messages between two A-nodes. This superior responsibility highlights the importance of
the S-modeller as the only modeller (representing ‘God’s view’) who is supposed to have
direct access to all contexts. It also enables the S-modeller to intervene in the interaction
between A-modellers. In this way, adopting a star-type network configuration has the
advantage of enhancing the control of security and access privilege to observables, as

explained in Section 5.2.

After determining the network configuration of dtkeden, the technique used to
support network communication is taken into account. Following state-of-the-art
techniques of network communication, the technique of the client-server (or request-
response) model® is chosen to support the communication between computer-based
models in the framework of DEM. The client/server model is currently the best known
and most widely adopted system model for distributed systems [BG96, CDK94, KJ98,
Som93]. It provides an effective general-purpose approach to the sharing of information

and resources through network communication.

A typical client-server model, as shown in Figure 5-2, is oriented towards service
provision. Within this model, each invoked client/server network communication consists

of the following steps:
1. transmission of a request from a client to a server through the network;

2. execution of the request by the server;

® Although this term can also express a hardware-oriented view [BG96], it is used here to refer to a software-
oriented technology.

132

Client Server

Send /i_y Rel:/eive

\L Request

Wait Process
\L Reply \L
Receive T Send

Figure 5-2. A typical client/server communication model

3. transmission of a reply to the client through the network.

This pattern of communication involves the transmission of two messages and a specific
form of synchronisation’ of the client and the server. As soon as a request is sent in step 1
to invoke a communication, the client is blocked until it receives a reply from the server
in step 3. At the same time, the server must become aware of the request message sent in
step 1 as soon as it arrives. After processing the received request, the server then sends its

reply to the client in order to unblock the client and allow it to continue.

This elementary pattern of client/server communication can be implemented in
terms of the message-passing operations send and receive as outlined above. Before
sending a request, a client must know the names of the available servers and the services
that they provide. Each request contains a communication identifier that is used to
transmit the reply to the client. However, a server need not know either the identification
of clients or how many clients there are. Typically, when a server starts up, it registers
itself with a naming service, stating its network address and a global name for the service
that it provides. A client obtains its network address by interrogating the naming service

and is thus able to communicate with the server by using the same global service name.

" In this case, the synchronisation mechanism is called blocked communication. In other architectures,
asynchronous communication may be involved: here the client is not waiting in suspense for the reply to be
sent by the server.

133

Although client/server communication can be installed in various configurations - either
centralised or highly distributed, as described in [BG96] - the communication of their

components often follows this elementary pattern.

The implementation of dtkeden exploits the concept of protocols for program-to-
program communication (or interprocess communication [Bac93]) that is widely used for
implementing distributed systems [CDK94]. It enables direct dialogue between
applications: for example, a C program calls a library function send to access the network
communication layer. The library also offers functions for the initialisation of links, the
connection establishment and breakdown, and the control of the data transmission itself,
that relieve the programmers of most aspects of network communication. For example,
the Socket protocol, used widely in distributed systems, provides such functions for a
common communication interface. In dtkeden, the socket protocol provided by the
Tcl/Tk® software package is used. Also, the TCP/IP protocol family, which is popularly
applied to a local SUN workstation environment and available at Warwick, is used to
provide the lower-layer network communication in dtkeden. An in-depth discussion of

all these details is beyond the scope of this thesis.

In summary, the client/server communication in dtkeden is achieved by using the
TCP network protocol and the Socket abstraction in the Tcl/Tk level. Figure 5-3 shows
the layout of communication between the S-node and A-nodes, as implemented in

dtkeden.

In some client/server architectural software systems, each client/server component
is specified to be either a client or a server, but not both. Each component is only

responsible for either requesting a service (that is, being a client) or providing a service

8 Tcl is a scripting language and an interpreter for that language that is designed to be easily embedded into an
application, and Tk is a graphical user interface toolkit for Tcl [Ous98, Wel97]. The tool tkeden uses the
Tcl/Tk for the purposes of graphical interface control and visualisation, and dtkeden uses it also for dealing
with network communication.

134

A-node

(Toden S-node
Tel/Tk
o\
L Tel/Tk

Socket Al

File Event Buffer

Socket B 1

Socket B2

— 1

Socket C 1

N /

Socket C2

Figure 5-3 The communication between the S-node and the A-nodes

(that is, being a server). In such a case, there is only one-way, and not two-way,
communication between components. For example, in the database world, the data
repository and its associated functionality are termed the server; the client is the
application (which could be on the same hardware or software, or not) [Aye95]. This
exclusive attribution of client or server status indicates the one-way communication
between the client and the server. In a similar fashion, for example, the Internet or WWW
world has the web browser as the client, and the application providing the requested

information as the server.

However, dtkeden refers to a client/server component in a different way. In
dtkeden, a client means the requester of a service, and the server is the provider of a
service. Any client/server component can be both a client and a server, depending on
what it is doing at the time. In this case, ‘client/server’, as it applies to the implementation
to support DEM, denotes a client/server communication technique rather than a
client/server architectural configuration as described in [BG96]. Therefore, each node in
Figure 5-1 is not exclusively specified to provide or request services. Instead, each node

is devised to perform both functions in order to provide its user, that is, the modeller, with

135

two-way rather than one-way interactive communication. That is to say, each modeller in
any node of either kind can communicate with other modellers by sending a request or

providing a service.

An interesting comparison can be made between the client/server architecture of
dtkeden and the information sharing architecture that is used in Empirical Worlds,
recently developed by R. Cartwright for EM in [Car98]. In Empirical Worlds, information
sharing is achieved by centralising all definitive scripts to the server machine so that
clients can access the scripts via a ‘definitions-database’ system. The authority of each
client accessing these definitions can be specified through a system of security control
similar to that of the UNIX file system. In that case, clients can connect to the server in
order to perform a modelling task. They do not need to communicate with each other,
since each of them remains essentially independent. Any task for modelling, such as
giving (re)definitions, is executed only in the server and displayed in the client. This
centralised modelling environment allows each modeller to undertake exploration and
experiments independently but to share commonly used definitive scripts in a
collaborative manner. Obviously, such architecture, though having the advantages of

sharing information and reusing definitions, provides limited support for DEM.

5.1.2 Synchronous Communication for dtkeden

One of the major challenges involved in the implementation of dtkeden arises from the
need to tackle its synchronisation problem of client/server communication between nodes
via a communication network. Before discussing this issue further, it will be helpful to re-
examine the way in which intercommunication between Eden and Tcl/Tk is integrated

with the execution of Eden.

As already explained, tkeden is a hybrid tool combining Eden and Tcl/Tk. Eden is

an interpreter developed in C program language, and the Tcl/Tk is a popular tool for

136

event-driven programming. In tkeden, the tool Tcl/Tk is applied to deal with issues of
external presentation such as the user interface, graphical display and window interaction,
whilst Eden then focuses on handling the internal representation, for example,
dependency maintenance and data manipulation. Since the Tcl/Tk is an event-driven tool,
most of the time it is in the so called EventlLoop loop, where the Tcl/Tk interpreter is
devised to keep track of the condition of each event handler already issued in order to
trigger its further actions when the condition is satisfied. For example, when Tcl/Tk finds
that a button is pressed, the event handler ButtonPressed will be invoked to undertake
specified actions. In the case of tkeden, the event handler DoWhenldle has been specified
to call a function of Eden, when Tcl/Tk is in an idle state. Hence, the intercommunication
between Tcl/Tk and Eden is achieved by programming each to call functions of the other,

so that program control passes forward and backward between them.

