Chapter 6

Case Studies

In accordance with the main principle of EM — knowing-by-doing — the best way to
understand the issues discussed in the last two chapters is to undertake practical case
studies. In fact, some points of view underlying DEM - such as A-modellers acting as
agents to shape agency — and some of the requirements promoting the features of
dtkeden — such as synchronous communication, the virtual agent, generic observable,
and situated agency — are motivated by practice. In this respect, case studies not only
make it possible to experience and explore DEM and dtkeden, but also serve to enrich

and expand both in surprising ways.
6.0 Overview

This chapter seeks to exemplify DEM and some features of dtkeden through practical

research. Three case studies are provided.

The first case study (6.1) involves modelling a nineteenth-century railway accident.
The modelling aims to demonstrate DEM discussed in Chapter 4 (4.2). Several computer
models are constructed as artefacts in a distributed modelling environment (that is,
dtkeden) in order to shape the agency of agents associated with the accident by means of

the successive interactions between A-modellers, who act as these agents, and their

173

models. The concept of pretend play proposed in the last chapter is illustrated by the
example of shaping agency that allows two signalmen to change the telegraph needle’s
position for communication. Also, in the animation of this historic accident, the role of
the S-modeller in setting diverse contexts for A-modellers and authorising the

accessibility of each agent to observables is illustrated by examples.

Another case study (6.2) illustrates the use of the virtual agent concept described in
the last Chapter (5.3). In Section 6.2.1, an ADM translator developed by S. Yung
[Yun92] for translating an ADM model to an Eden model is reviewed. A particular
problem concerning the Eden models generated by the translator is their readability,
because many additional string handling symbols are introduced into the models. A new
ADM translator for reengineering this translation has been developed by the present
author. The new translator generates Eden models in the virtual agent form. Without the

additional symbols, the generated models are much easier to read and maintain.

In addition, Section 6.2.2 provides two examples of adaptable reuse, an important
application of the virtual agent concept as discussed in Section 5.3. Within both
examples, reusable definitive patterns with a virtual agent are established through the
generalisation process (explained in 5.3). These patterns can be particularised to create
the required definitive scripts in accordance with the context of the specified virtual agent
in run time. Both examples highlight the benefits of using the virtual agent concept to
reduce the size of the developed systems and to create definitive patterns for adaptable

reuse dynamically, whilst the model is executing.

Section 6.3 illustrates the use of the interaction modes implemented in dtkeden
(see Section 5.2). Unlike the two case studies in the previous sections, which make use of
the normal interaction mode, the third case study introduced in this section shows the

application of the other three interaction modes commonly used for concurrent modelling.

174

Two systems that have been created by extending pre-existing stand-alone versions in

tkeden are given as examples.
6.1 A Railway Accident in the Clayton Tunnel

Table 6-1 describes a railway accident that occurred in the Clayton Tunnel near Brighton

in 1861 [Rolt82]. The accident has been studied by using DEM and dtkeden in order to

The Clayton Tunnel Disaster August 25th 1861

Three heavy trains leave Brighton for London Victoria on a fine Sunday morning.

They are all scheduled to pass through the Clayton Tunnel---the first railway tunnel to be
protected by a telegraph protocol designed to prevent two trains being in the tunnel at once.
Elsewhere, safe operation is to be guaranteed by a time interval system, whereby
consecutive trains run at least 5 minutes apart. On this occasion, the time intervals between
the three trains on their departure from Brighton are 3 and 4 minutes.

There is a signal box at each end of the tunnel. The North Box is operated by Brown and the
South by Killick. K has been working for 24 hours continuously. In his cabin, he has a
clock, an alarm bell, a single needle telegraph and a handwheel with which to operate a
signal 350 yards down the line. He also has red (stop) and white (go) flags for use in
emergency. The telegraph has a dial with three indications: NEUTRAL, OCCUPIED and
CLEAR.

When K sends a train into the tunnel, he sends an OCCUPIED signal to B. Before he sends
another train, he sends an IS LINE CLEAR? request to B, to which B can respond CLEAR
when the next train has emerged from the North end of the tunnel. The dial at one end of the
telegraph only displays OCCUPIED or CLEAR when the appropriate key is being pressed
at the other---it otherwise displays NEUTRAL.