Two queues have been devised to hold received messages in Eden. One, called the
executing queue (EQ), holds those messages to be executed. The other, called the waiting
queue (WQ), stores the received message waiting to be moved into EQ. There is a
function to process messages in EQ and then move the contents of WQ into EQ. It is this
function that is triggered by the event handler DoWhenldle when Tcl/Tk is in an idle

state.

When tkeden is started, Eden builds up its initial state, then passes control to
Tcl/Tk and awaits further actions invoked by the received messages. After taking
program control from Eden, Tcl/Tk, as explained above, enters the EventLoop in which
Tcl/Tk keeps track of the conditions of all issued event handlers in order to trigger further
actions specified by these event handlers. Now, if Tcl/Tk receives a message, for example
from the input window where the user can enter scripts, Tcl/Tk calls a function in Eden,
and passes it the program control and the received message. This function then appends

the received message to WQ and returns the control to Tcl/Tk. When Tcl/Tk enters an

137

idle state, the event handler DoWhenldle calls a function in Eden and passes the program
control to Eden. As mentioned above, this called function then executes each message
holding in EQ and after the execution moves the messages in WQ into EQ. Finally, Eden
returns control to Tcl/Tk and again Tcl/Tk enters the EventLoop. Figure 5-4 illustrates

this intercommunication mechanism.

Tcl/Tk Eden
EventLoop
| X Call Waiting queue (WQ)
[Event handler A J > M M M
< Return P

M
STodo messages

M M M —p Execute

[Event handler B

B

Call Executing queue (E!
{ Event handler J___’—// gq (EQ)
DoWhenldle I
44—
| Return

Figure 5-4. The intercommunication mechanism between Eden and Tcl/Tk

The main concern here is that Eden does not execute messages appended to its WQ
until its EQ is exhausted. This feature allows Eden to deal with messages in a state-based
fashion, that is, all messages arriving in the same conceptual state are executed at the
same time. In particular, this mechanism underlies the development of a virtual machine
for dependency maintenance, which is the most important and fundamental principle for
designing a tool to support the framework of EM. Therefore, all auxiliary actions arising
from dependency maintenance (¢.g. as a result of triggering actions) are appended to EQ
rather than WQ. In this way, it is as if they and all their preceding actions are executed in
the same state (or conceptually at the same time). In practice, it is clear that genuine

concurrent execution is not possible for Eden, but by this mechanism concurrency can be

138

achieved conceptually by separating messages arriving in one state from those that arrive

in the next state.

In effect, as soon as Eden moves messages in WQ into EQ, it enters a new state.
Until all these messages, including those moved in from WQ and those incurred from
dependency maintenance, have been processed, Eden is viewed as being in the same
state. This is the reason why two queues are needed. In this mechanism, it is evident that
each time Tcl/Tk passes a message to Eden, it is appended to WQ rather than executed. In
other words, the reply sent back to Tcl/Tk is not a confirmation that a message has been
processed, but only an acknowledgement that a message has been received. This
acknowledgement does not guarantee that processing of the received message will be

immediately carried out.

In stand-alone use of tkeden, this mode of acknowledgement does not cause too
many problems in terms of synchronisation. This is because Tcl/Tk still needs to wait for
the execution of the acknowledged message after receiving the reply of
acknowledgement. In tkeden, the only data stream from which input messages can be
obtained is the interface between the modeller and Tcl/Tk, e.g. the input window devised
for the modeller to input scripts. The messages received from this data stream can only be
passed to, and processed by, Eden in sequential order. To be precise, these messages are
handled by Tcl/Tk and Eden one at a time since tkeden is not a real concurrent system.
This one-at-a-time mechanism forces Tcl/Tk to wait for the execution of the last message
in Eden before it is available to receive another message. As a result, Tcl/Tk sometimes
has to be suspended when Eden is dealing with a substantial computational task (such as a
complex evaluation). Despite this, the synchronisation of Tcl/Tk and Eden in the same
tkeden can still be achicved. However, for dtkeden, the situation is different. The

mechanism of receiving and processing messages between Tcl/Tk and Eden does not

139

work in the same way as in tkeden, because more than one machine with similar

interfaces between Tcl/Tk and Eden are involved.

First, in addition to the original window-based interface, another data stream is
provided by dtkeden for collecting messages. This stems from the sockets implemented
for client/server communication. In dtkeden, the socket technique for program-to-
program protocol is used to establish communication channels in the Tcl/Tk level to
receive/send messages from/to other machines via the communication network. Hence,
within a machine running dtkeden, the collected messages can come from other
machines. In other words, messages requesting services can come from both kinds of data

streams, and can be mixed up together and executed by Eden.

An event handler fileevent is implemented to deal with the tasks of reading/writing
a message from/to a socket following this event handling strategy mentioned above. For
example, when a message requesting a service arrives at a socket in the server, a signal is
sent to Tcl/Tk to start the event handler fileevent of this socket. This event handler then
buffers the received message and passes it to Eden. As soon as the message is received,
Eden appends it to the WQ and passes program control to Tcl/Tk with an
acknowledgement, as described above. This acknowledgement then leads fileevent to

reply to the client with a confirmation.

This message-passing mechanism for remote communication (as illustrated in
Figure 3-5) is essentially asynchronous, though it still takes the form of a kind of
synchronous message passing. It does not guarantee that Eden in the server has
accomplished the requested service when the client receives the confirmation reply. In
effect, it just acknowledges that the request has been appended to WQ in Eden. This
mechanism is not the same as typical synchronous client/server communication in which
the client waits for the server’s reply in order to confirm that the requested service has

been executed.

140

Client Server

Eden Tcl/Tk Tcl/Tk Eden

Calﬁlﬂ Send
} e Request > /V[WO

Wait ¢
Call
&
\Iait
" Return

Figure 5-5. The asynchronous communication in dtkeden

An even worse situation can arise in a distributed environment, when two or more
clients are sending various requests to the same server. Figure 5-3 shows a situation in
which many senders are connected to one receiver. In this case, there are as many sockets
in the server as there are senders in order to distinguish individual connections between
cach client and the server. This disambiguation of messages does not resolve all
communication problems, however. Time delay is unavoidable and the sequence of
executing the received requests is unpredictable. After all, the Tcl/Tk interface to the
server can only handle one event at a time. It should be noted that an event handler

fileevent is created for each socket in the server and in the client.

Therefore, problems of synchronisation between the sender and receiver arise,
especially when modelling distributed, real-time systems in which timestamps in
connected machines have to be consistent. For example, in a case study of modelling a
railway accident (discussed in the next chapter), the same train’s position has to be
displayed at the same place on the screens in different machines running dtkeden. The
asynchronous communication between these distributed dtkeden environments

potentially leads to some unacceptable situations: for example, the trains may be

141

displayed at different positions; some of them may stop and then jump to a new position

instead of moving smoothly, and so on.

In fact, such problems of synchronisation could be avoided if the client/server
communication through sockets were to be implemented in the Eden level rather than in
the Tcl/Tk level. In that case, the client and the server will be totally suspended until the
requested service is provided, since there is only one thread in the server to deal with the
requests of clients. That is to say, no more requests can be accepted before the current
request has been served. This limitation on processing of requests leads to inconsistency
in the suspended components” states and other components’ states. To resolve this
problem of inconsistency, multi-thread or event-handling techniques are needed for
dtkeden. However, implementing these new techniques using the C language could
involve more unpredictable challenges, such as problems of concurrent control. Due to
the limitations of research time, the decision to implement client/server communication in
the Tcl/Tk level was made. This makes the problems of asynchronous communication

1dentified here inevitable, and a solution is therefore needed.