The distant signal is to be interpreted by a train driver either as all clear or as proceed with
caution. The signal is designed to return to proceed with caution as a train passes it, but if
this automatic mechanism fails, it rings the alarm in K’s cabin.

The accident

When train 1 passed K and entered the tunnel the automatic signal failed to work. The alarm
rang in K’s cabin. K first sent an OCCUPIED message to B, but then found that train 2 had
passed the defective signal before he managed to reset it. K picked up the red flag and
displayed it to Scott, the driver of train 2, just as his engine was entering the tunnel. He
again sent an OCCUPIED signal to B.

K did not know whether train 1 was still in the tunnel. Nor did he know whether S had seen
his red flag. He sent an IS LINE CLEAR? signal to B. At that moment, B saw train 1
emerge from the tunnel, and responded CLEAR. Train 3 was now proceeding with caution
towards the tunnel, and K signalled all clear to the driver with his white flag.

But S had seen the red flag. He stopped in the tunnel and cautiously reversed his train to
find out what was wrong from K.

Train 3 ran into the rear of Train 2 after travelling 250 yards into the tunnel, propelling
Train 2 forwards for 50 yards. The chimney of the engine of Train 3 hit the roof of the
tunnel 24 feet above. In all 23 passengers were killed and 176 were seriously injured.

Table 6-1. An account of the Clayton Tunnel railway accident (from [Bey98])

175

illustrate, and in fact also enrich and expand, DEM as well as the features of dtkeden.
This section will focus on illustrating DEM by modelling the accident. The features of
dtkeden are then illustrated by other examples shown in the next two sections (Section

6.2 and 6.3).

Modelling the railway accident has involved constructing computer-based artefacts
to represent the perspectives of five human agents involved in the accident. These
artefacts are also co-ordinated from the point of reference of the S-modeller, that is, an
external observer with exceptional state-changing privileges. One significant motivation
for building such a model is to gain insight into the individual understandings of the
signalmen and drivers concerning their work practices at the time, and to explore how
they may have contributed to the accident. The main insight gained concerns the
interaction between agents. These agents could include the telegraphs, the alarm, the
signal, the signalmen and the drivers. An LSD account for these agents is shown in
Appendix 6-A, and Figure 6-1 depicts the distributed modelling environment of
modellers. In terms of how the individual understandings of the participants contributed
to the accident, this model then focuses on the animation of the accident, and the

involvement and exploration of the S-modeller.

In order to capture the individual understanding of each agent, A-modellers can ask
questions such as: How did the signalmen communicate with each other via the
telegraphs? How big was the red flag? From what distance could the driver see the
signal? On the basis of DEM, answers to such questions can be shaped through the
interaction between A-modellers by means of the concept of pretend play referred to in

section 4.2.

176

Visualisation (see
Visualisation (see Figure 6-1(b) for

Figure 6-1(a) for bigger picture
bigger picture)

Visualisation (see
Figure 6-2 for
bigger picture)
Oracle for

Driver 2 ——

P N

<= Handle from
Driver 2

Oracle for
Killick

Definitive script
"the S-modeller
view"

Definitive script
for Killick

Definitive script
for Driver 2

Handle from =

Killick

Connecting Connecting Connecting
to Brown to Driver 1 to Driver 3

Figure 6-1. The modelling environment for the railway accident

Figure 6-1 (a) A global view of the Clayton Tunnel

177

Figure 6-1 (b) The second driver’s view of the Clayton Tunnel

Figure 6-2. A signalman’s view of the Clayton Tunnel

178

By way of illustration, consider how two A-modellers acting in the roles of signalmen can
shape the agency involved in telegraph use. In reality, two signalmen, Killick and Brown,
whose location is indicated by the boxes labelled K and B in Figure 6-2 (which represents
a view of the Clayton Tunnel from the perspective of the signalman Killick),
communicate with each other via the telegraph shown in the bottom-left corner of the

figure. To represent this agency, two A-modellers define their private views as follows:

Signalman Killick:
NeedlePos is clicked;
clicked is (click clear)?(1):((click_neutral)?(0):((click_occupied)?(-1)));
clear_clicked is Killick click clear;
neutral clicked is Killick_click neutral;
occupied_clicked is Killick click occupied,

Signalman Brown:

NeedlePosition is which_clicked;

which_clicked is (clear_clicked)?(1):((neutral clicked)?(0):((occupied_clicked)?(-1)));
click clear is Brown_click_clear;

click_neutral is Brown_click_neutral,

click_occupied is Brown_click occupied,

Definitions of this nature specify computational artefacts to represent the personal
agent perspectives. Different naming conventions for observables are used to reflect the
independence of the agent’s observation. (It should be noted that, for simplicity, the
definitions concerned with visualisation are omitted.) The order in which the various
definitions are introduced is not as important as in traditional programming because
dtkeden automatically maintains dependencies amongst observables. For example, in the
case of Brown, the value of the observable ‘needlePos™ will be changed whenever the
value of the observable “clicked’ is changed. Further description is needed to express the
way in which the signalmen inform each other about the state of the tunnel. This could be

as follows:

179

Signalman Killick:
Func send1: Killick click clear{
if (click_clear)
sendAgent(“Brown”, “Killick click_clear=TRUE;”);
else
sendAgent(“Brown”, “Killick click clear=FALSE;”),

Func send2: Killick click neutral {
if (click_neutral)
sendAgent(“Brown”, “Killick click_neutral=TRUE;),
else
sendAgent(“Brown”, “Killick click_neutral=FALSE;”),
}
Func send3: Killick click occupied{
If (click_occupied)
sendAgent(“Brown”, “Killick click_occupied=TRUE;”),
else
sendAgent(“Brown”, “Killick click_occupied=FALSE;™),
b

Signalman Brown:
Func sendA: Brown_click_clear{
if (click_clear)
sendAgent(“Killick”, “Brown_click_clear=TRUE;”),
else
sendAgent(“Killick”, “Brown_click _clear=FALSE;”),

Func sendB: Brown_click neutral {
if (click_neutral)
sendAgent(“Killick”, “Brown_click_neutral=TRUE;),
else
sendAgent(“Killick”, “Brown_click_neutral=FALSE;”),
}
Func sendC: Brown_click occupied
if (click_occupied)
sendAgent(“Killick™, “Brown_click_occupied=TRUE;”),
else
sendAgent(“Killick”, “Brown_click_occupied=FALSE;™),
b

Although the above mechanisms send definitions from one signalman to the other,

this does not of itself establish useful communication. To this end, there must also be a

dependency between the definitions received by a signalman acted by an A-modeller and

the private definitions within its own computational artefact. When redefinitions such as

the following are added to their computer-based models, the agency of changing the

telegraph’s states for communication is established:

180

Signalman Killick:
clear_clicked is Killick_click clear or Brown_click_clear;
neutral clicked is Killick _click neutral or Brown_click neutral,
occupied_clicked is Killick click_occupied or Brown_click_occupied,

Signalman Brown:
click _clear is Brown_click_clear or Killick click clear;
click neutral is Brown_click_neutral or Killick click neutral,
click_occupied is Brown_click occupied or Killick click occupied,

This example illustrates how A-modellers on the basis of DEM act as agents to
shape the agency of agents through the interaction with each other (that is, in the form of
pretend play proposed in Section 4.2). In the ecarly stage of modelling this railway
accident, the agency that is illustrated above took the following form: a signalman presses
a key on his telegraph to set both needles” positions to indicate the state of the tunnel,
such as ‘occupied” and ‘clear’, and the other signalman resets the positions. After
experiments with the computer model, this agency was revised so as to take the following
form': a signalman holds the key down to keep the needles at a position for a while and
then releases the key to return the needles to the ‘neutral” position. This evolution of
agency in this model highlights the significance of shaping agency through the interaction
between agents acted by A-modellers. For A-modellers, the concept of pretend play can
help not only to shape the agency of agents but also to improve their understanding of
these agencies through enabling them to gain experience of the state change caused by

their interaction from their computer-based models.