To overcome the problems posed by asynchronous communication in dtkeden, a
request-wait-reply (RWR) mechanism was devised to improve the existing message
passing mechanism provided by Tcl/Tk and Eden. This new synchronous mechanism for
remote communication in dtkeden, illustrated in Figure 5-6, will not allow the server to
reply immediately to the client with an acknowledge message when it receives a request
that needs to be served synchronously. Instead, the event handler fileevent in the server
will enter a state to wait for the accomplishment of the requested service, even if it is
queued in WQ in Eden. This waiting situation in the server will consequently lead the
event handler fileevent in the client to enter a waiting state as well, since the
communication between these two fileevent handlers via sockets is essentially

synchronous.

142

Client Server

Eden Tcl/Tk Tcl/Tk Eden

Call”"

Send Requgst > Moved
> &

Wait ¢ / Retury 18
Call
& 17
Wait
Return " Return | Retuth Numbei“

Figure 5-6. A synchronous model for remote communication in dtkeden

It should be noted that when they are in a waiting situation, neither the server nor
the client is completely suspended. Only partial components, that is, the pair of sockets
connecting the communication between the server and the client, are suspended: for
example, the pair of sockets socketAl and socketA2 shown in Figure 5-3. The partial
suspension enables the client and the server to continue to deal with messages from their
other input streams, such as the graphical interfaces and sockets in the Tcl/Tk level. Only
when the requested service is provided does the server send the client a confirmed reply
to release both suspensions. The need to minimise the suspension of the client and the
server in their synchronous communication is the main reason why the communication

sockets are implemented in the Tcl/Tk level rather than in the Eden level.

One of the crucial issues to be addressed in implementing this RWR mechanism is
how the event handler fileevent knows that its request has been served after entering a
waiting state. Within a single client/server communication, as illustrated in Figure 5-2,
the server can only serve one request at a time. When it is busy serving, other requests

must wait in a queue for their turn to be executed. Once a request is executed, the server

143

continues to process the request without delay and interruption until the request is
completed. Hence, when a request is accepted, the client sending this request clearly
knows that the server is processing the request, and the server also knows to whom the

reply should be sent.

However, on the account of dependency maintainer in tkeden, the processing of
messages in dtkeden is state-based rather than sequential. As explained carlier, each
request arriving at the server must be queued in WQ rather than be executed immediately.
Because of this accepted-first-served-later feature in Eden, the event handler fileevent
loses contact with its request. If no account is taken of this fact, RWR mechanism devised
above can keep the fileevent waiting for a reply, but the fileevent cannot recognise
whether or not its request has been served, since the linkage between the fileevent and its

request has disappeared.

The method of using a sequence of numbers to arrange the order of service (a
popular method in everyday life), is applied to deal with this problem. Each time fileevent
event handler passes a request to Eden, Tcl/Tk issues a service number to the event
handler and suspends it for further reply. At the same time, Tcl/Tk passes the request plus
the service number to Eden. When Eden processes a numbered request, it replies to
Tcl/Tk with the service number. Once the replied number is equal to the issued number of
an event handler, Tcl/Tk releases the suspended fileevent immediately. The fileevent in
the server is then available to reply to the client with a confirmation. After receiving this
confirmation, the fileevent in the client is also released. In other words, a synchronous
communication between the client and the server is achieved. The number on each
message square in WQ and EQ (shown in Figure 5-6) serves to illustrate how this concept

of queued service number operates.

144

5.2 Interaction Modes in dtkeden

As explained in earlier chapters, the human factor is arguably a critical issue within
software system development (SSD) [LR98, Som95, Flo87]. Interpersonal interaction
amongst participants is one of the main resources for guiding and shaping the process of
SSD and is therefore a key factor in determining the success or failure of a SSD project. It
is widely recognised that inefficient and ineffectual interaction between participants is

one of the major sources of confusion and error in SSD [STM95].

In dtkeden, interaction between modellers is achieved through networked
computer models whose architecture and mechanism for network communication have
been discussed in the previous section. Within such a computer-based distributed
modelling environment, the interaction between modellers is computer-mediated and may
involve no face-to-face interaction. Within the computer-mediated interaction, modellers
cannot necessarily look at each other or use verbal or body language for interaction. They
may not know each other. Instead, their networked computer models become the
communication medium for the interaction between modellers. The visualisations of these
models represent the construals of the modeller. In such interaction, each modeller
‘speaks’ through changing their computer model. Such a change is passed through the
communication network and affects the computer models of others (the ‘listeners’), so as

to ‘tell” them what the speaker is thinking.

Computer-mediated interaction is not subject to the same temporal and spatial
constraints imposed by face-to-face interaction, but is recognised to be less effective and
less socially rewarding [GK94]. On the other hand, compared with paper-based
interaction, computer-mediated interaction provides modellers with active assistance in

searching, understanding and creating knowledge in the course of co-operative problem

145

solving processes [Fis91, DS97]. Indeed, it is hard to say which mode of interpersonal

interaction is best suited for modellers, since real-world situations vary considerably.

Although in technical respects the architecture of dtkeden is based on the
framework of DEM, both E-modelling (which is concerned with the interaction between
modellers acting as external observers) and I-modelling (which is concerned with the
interaction between agents enacted by A-modellers as internal observers) are supported
by the current version of dtkeden. Both kinds of modelling require modellers to interact
with each other for shaping agency and exploring the mutual understanding between
modellers in a distributed environment. As pointed out by D. Sonnenwald [Son93,
Son96], diverse interactions between group members in the design process are required in
order to develop a comprehensive understanding of design and facilitate multiple
exploration of knowledge. Sonnenwald identified a variety of roles and interaction
networks for intergroup and intragroup members in each phase during the design process
in order to highlight the diversity of interaction styles between all modellers. In the
context of a large system, the architecture of the interaction among all modellers from
multiple disciplines, domains and individuals can become exceedingly intricate [Son96].
One possible way to support such interaction is to decompose it into a number of small
group interactions. Each small group interaction could possibly be supported by a
distributed computational environment such as dtkeden. Figure 5-7 illustrates how such
decomposition could be based on the framework proposed for DEM’. It should be noted
that the intergroup communication between intergroup stars (in D. Sonnenwald’s terms in

[Son93]) is not yet explicitly supported in dtkeden.

® This illustration is based on D. Sonnenwald’s work on intergroup communication in the planning phase
among intergroup stars in the user, designer and developer group [Son93, p. 63].

146

User group

Intragroup
communication

" Intergroup Designer grou
{communication } r—— Sher £Totp

Intragroup
communication

Intragroup
communication

. A group member as an A-modeller A : Private communication

@ : An intergroup star as an S-modeller

Figure 5-7. Decomposing large group communication into small group
communication on the basis of the DEM framework

To support the interaction between modellers in forms of I-modelling and E-
modelling in a distributed environment, four interaction modes for the S-node' have

been implemented in dtkeden: broadcast, private, interference and normal.

The broadcast mode is the most primitive style of interaction between modellers.
Its broadcasting mechanism is established by means of the S-node performing the role of
a message-transferring centre. According to the star-type logical network configuration
that is implemented in dtkeden, each message sent from an A-node must first come to
the S-node. If the S-node at that moment is in the broadcast mode, the arriving message
will be automatically broadcast to all other A-nodes, and this will consequently change

the visualisations of the computer models at these A-nodes. The modellers at these A-

1% In the current version of dtkeden, the interaction mode between A-modellers is established only in the S-
node since it is a message transferring centre (see Section 5.1). Each A-node only sends and/or receives
messages, but does not transmit any message. In addition, an A-modeller can change the interaction mode,
if the necessary privilege is given.

147

nodes then construe this change and take this into account in their own computer models

when invoking further interaction.

In as much as modellers co-operating in the broadcast mode are explicitly informed
of changes, they can be regarded as being in an electronic group meeting without video
and audio support. They share all messages sent out from any modeller by means of
propagation, and typically interact with each other in an iterative manner in order to reach
consensus. Interaction of this nature is common in the interaction between group
members, such as in most inter- and intragroup interactions during the design process
proposed in [Son93]. This mode can be used for developing a system, such as a multi-
user game, that requires a shared environment for supporting the interaction between its

users. (Examples are given in Section 6.3.)

The private mode provided by dtkeden supports a one-to-one interaction between
the S-node and an A-node. As D. Sonnenwald observed from empirical studies, in many
cases, one-to-one interaction plays an important role for managing different perspectives
in a group [Son93]. To support this one-to-one interaction, the private mode provides
cach modeller at A-nodes with a private interaction channel to the S-modeller at the S-
node. In the private interaction mode, in contrast to the broadcast mode, no message will
be propagated to the other A-nodes. Since it is possible for more than one such private
channel to exist in parallel, this private mode is also suitable for many-to-one modelling
environments, such as is required in a system monitoring student learning (see Section
6.3). It should be noted that the interaction between two A-nodes is achieved through a
built-in procedure providing A-node-to-A-node-via-the-S-node communication, as

discussed in the previous section (Section 5.1).

The inferference mode is a very useful mode for modelling a situation through
‘what if” experiments. It allows the modeller at the S-node, acting as the superagent, to

mterfere directly in the interaction between modellers. Before being serviced, each

148

message arriving at the S-node is displayed on the input window of the modeller at the S-
node. The superagent can exercise discretion over how the suspended message is
processed by changing its content. The ‘what if” experiment enables the superagent to
explore and experience an unfamiliar context for the interaction between modellers. This
often leads to unexpected situations that can provide modellers with surprising and

enriching discoveries.

Interference mode is of particular interest for modelling the phenomena of the real
world, where many-to-many interactions are the norm and singular conditions require the
intervention of a God-like superagent (cf. [Bey98]). It is also applicable to the case in
which the interaction between modellers necessitates multi-faceted exploration in order to
improve comprehension among modellers at the S-node and A-nodes. For instance, the
need for such mutual exploration has been identified by Sonnenwald in connection with
the creation of innovative artefacts [Son96]. In addition, high-level managerial
interference in the interaction between lower-level personnel in an organisation is also a

suitable application for the interference mode.

The default interaction mode in dtkeden is called normal mode. In this mode, the
interaction between modellers is mediated by the computer with reference to specified
privileges of modellers to access observables. For E-modelling, the access privileges of
modellers typically are given so as to reflect management control and social relationships
between modellers. For example, in a design process, users are often not allowed to
change those observables associated with implementation, and designers from different

groups can be restricted to access different observables (cf. [ABCY94]).

Normal mode is particularly significant for I-modelling, where modellers are
required to interact with each other in the roles of agents. As explained in Section 4.2,

their interaction, which is invoked in the form of pretend play, should reflect the agency

149

of the individual agents whose roles they are playing, as defined by their privileges to

change observables.

A privilege to act is specified by a guarded action such as is used in the profocol

part of an LSD account. The generic form for such a guarded action is as follows:
guard > action

This guarded-action can be interpreted as asserting that the agent has context-dependent
privilege to undertake the state-changing action if the guard is true. A privilege to act
implies that certain privileges to access those observables that are involved in the action
are also needed. That is to say, in order to exercise its agency, the agent must be able to
gain access to the observables involved in the guard part for observation and to those in
the action part for modification. The agency of an agent is suspended if the agent does not

have the appropriate access privileges.

Access privileges are significant for the interaction between agents. They provide a
richer model of context-dependent agency than guards alone supply. As explained and
illustrated in Section 4.3, agency can appear and disappear as the context surrounding an
agent changes. Taking the context of agency into account helps to make the computer
model resemble the referent in the real world more closely, as is needed in order to clarify

the modellers” understanding.

In previous work on EM, the access privileges to observables by an agent have
been described in the oracle and the handle parts of an LSD account respectively. The
design of tkeden does not take this description into account. This is partly because the
core part of tkeden is essentially observable-based. The agent concept is only partially

represented by triggered action in tkeden.

A more important reason is that in such a stand-alone modelling environment the

unique modeller of EM, being a superagent, is empowered to access all observables.

150

However, when tkeden is exploited in a distributed environment, the agents described in
an LSD account are distributed on different workstations. Any observable could be
accessed by the superagent S-modeller but also by A-modellers acting as agents via a
communication network. In this case, the access privilege to an observable by an agent
should be considered carefully. After all, in the real world, observables are often not open
to all agents. For example, in a two-player draughts game developed in dtkeden, it is not
appropriate for a player to be able to change the positions of his/her opponent’s pieces

except in a situation in which the player has captured the opponent’s piece.

To deal with access privileges to observables by agents, a system agent called
LSDagent has been implemented in dtkeden by the author. The current version of
dtkeden can take two kinds of access privilege to observables into consideration: oracle,
to specify which observables an agent can access for observation; and handle, to specify
which observables an agent can conditionally change. When an agent is attempting to
access an observable for observation or modification, the LSDagent checks whether or
not this agent has the necessary permission to access this observable. Without valid

permission, an agent is not allowed to observe and/or modify an observable.

The author has extended dtkeden to enable the S-modeller to specify agent’s
access privileges to observables that are described in the oracle and the handle parts of the
LSD account [Bey86]. This extension involves introducing an LSD-based notation into
dtkeden to provide for the declaration and cancellation of access privileges. The details
of using the notation are given in Appendix 5-A. With this LSD-based notation, the S-
modeller is empowered to declare or remove the privileges of agents to access
observables with reference to the LSD account. Accordingly, agents™ access privilege to
observables can be established in the computer model of the S-modeller. With the
specified access privilege, the LSDagent in the computer model of S-modeller can verify

the permission of an agent to access observables, and can propagate the change of an

151

observable that is changed by an agent to other agents who have access privilege to the

observable for observation.

In the real world, an agent’s access privilege to an observable is not always
persistent but can be mobile and volatile. Considering the draught game example above,
when a player’s piece jumps over the opponent’s piece, the player can remove this piece
from the board. In this case, the player gains temporary control over the position of
his/her opponent’s piece. Similarly, after this piece has been removed from the broad,
there is no significant sense in which either player can change its position again. In other
words, an agent’s access privilege to observables changes dynamically. Functions for the
purpose of changing the access privilege on-the-fly have been implemented in dtkeden.

Their details are also given in Appendix 3-A.

It should be noted that the implementation for supporting normal mode is different
from the implementation for the other three interaction modes in dtkeden. The normal
mode is implemented in the Eden level, since agents’ access privileges to observables are
associated with the internal representations of each observable and each agent, and their
interrelationships. The other modes all concern the mechanism of message passing (that
is, the protocol for the transmission of a definitive script) and can be implemented in the

Tcl/Tk level.