For the purpose of animating the accident, the S-modeller, who can exercise super
agency in providing A-modellers with a particular context, is involved. The S-modeller,

for example, can make the signal definitely fail to work by refining the observable

! The model has been constructed in the absence of explicit information about how signalmen at the Clayton
Tunnel communicated with each other by using two telegraphs in 1861. However, the revised scenario for
communication reflects our knowledge of the technology of the time (for example, the fact that electric
current had to be generated by a manually operated dynamo) and allows us to interpret the interactions
between the signalmen Killick and Brown, as recorded by the accident enquiry (in particular, the
information that Killick sent an IS LINE CLEAR? signal to Brown and Brown replied CLEAR).

181

treadle reliability equal to O (that is, treadle reliability = 0)* in order to explore the
consequent interaction between A-modellers. Exploration through ‘what if” experiments
provides the S-modeller with contextual resources to gain his/her insight into the
interaction between agents. The S-modeller can undertake many ‘what if” experiments to
explore the reasons for the accident: for example, slowing down the speed of train 2,
increasing the time interval between trains, enlarging the distance between Killick and the
signal, and so on. It is to be expected that the S-modeller can broaden his/her insight into
the accident as a result of this arbitrary exploration. This open-ended, situated modelling,
that provides the S-modeller with more contextual resources, is hard to achieve by

traditional modelling methods, where the allowed exploration has to be anticipated.

The potential usefulness of the computer model to an accident investigator can be
illustrated by a number of ‘what if” experiments. In this way, the author was able to
identify scenarios to show the responsibility for the accident cannot be pinned on any one
agent. For example, let us consider the case in which driver Scott sees the red flag and
just stops his train in the tunnel rather than reversing it. Since Killick has seen the
‘CLEAR’ message from Brown, he decides to wave his white flag to inform train 3 to
enter the tunnel. When train 3 enters the tunnel, the driver does not expect another train to
be there (because there is no accessibility to observe train 2’°s position) and there is no
time to stop his train before crashing into train 2. In that case, the accident occurs even
though Scott follows his protocol to the letter. As a second example, consider the scenario
in which Killick questions the meaning of the ‘CLEAR” message and decides to stop train
3 from entering the tunnel. Since the driver of train 2 (Scott) has seen the red flag, he
decides to reverse his train in order to discover what is wrong. When he is reversing the
train, he is not aware that another train has stopped just in front of the entrance of the

tunnel. Though Killick can see the positions of both trains, he cannot stop them, since he

? For reasons of convenience in animating the accident, the buttons used to set the signal as definitely
working or not working are implemented in the S-modeller’s model as shown in Figure 6-1(a)

182

has no direct control over their movements. This helps to clarify Killick’s role in the
accident. Analyses of this sort can show that no single agent should be blamed for the
accident. It is more accurate to conclude that the accident is due to the collaborative

interaction between all the agents.

Another important task performed by the S-modellers is to determine the
accessibility of observables by each agent (sece Section 5.2 for a more detailed
explanation). For example, the following LSD account is given by the S-modeller to

describe how certain observables can be accessed by the two signalman agents.

%lsd

agent Killick

oracle FLAG showing, showingFlagColour, FLAG flagpole pos x, FLAG goleft
oracle ALARM ringing , ALARM flash, TELEGRAPH needle pos, signalSign
oracle CLOCK hour, CLOCK min, CLOCK sec

handle FLAG_showing, showingFlagColour, FLLAG flagpole pos x, FLAG goleft
handle TELEGRAPH needle pos, signalSign, ALARM ringing

agent Brown
oracle TELEGRAPH needle pos
handle TELEGRAPH needle pos

Not all observables can be described in advance. For example, the observable
T2 TRAIN train _pos_x representing the position of train T2 occurs only if train T2 starts
to move. Also, the accessibility of each agent to this observable is not persistent. In fact,
signalman Killick has access to this observable when the train is in a position where it can
be seen by him. In particular, Killick cannot access this observable when the train enters
the tunnel. An Eden action to implement such a privilege is given as follows (only a part

of the action is shown here, due to limitations of space):

183

proc changeTrainAgency : TRAIN train_pos_x, driverSeeFlagPos, KillickSeeTrainPos {
auto trainPos;
trainPos="_"//str(eval(~trainDriver))//" TRAIN_train_pos x";
if (TRAIN train_pos_x -~ SITE Killick pos <= driverSeeFlagPos &&
_TRAIN train_pos x>=~ SITE tunnel r pos && !driver_see flag) {
addAgency("Killick", "oracle", trainPos),
Killick_see_train = TRUE;

}

if (_TRAIN train_pos_x >=~ SITE Killick pos + KillickSeeTrainPos ||
_TRAIN train_pos x+ TRAIN_trainLength <=~ SITE tunnel r pos) &&
Killick see_train) {
removeAgency("Killick", "oracle", trainPos),
sendClient("Killick", trainPos // " = 99999:\n"),
Killick_see train = FALSE,

In this Eden action, changes to the train’s position and to the distances at which
objects become visible serve as triggers to redefine Killick’s privilege to observe the
train. The model assumes that Killick’s flag will be visible to the train driver precisely

when the train is visible to Killick.

The railway accident case study” illustrates very well not only the points of view
underlying DEM but also the key features of dtkeden for supporting distributed
modelling: for example, synchronous communication (among Killick, Brown and each
driver), and reusable definitive patterns (see the way in which trains are specified in

Appendix 6-B for example). The next two sections illustrate these features in more detail.

3 More details of the accident animation are available on the website
http://dcs.warwick.ac.uk//modelling/railway developed by S. Maad.

184

6.2 The Application of the Virtual Agent Concept

One of the most important features of dtkeden is the virtual agent concept. As described
in section 5.3, the use of the virtual agent concept enables a modeller not only to localise
a definitive script in accordance with a specific context but also to generate scripts for

reuse. This section gives examples of using the virtual agent concept.

6.2.1 Reengineering ADM

As described earlier (2.3.1), the ADM is an abstract machine which has been developed
to give operational meaning to the characters of parallel state-change and openness in an
LSD account [S1a90]. An LSD account intended for describing systems at a higher-level
abstraction is non-executable. In order to create a computer-based model to animate the
description in an LSD account, the development of an abstract machine such as the ADM
is required. With the ADM, the modeller can animate the behaviour described by an LSD

account and intervene in this animation by (re)definition through definitive programming.

The task of translating an LSD account into an ADM model is so far performed
manually. The account of each LSD agent is presented in the form of an entity, which
includes a definition section and an action section. A general rule for this translation is
that variables owned by the agent are put into the definition section and the description of
protocol 1s put into the other section in the form of action (For precise details of this

translation, see [S1a90]).

Though Slade’s implementation of the ADM is a successful proof-of-concept tool
to demonstrate how an animation can be created from an LSD account, its applications
are limited. This is because, in this implementation, the ADM only accepts the integer
data type, and has no support for visualisation. Hence, for most applications, ADM

models are translated into Eden models rather than interactively interpreted. The

185

translation can be divided into two parts: system and application. The system part
embedded in each translated Eden model deals with the animation of parallel state-change
in the ADM, and the application part is generated by translating entities in the ADM into

Eden notation (such as definitions and actions).

Fle ES% Fommal Opfions Halp

Figure 6-3. A snapshot of the entity passenger in ADM

A translator named adm has been developed to support the translation [Yun92].
With adm, in addition to the system part, each entity description is translated into a
procedure (with the same name as the entity) in which the textual forms of the definition
and the action sections of the entity are treated as parameters to an Eden built-in function
called execute. Once the procedure is called, Eden definitions and actions to represent the
original ADM entity are generated. This same procedure can be used when the model is
running (with specified parameters, if appropriate) in order to instantiate Eden definitions
and actions to reflect the (specified) context of the entity. Figures 6-3 and 6-4 illustrate

the translation by adm in which an entity called passenger is translated into a procedure

186

Figure 6-4. A snapshot of the Eden scripts generated for the entity
passenger by the original version of the ADM translator

(also called passenger). As shown in Figure 6-4, the Eden scripts generated by the
translation are difficult to read. This is because additional string handling symbols for the
parameters of the function execute are inserted. This problem can be almost entirely

climinated by re-engineering this translation.