With the star-type architecture that is implemented in dtkeden, an interesting
issue emerges when multiple modellers are involved in a distributed environment: which
modeller should be at the S-node? As explained earlier (Section 5.1), the role of the
modeller at the S-node is to be the superagent transferring messages that occur in the
interaction between modellers at A-nodes and potentially interfering with these messages.
Thus, it is appropriate for the modeller at the S-node to play a more powerful role, such as
that of the manager, the intergroup star, or intragroup star, in order to highlight the

modeller’s characteristics.

152

In addition, the interaction between modellers is not always in one of the above,
specific interaction modes. It can instead be switched dynamically between these modes
by programming or choosing different menu items in the input window at the S-node. In
practice, the interaction between modellers can be more subtle than these four interaction
modes can provide, even in combination. Further improvement is suggested in Section

8.3 for future work.

5.3 Adaptable Reuse in dtkeden

Over the past decade, the reusability of software components has become widely
publicised in SSD, since it has been proved to be helpful in reducing development and
maintenance costs and increasing productivity [Som95, Pre97, Pau97]. The traditional
approach to software reuse usually seeks to develop software components for complete
reuse without modification. This demands that the reused component be completely fitted
into a new solution domain. In practice, it is very hard to find two solution domains that
are exactly the same [PF87]. This difficulty leads to a major challenge of putting reuse

into practice and integrating it into software development processes.

As described earlier (Section 2.2), each definition of an observable in the
computer-based model is the modeller’s construal of the observed world. In the context of
the A-modeller, the definition is unique. However, the uniqueness may become
problematic when it is sent to the computer-based model of the S-modeller. This is
because within this model there may exist more than one definition for the same
observable. These definitions indicate that the same observable can be construed in
different ways by different A-modellers in a distributed environment. For example, an A-
modeller X may define an observable M as ‘M is A+B”, but another A-modeller Y may
define the same observable M as ‘M is A+C’. Obviously, a problem of inconsistency

between two definitions of the observable M arises, when both are sent to the S-modeller.

153

In a conventional computational framework — and indeed in the stand-alone
environment of tkeden — such inconsistency is not allowed, since a variable cannot have
two different definitions (or internal representations) at the same time. A mechanism by
which a later definition overwrites an earlier one may be invoked. In some context,
further interaction between X and Y or an appeal to arbitration will be invoked to

eliminate the inconsistency.

However, in the real world, the elimination of inconsistency is not absolutely
necessary. The coexistence of different definitions is sometimes needed, for example, for
the purpose of distinguishing individual differences in perception. Taking the same
example above, to clarify the difference between the two definitions given by A-
modellers X and Y, the S-modeller may want to display the observable M’s content by
evaluating the two definitions simultancously in various situations. In this case, the need
to keep both local definitions co-existing in the model of the S-modeller becomes clear.
In practice, even in a local model, it is sometimes necessary to separate others’ definitions

from the modeller’s own for the same observable.

Moreover, from the perspective of distribution, it is better to prevent the contexts
of all modellers from becoming mixed up together in order to keep track of the individual
context. To achieve this, all definitions given by modellers must independently co-exist,
otherwise the overwriting mechanism will be invoked to eliminate the inconsistency
between different definitions of the same observable. However, the internal
representation of a variable in a program can only be described by a definition at one
particular moment, so that it is not possible to give an observable multiple definitions that

co-exist at the same time. The notion of virfual agent'', which provides a means to

" For convenience, the virtual agent is usually given the name of the A-modeller providing these definitions,
though it is not necessary to do so.

154

associate a family of definitions with an agent, is introduced into dtkeden in order to

cater for the demand for co-existent definitions.

Conceptually, virtual agency provides a way of attaching a definitive script to a
particular observer, typically so as to represent the personal perceptions of that observer.
Ideally, the association between a script and its observer should be defined and
manipulated as a form of dependency. For instance, it would sometimes be convenient for
one agent to hand over a script to another. In practice, there are serious technical
difficulties in implementing such a feature in tkeden. This means that virtual agency is

managed in dtkeden in a procedural fashion.

Definitions in a dtkeden script are associated with a virtual agent according to the
context in which they are introduced. If no virtual agent context has been declared,
definitions are in the root context. As soon as a virtual agent is declared, dtkeden shifts
its current context to the context of this virtual agent and then localises each subsequent
definition until another new context is required. The localisation of a given definition
means that each observable used in the definition will be renamed by appending the
virtual agent’s name to its original name. The renamed definitions then can be
distinguished from those given by others. For example, with this virtual agent notion, if
virtual agents are given the names of their respective A-modellers, the two above
definitions for the observable M can be localised as ‘X Mis X A+ X B’ and Y M is

Y _A+Y_C’. Both these definitions are present in the computer model of the S-modeller.

The virtual agent concept is helpful for creating a distributed model. For the S-
modeller, the different definitions of the same observable associated with different
contexts can co-exist in the same model, and can be easily accessed by declaring the
context of a virtual agent. A definition made by the A-modeller X in his/her local context
is transmitted to the S-node and, through localisation, is interpreted as if it were

introduced at the S-node in the context of a virtual agent X. This mechanism allows each

155

A-modeller to use observables in his/her computer model without needing to take special
steps to guard against ambiguity. An A-modeller’s local context is independent of the
localised context in the S-modeller’s model, because the localisation mechanism is
invoked after the message is passed to the S-modeller and before it is internally
represented in the S-modeller’s model. Appendix 5-B illustrates the syntax of using a

virtual agent to shift context in dtkeden.

In effect, given a virtual agent and a set of definitions (that is, a definitive script),
the localisation mechanism can be regarded as a mechanism for generating a new
definitive script associated with the context of a virtual agent. The generated definitive
script with renamed observables is different from the original one so that dtkeden will
store all these new definitions and maintain their dependency automatically. It should be
noted that there is no defined dependency between both definitive scripts after

localisation.

Hence, with the virtual agent notion, a definitive script can be used as a pattern to
generate different definitive scripts associated with different contexts. This conclusion is

very valuable for dtkeden when the reusability of a definitive script is taken into account.

In reusing a definitive script, an ontological problem concerning observables in EM
and DEM emerges. Following [Bey98], it appears that each observable in a definitive
script must correspond to a characteristic of the modeller’s external environment [Bey98,
SB98]. Taken at face value, this means that each observable must be conceptually subject
to an object in the environment, including the observed world and the computer model;
otherwise the modeller cannot observe it'*. According to this rule, for example, the corner

of this table and the status of my bank account, are observable, but the corner of a table

2 In fact, [Bey98] involves an extended discussion of how the notion of an observable in EM embraces
entities that are quite different in character from the physical observables of commonsense. To observe an
observable in EM and DEM need not mean to physically “see” this observable. Instead, it can be used in a
broader sense to refer to entities that are typically construed, for example, as imaginary.

156

and the status of ¢ bank account are not observables because no particular object is

1dentified for the modeller’s observation.

By this interpretation, an observable in EM can only be described in the details of
the modeller’s observation. It is quite inappropriate to reuse an observable of this kind
because it has a specific referent. This is the reason why most systems developed by EM
contain a huge numbers of definitions. For example, Figure 5-8(c) illustrates several
observables, called ‘1** door’, 2™ door’, ..., and ‘n™ door’. Each consists of a family of
observables with similar characteristics. The similarities between them provide no help

for reuse due to their specific context. In the same manner, in fact, no description of

observables corresponding to the observed world can be reused as a pattern.

For the purpose of reuse, ‘observables’ that are not subject to a particular context
corresponding to the modeller’s environment are needed (cf. [GYCBC96]). A possible
solution to this crucial problem of reuse in dtkeden is to use abstraction, which
disassociates the significant characteristics of an object from any specific instance
[Ber94]. Although abstraction can separate observables from their detailed context to
serve the purpose of reuse, this separation has other implications that impose inevitable
limitations on the scope and nature of reuse. Further details will be given later when
adaptable reuse in dtkeden is compared with complete reuse based on an abstract data
type.