The use of the virtual agent concept, which can repeatedly generate similar
definitive scripts from a definitive pattern (explained in Section 5.3), is able to serve the
purpose of instantiation in adm. This has motivated the author to develop a new
translator named adm3. In adm3, cach entity is translated into a definitive pattern with
an unspecified virtual agent, as discussed in section 5.3. The definitive patterns stored in
individual files can then be reused to generate similar scripts according to the contexts of
their specified virtual agents. The function execufe is no longer used, so that additional
string handling symbols are almost unnecessary. In order to make it possible to reuse each

definitive pattern describing an entity, adm3, like adm, generates a procedure with the

187

Fia Edil Foammal Oplons

Figure 6-5. The Eden scripts generated for the entity passenger by the
author’s revised version of the ADM translator

name of this entity. This procedure is much simpler than that generated by adm, since
most of its content is extracted and stored into a file as a reusable definitive pattern. In
effect, this procedure serves to perform the process of particularising a reusable definitive
pattern as discussed in Section 5.3. It specifies the context of the virtual agent and the
parameters, if any, and then includes the file of this definitive pattern in order to reuse the
definitive pattern in the current context. Figure 6-5 shows the definitive pattern generated
by adma3 for the entity passenger in Figure 6-3. Compared with the Figure 6-4, it is clear
that the generated Eden model, in which there are no additional string handling symbols,
is casier to read and maintain. In respect of the translation of the system part, adm3 is

exactly the same as adm.

188

6.2.2 Other Examples

In addition to the application of reengineering the ADM translator, the use of the virtual
agent concept for adaptable reuse has been illustrated in several projects. By reusing
adaptable definitive patterns, these projects not only succeed in simplifying the
programmer’s task but also benefit from reducing model size and generating structured

definitive scripts. Two examples are given here:

e The classroom project’

This project secks to develop an animation system to model the interactive
behaviours of pupils and the teacher in a classroom. Since the variables associated with a
pupil, such as those for showing the face of a pupil, must be defined for each specific
pupil in response to the observed world of the modeller, the size of the developed system
(for 6 pupils) is large (about 165K bytes in total). This leads to time-consuming
inconvenience and difficulty in maintaining the system: for example, the need to change
some observables” descriptions and to add more pupil icons into the system on-the-fly. In
fact, examining the system carefully, it is found that many chunks of scripts have a high
degree of similarity: for example, the description of each pupil’s behaviour, the Scout
windows for showing pupil icons and measuring the personal characteristics of pupils,
and the description of drawing each pupil’s face in DoNaLLD. These similarities point to
the use of the virtual agent concept for reducing size and maintenance load.
Corresponding to the modeller’s practical experience, GOs (that is, generic observables)
and their definitive patterns, for example, girlface, boyface, pupil-icon, can be generalised
as reusable patterns. These patterns can then be particularised to create the needed

definitive scripts on-the-fly. The generated scripts are adaptable in accordance with their

* The project was originally developed by a third-year student in the author’s department. To date, its
modification by using the virtual agent concept has been developed collaboratively by the present author
and another PhD student S. Rasmequan.

189

specific contexts. For example, the description of the position of each pupil’s icon can be

modified in response to its real position on the displayed screen.

By exploiting the virtual agent concept, the size of the system has been reduced by
40% (to about 100K bytes). More significantly, these definitive patterns become reusable
components and can be conveniently reused with optimal modification on-the-fly. Neither
white-box nor black-box reuse provides this feature of adaptable reuse when the model is
running, since both kinds of reusable component are well-defined in advance and cannot
be modified on-the-fly. Figure 6-6 shows that the system has been extended to 12 pupils

just by reusing definitive patterns without additional description.