A more appropriate solution, devised and implemented by the author in dtkeden,
is to create a new kind of observable, called a generic observable (GO), for the purpose
of reuse (cf. footnote 11). Unlike those observables that correspond to real world objects
in the modeller’s external environment (as described in Section 2.2), GOs are created to
correspond to the modeller’s experience, which is inside the modeller’s mind and
emerges from repeated description of certain observables with the same characteristics.

For example, after repeatedly describing a number of doors with the same characteristics,

157

1* particularisation

The width of a door A hinge of'a door The width of 1** door
()/) (]

The height of a door The position of a hinge The height of 1 door
The colour of a door The type ofa ings < The colour of 1% door
@ v ()

Generalisation

[A hinge of 1** door]

|

The position of a hinge
The type of a hinge

2™ particularisation

[The width of 1% door]

The height of 1% door
The colour of 1% door

[The upper hinge of 1% door] [The middle hinge of 1% door] [The lower hinge of 1% door]

\
/ [The position of the upper hjnge] [The position of the middle hjnge] [The position of the lower hjnge]

[The type of the upper hinge] [T'he type of the middle hinge] [The type of the lower hinge]

[The width of 27 door]

The height of 2 door
The colour of 2* door

[The upper hinge of 2™ door] [The middle hinge of 2*¢ door] [The lower hinge of 2 door]

/ [The position of the upper hjnge] / [The position of the middle hjnge] / [The position of the lower hjnge]

['The type of the upper hinge] [The type of the middle hinge] ['The type of the lower hinge]

The width of N door
(]

The height of N* door
The colour of N door

[The upper hinge of N* door] [The middle hinge of N door] [The lower hinge of Nt door]

/ [The position of the upper hjnge] / [The position of the middle hjnge] / [The position of the lower hjnge]

[The type of the upper hinge] [The type of the middle hinge] [The type of the lower hinge]

©

Figure 5-8 An example of particularisation and generalisation

the modeller can generalise a GO and give its description as illustrated in Figure 5-8(a) or

The generalisation process, as shown in Figure 5-8, is a process in which similar

descriptions are repeatedly given for certain observables with the same characteristics, so

158

that the modeller is able to create GOs and give their descriptions in response to the
emerging experience. In this sense, the created GOs correspond to the modeller’s
practical experience rather than to particular objects in the modeller’s external
environment. Since the experience is obtained from the repeated description in practice, it
is inappropriate to view this generalisation process as a form of abstraction, which is
completely independent of practice. The key point is that the experience emerging from
the generalisation process is shaped by the character of the modeller, as determined by
his/her knowledge, intelligence and past experience. This is in contrast with the concept

of abstraction in which personal characteristics are not taken into explicit account.

Since GOs are derived from the modeller’s practical experience in a generalisation
process, no guarantee can be given that they will emerge and be of adequate quality.
Instead, they are contingent, volatile and unpredictable. The modeller, observables
themselves and the generalisation process are all factors eligible to affect the creation of
GOs. For example, a novice modeller may take a long time to form practical experience
underlying the generalisation of GOs, but an experienced modeller may not. Also, the
qualities and the content of the GOs’ descriptions as generalised by both kinds of
modellers could be very different. Figures 5-8(a) and (b) shows that different
generalisation processes, from (c) to (a) or from (¢) to (a) via (b), are produced, and this

leads to the creation of different GOs, such as ‘a door” and ‘a hinge of my door’.

In this sense, the term ‘reuse’ in dtkeden in effect refers to the reuse of practical
experience. The reuse of experience is one of the fundamental ways in which human
beings cope with problems in everyday life. There are many examples: the driver finding
his way round a city he has not visited before, the teacher teaching a new class, and so on.
In such cases experience provides human beings with a great deal of help in solving

situated problems.

159

Therefore, it is clear that the experience-oriented reuse of a definitive script is
informed by the essential characteristics of empirical modelling, such as subjectivity and
situatedness. This means that on the one hand, reuse in dtkeden can become uncertain,
risky and not persistent. On the other hand, these characteristics do offer benefits, such as

usability and adaptability, as suggested by P. Ness in [Nes97].

After creating a GO, its description, that is, a definitive script, can be used as a
reusable pattern by combining it with a virtual agent. A new definitive script can be
generated by localising the pattern. In order to use this definitive pattern over and over
again, it is convenient to store it in a file. Each time the modeller wants to reuse this
pattern, he/she just needs to include this file in his/her computer model and specify a

virtual agent for localisation.

So far, only the mechanism by which a virtual agent can be explicitly specified
from the input window in dtkeden has been described (see Appendix 5-B for details).
Although the way in which a virtual agent is specified does not influence the semantics of
a definitive script in reuse, a way to specify a virtual agent without the explicit
involvement of the modeller is also helpful. This is because the context of the virtual
agent may have to be determined and established in an automatic fashion. For this
purpose, the name of a virtual agent can be specified implicitly by a string variable. With
this feature, the modeller can store a definitive pattern in a file with an anonymous virtual

agent as its header. In this way, the context of a GO can be dynamically determined.

With these mechanisms in place, the reuse of a definitive pattern in dtkeden
becomes more flexible and applicable. As soon as an observable similar to the
characteristics of a created GO is observed, the definitive pattern of the GO can be
exploited for reuse. To reuse the definitive pattern, the floating context of the GO has to
be particularised to the context of the observable. This particularisation can be achieved

by three steps: specifying the undetermined virtual agent (identification), retrieving the

160

content of a GO (instantiation), and finally localising the retrieved content to the new

context of this observable (localisation).

The identification step can be accomplished by the modeller by declaring a virtual
agent interactively via the dtkeden input window, or by invoking a suitable procedure or
function to change the virtual agent context. The instantiation step creates an instance of
a GO by introducing a definitive pattern into the context established in dtkeden in this
way. Following this instantiation, /ocalisation of the definitive pattern is the process that
creates an appropriate syntactic variant of the definitive script in the computer model. In

this way, the definitive pattern of the GO is reused.

Experience is adaptable. Certainly, experience is not only reused for the same
situation, but also for similar situations. For a driver, no driving situation is exactly the
same as any previous driving experience. Too many factors, such as different roads, the
presence of different cars and drivers, different traffic system, etc. add new dimensions to
the driving situation. However, a driver still can drive in such different situations and
does not need to relearn how to drive. This is because human beings can adapt past
experience to a new situation, and indeed all past experience was originally derived from
previous different but similar situations. Reusing experience is apparently more
significant in everyday life than reusing well-defined but unchangeable program codes or

even abstract components, such as specification and design [Som95].

Traditionally, there are two ways to reuse software components: black-box reuse
and white-box reuse. The former refers to the reuse of well-defined components without
modification, but the latter demands further change to the reused components. In practice,
black-box reuse is of limited use, because it is very expensive to develop reusable
components that are suited to a variety of situations without change [PF87, Pri93]. So far
this kind of reuse is only applied in developing relatively low-level components, such as

procedures for supporting the GUI (graphical user interface) and database framework.

161

Regarding white-box reuse, the difficulties mainly stem from the extra efforts for
the necessary modification. This is because changing components can be formally
thought of as engaging in parts of, or even the whole of, a software development process.
The effort needed for this engagement can to a large extent offset the benefit of reuse
[Pau97]. In addition, the trend in white-box reuse is towards parameterisation and built-in
adaptability [Pri93]. This obviously makes white-box reuse more flexible and applicable,
but it requires further formalisation of the intended components prior to reuse. The prior
formalisation usually must be invoked before run time and accomplished in a context-free
manner. As a result, problems similar to those of using the concept of abstraction for
reuse emerge. For example, the extent to which inheritance, devised for white-box reuse
in object-oriented programming, supports software reuse is subject to controversy

[GHIV95, Som93].

By contrast, the reuse of definition patterns by adaptation is encouraged in
dtkeden. In comparison with white-box reuse, there is less difficulty in changing the
reused components (that is, the definitive patterns) in adaptable reuse, as proposed here.
In the light of definitive programming, as described in Section 2.4.2, adapting the
particularised definitive scripts is far simpler than the software development process in
conventional programming. If any part of the reused definitive pattern is not well suited
to the new context, the modeller can simply give new definitions to replace the unsuitable
definitions. As described above, experience is adapted to a new situation in everyday life
in much the same manner. For example, in reusing the definitive pattern of a GO called
‘an action button’ to produce a new action button, the caption of the latter has to differ
from that of the original one. After localisation, by means of definitive programming, the
modeller can easily change the localised definitions of observables associated with the

caption simply by introducing new definitions.

162

In principle, stored definitive patterns can be reused over and over again to produce
different definitive scripts. They can also be reused for other systems when the modeller
faces a similar situation. This is one of the main reasons why experienced modellers
usually spend less time accomplishing the modelling task than novice modellers. In
addition, definitive patterns stored by a modeller also can be reused by other modellers.
The method of reusing others™ patterns resembles the way in which one person reuses
another’s experience to solve similar problems. In fact, this method of reusing past
experience is very common among programmers. Very rarely does software system
development begin from scratch [Pot93]. Many programmers have experience of reusing
parts of previously developed program codes by pasting them into a new context with or
without modification. It should be stressed that reusing program codes should not be
regarded as simply reusing certain functionalities embedded in the codes; rather it

involves the reuse of the programmer’s past experience.

By means of the virtual agent concept and the generalisation-particularisation
process, the modeller can create GOs and reuse their definitive patterns to reduce the size
and complexity of a system. This benefit has been found in several practical case studies.
For example, in an electronic circuit laboratory project for education, a GO called ‘a
painted button” is created and its definitive pattern is reused to create a further 150 similar
buttons for storing diverse circuit graphs [Dor98, She98]. Another example is a classroom
simulation project in which its source codes are rewritten by means of adaptable reuse
proposed here (detailed in the next chapter). Each project reduces the total size of the
model by more than 60%. Similarly, the case study of the simulation of a railway
accident, discussed in the next chapter, also shows how a GO named ‘a train’ can be
created and its definitive pattern reused to create a number of trains in the animation (see

Appendix 6-B for more details).

163

Like the GO notion, one of the most important notions for reuse in software
development is that of abstract data types (ADTs). The ADT is a very fundamental notion
for modern, for example, object-oriented programming [Boo94]. In contrast to the
standard data types provided by a programming language, an ADT is a programmer-
defined data type whose logical behaviour is defined by a set of values and a set of

operations on those values [Azm88, Cle86, Ber94, DW96, Wei99].

The most important notion behind ADTs is that of ‘abstraction’. This term refers to
a process that discards many details and emphasises only the ‘main features™ of interest at
a particular ‘level of concern’. It is used in many areas of computer science to reduce the
complexity of tasks to a manageable level. C. Hoare suggested that “abstraction arises
from a recognition of similarities between certain objects, situations or processes in the
real world, and the decision to concentrate upon these similarities and to ignore for the

time being the differences” [DDH72, p. 83, quoted from [Boo94, p.41]].

The essential idea behind ADTs is to separate the specification of an ADT from its
implementation; hence, an ADT is a mathematical model [Azm88]. Nowhere in the
definition of an ADT is there any description of how the set of values is represented and
the set of operations is implemented. Encapsulation of this nature allows a separation of
concerns: the user of ADTs can use the data type, but does not need to know how the data
type is implemented. The specification of an ADT becomes the sole interface for both the
people writing applications and the people who implement the abstract data type in a

computer program.

Although both are based on the ‘recognition of similarities ADTs and GOs are
very different, as can be seen from the summary in Table 5-1. The most obvious
difference is that an ADT is abstraction-based, but a GO is experience-oriented. As

explained above, abstraction leads to the separation of specification from implementation.

164

On the one hand, this separation has the advantage of facilitating reuse, since the

specification of an ADT can be used over and over again, and its implementation details

can be considered only once. Moreover, once any value or operation in the specification

of an ADT is declared, its associated implementation can also be reused without worrying

about its details. On the other hand, such a strong separation of concerns means that, once

a specification is given, only prescribed values and operations are available for reuse.

Any attempt to adapt prescribed elements, including values and operations, or to access

unspecified elements, becomes problematic [BE94, McG92, OS93]. Although this strong

typing"” feature makes programs manageable, easy to debug and more effective, it also to

some extent discourages reuse [Ous98]. In these contexts, the reuse of ADTs can be

viewed as creating instances from standard components whose descriptions are well-

defined and unchangeable!.

In other words, reuse can only reach the level of

instantiation.
GOs ADTs
Typing Typeless Strong/weak
Form Experience-oriented Abstraction-basefd
Purpose Reuse a definitive pattern foBeparate specification
new observables; from implementation
adaptable reuse instantiate prescribed
components
Character Context-dependent Context-free
Defined time Prior/Run time Prior
Usage Situated, adaptable Inflexible

Table 5-1. A comparison of GOs and ADTs

BThe term “typing” is used to “refer to the degree to which the meaning of information is specified in

advance of its use” [Ous98].

“In object-oriented programming, an alternative to reusing well-defined components is to reuse through
inheritance, meaning that it is possible to overwrite the inherited description [GHIV95]. Though the latter is
increasingly common in object-oriented programming, its suitability is controversial [GHIV95, Ous98,
Som95]. Note that even when overwriting is allowed in an Object-oriented context, it still has to be done

before run time.

165

In dtkeden, a GO is created to reflect the practical experience obtained in
describing certain observables with the same characteristics. Its definitive pattern is not
derived by discarding details, which — according to the concept of ADT — should be
ignored prior to the process of abstraction: instead, it emerges from recognised
similarities. For example, after describing a number of buttons, common features, such as
their appearance and the action triggered by clicking the mouse left button, could be
recognised and grouped together as the definitive pattern of a GO called ‘an action
button’. In this sense, the definitive pattern is shaped and generated through the practical,

situated experience of the modeller in recognising these similarities between buttons.

No separation of specification and implementation concerns is possible in the
context of such reuse in EM. No so-called specification can be given before the
emergence of this practical experience, and no implementation details can be ignored
during the generalisation process that leads to a GO, that is, by the work practice of
‘recognising similarities”. This is because a GO is created in a situated fashion and on the
basis of practical experience. This perspective on reuse is consistent with the concepts of
‘experience in action” [Bur91, Hen96, LWO91]| and of Piaget’s ‘knowing-by-doing’

[diS88, Puf$s].

In summary, the mechanism of particularisation in dtkeden is to a large extent a
form of reuse of the experience implicitly embedded in the description of a GO". After
generalising recognised similarities to the definitive pattern of a GO, the modeller is able
to reuse the definitive pattern in the same way as experience is reused in everyday life
when similar situations appear. Particularising the context of a GO to the context of an
observable — specifying the virtual agent and including the definitive pattern into

dtkeden — can be viewed as connecting past experience with the current situation.

5This is not to claim that definitive patterns exactly represent the experience obtained from the generalisation
process. After all, experience cannot be totally represented in the form of language [Haml78, Jam96].

166

Localising the definitive script, in effect, can be regarded as a way of embodying reused
experience into the computer model. The generalisation-particularisation process
proposed here for adaptable reuse is, to a great extent, in line with the experiential
learning process [Bur91] and the situated learning process [LWO91]. The latter emphasises
learning from practical experience and then applying it to future actions. Both concepts
have been widely used in applied science, for example, in nursing and in training

apprentices in work practices.

167

Appendix 5-A: The use of LSD notation

There is support for the LSD notation at the S-node in dtkeden when it is operating in
‘normal mode’. Scripts in the LSD notation define agents’ access privileges to
observables, and a set of special dtkeden procedures is available to perform the same
functions. Only some parts of the LSD notation are implemented in dtkeden - oracle,
handle and state. Scripts in the LSD notation should start with ‘%lIsd” and end with the

name of another notation, such as ‘%eden’. The syntax is as follows:

agent agentName

oracle observableName[, observableName]

handle observableName[, observableName]

state observableNamel[, observableName]

remove LSDType observableNamel[, observableName]

The agent statement associates all the following statements with agent
agentName. The oracle, handle and state observable lists contain observable names
associated with the privileges to access the observables by agentName. The following

example illustrates how to use the LSD notation.

%lIsd Lo declare the use of LSD notation

agent xxx Lammem declare the agent name

oracle a, b, ¢ <---- add to agent xxx the oracle agency for observables a, b, c.
handlea,m - <--—--- add to agent xxx the handle agency on observables a, m.
remove oracle b <----- remove from agent XxX the oracle agency for observable b.

agent yyy Lo declare a new agent name
oraclem, ¢ <-—--- add to agent yyy the oracle agency for observables m, c.
handleb,m <--—--- add to agent yyy the handle agency for observables b, m.

%eden Lo back to EDEN

After receiving the above description, the LSDagent creates the links between agents and
observables. The LSD description can then be checked from the ‘View LSD
Description’ subitem in the pop down menu of the “View’ item of the server's input

window menu.

168

There is another way to configure the link between an agent and an observable.
The commands ‘addAgency’, ‘removeAgency’ and ‘checkAgency’ can be used

dynamically to manage the access privileges of an agent. Their syntax as follows:

addAgency(“agentName”, “LSDType”, “observableName™);
example: addAgency(“yyy”, “oracle”, “b™);

removeAgency(“agentName”, “LSDType”, “observableName”),
example: removeAgency(“yyy”, “handle”, “m™);

checkAgency(“agentName”, “LSDType”, “observableName™);
example: checkAgency(“xxx”, “handle”, “w™);

In these syntactic forms, the parameter LSDType is one of three basic keywords in
the LSD Notation: oracle, handle and state. The first two commands are used as
procedures in Eden, and the last command is used as a function returning a value of
TRUE or FALSE. If TRUE (actually an integer of value 1) is returned by the command
checkAgency, it means that the specified agent agentName has the identified privilege
LSDType for the specified observable observableName. If the agent does not have this

privilege, a FALSE (0) value is returned.

The current state of the S-node’s interaction modes can be examined and changed
via commands in the dtkeden input window. For the management of agents’ privileges
in ‘normal mode’, the LSD Agent in dtkeden creates and maintains three lists for each
observable. For example, if the list of oracle privileges for an observable mmm is [XxX,
yyy]. then both agents xxx and yyy have the oracle privilege for the observable mmm.
These three lists can be checked by using the function symboldetail(“mmn7”), which
returns the privilege details associated with observable mmm. The format of the EDEN

list returned i1s:

[mmm,type,defn,i1,i2 [oracle_agents],[handle_agents],[state_agents]]
example:

writeln(symboldetail(“a™));
[a,formula,b+c;,[b,c],[1,[EVERYONE],[sun,carters],[EVERYONE]]

169

For any observable in any state, an oracle_agents list, handle_agents list or

state_agents list is either:
e cmpty - [] - no agent has the associated privilege:;

e contains special agent ‘EVERYONE’ - [EVERYONE] - every agent has the

associated privilege;

e contains a list of agent names (not including EVERYONE) - [sun,carters] -

with the associated privilege.

When creating a new observable, dtkeden refers to a system variable called
‘EveryOneAllowed’ in order to give the default access privilege for each new definition

of an observable. The two settings are:

EveryOneAllowed = TRUE;
In this case, a default agent name called ‘EVERYONE’ will be set for every new

definition, and the LSD Agent will automatically grant every agent open access privileges

to redefine and observe all newly created observables.

EveryOneAllowed = FALSE;

In this case, no agent has any access privileges to observe or redefine the

observable.

170

Appendix 5-B: Virtual Agents

The concept of a virtual agent is motivated by the treatment of observables in the private
interaction mode in dtkeden (see Section 5.3). In this interaction mode, a definition is
introduced at an A-node is transmitted to the S-node in a form that is syntactical modified
to its originating agent. For example, if agent X introduces a definition ‘ais b + ¢’, a new

definition ‘X _ais X b + X ¢’ is generated at the S-node.

The virtual agent mechanism allows the superagent at the dtkeden server to
introduce definitions in a context as if they were being generated by an agent in a similar
fashion. The mechanism can be used in any interaction mode in dtkeden. If no virtual
agent context for definition has been declared, all definitions are in the root confext. In
dtkeden, a virtual agent is declared by a symbol containing two characters. This symbol
is followed by an agent’s name that can be specified explicitly by a string constant (an
explicit declaration) or implicitly by a string variable (an implicit declaration). In the
former case, dtkeden will use the string constant as the current virtual agent’s name to
establish a context associated with this name, but in the later case the content of the given
string variable will be used. If a symbol is not followed by an agent name, it indicates a
reset of context to the root context. According to the given symbol, localisation is
performed by appending the virtual agent’s name to each variable identified in a postfix
or prefix form. So far, five ways to declare a virtual agent have been devised in dtkeden.

Table 5-B shows the use of these various methods to localise the definition ‘a is b+c’.

The last symbol shown in Table 5-B does not cause dtkeden to shift the current
context to the specified agent’s name, so its localised definition is the same as the original
definition. Normally, it is used for agency checking by the LSDagent embedded in
dtkeden, to examine whether the named agent has appropriate access privileges to
modify these variables in the root context. In this example, the LSDagent will check if the

declared agent has the access privilege sandle on the observable a.

171

In addition, the symbol ‘~’ is available to reference the root context from another

context, that is, it can be used to declare a global observable. For example, the definition

‘~a 1s ~bt~c” will be localised as ‘a is b+c¢’, whichever context is used. Furthermore, in

the current version of dtkeden, the virtual agent can be applied to the Eden, DoNaLD

and Scout notations.

Symbol Declaring a virtual | Type of declaration of the Localised definition
agent virtual agent
>> >>X Explicit (in prefix form) | X _ais X _b+X ¢
X =" Implicit (in prefix form) | x_ais x_b+x_c
>< ><X
<> <>X Explicit (in postfix form) | a_Xis b_X+c_X
X =" Implicit (in postfix form) | a xisb_x+c_x
<< <<X
>~ >~X The context that is ais b+c

associated with the virtug
agent ‘X’ is declared, but
localisation is not invoked

Table 5-B. Different ways to declare a virtual agent

172