Figure 6-6. The application of reusable definitive patterns in
the classroom simulation system

190

e The virtual electrical laboratory project’

This project uses EM to develop a distributed electrical laboratory system for
educational purposes. Within the dtkeden environment, the scenarios of the system can
be considered as follows: the teacher at the S-node draws up a circuit diagram and sends
it to students at A-nodes, and each student interacts with the received diagram by

changing its components and their values for learning purposes.

s5Creen

Supervisor Gontrol

ENAELE Server Prop.

ADD Handle:

Figure 6-7. A snapshot of virtual electronic laboratory

In order to support the frequent interaction between the teacher and students, and
their computer models, a large number of icons are used. For example, a circuit diagram
can be drawn by selecting a symbol from an icon bar and pasting the selected symbol into
an icon of the workspace consisting of another 120 icons with empty contents. In fact, as

shown in Figure 6-7, more than 200 icons are used for the interface to support the

> This MSc research project was jointly developed by H. P. D*ornellas [Dor98] and C. R. Sheth [She98].

191

interaction and display graphic data. Each icon is specified by defining a Scout window to
include a DoNaLD picture. As can be imagined, a heavy load of modelling is inevitable
for creating and maintaining these icons in tkeden; however, the load can be relieved by
using the virtual agent concept. For example, a GO named ‘agent.p4’ provides a
definitive pattern which can be reused for describing icons in the icon bar (more details

are given in [She98]).

Pupil-icon Pupil-action

Pupil-face-icon [Pupil-behaviour-icon]

[Boy-face] [Girl-face] Writing-icon Thinking-icon

[Sleeping-icon] [Reading-icon] [Puzzling-icon]

Figure 6-8. The partial hierarchical structure of the modified
classroom simulation system

Both the above projects demonstrate the advantages of applying the virtual agent
concept to software reuse, in particular for adaptable reuse when the model is running, as
discussed in Section 5.3. More significantly, it is found that the creation of definitive
patterns facilitates the construction of the hierarchical structure of the developed system.
Where definitive programming is used, as in tkeden, it is typically not necessary for the
modeller to address issues associated with the structure of models. However, a structure
for dtkeden models can be explicitly introduced when reusable definitive patterns in
dtkeden are subtly devised. For example, Figure 6-8 illustrates the partial structure of the

classroom simulation system (the modified version). It should be noted that such an

192

application of definitive patterns need not be regarded as imposing a fixed structure on

the system being developed, due to the adaptability of these patterns.
6.3 Examples of Interaction Modes

There are four interaction modes in dtkeden. The examples in the previous sections are
typically in the normal mode. This section includes another two examples developed by

the author to illustrate different modes.

e A two-player OXO game

This system was originally developed to model a generic OXO game in the tkeden
environment, that is, in a stand-alone environment (details can be found in [Nes97]). The
only user of the system is the modeller, who, being the superagent, is empowered to
access and change all variables of the computer-based model. When the system is

extended to a distributed environment, there is no longer a single super agent.

In the extended OXO model, more modellers are involved: two for players X and
O at A-nodes and one for the umpire (associated with ‘the S-modeller view’) at the S-
node. Through a communication network, a player X can send a definitive script, for
example a definition s1 = x (describing a cross is placed to position sl), to interact with
(c.g. to play OXO with) another player O°. Due to the star-type logical network
configuration described earlier (Section 5.1), the script is first automatically directed to
the S-node. If the interaction mode of the S-node is broadcast mode, the script will be
accepted so as to affect the computer model at the S-node, and will concurrently be sent

to another player O, leading to the change of the visualisation of player O’s computer

% Although a player can also input a definitive script without sending it to the umpire, in order to interact with
his/her own computer model, the interaction will be regarded as a stand-alone modelling in EM for
individual cognition. This is not considered in this section.

193

model. Figure 6-9 shows the interaction between the three models in this form of

broadcasting.

If the interaction mode is declared as interference mode, scripts that are sent to the
S-node will be displayed in the umpire’s input window pending further action from the
umpire (as shown in Figure 6-10). At this point, the umpire can interfere in the interaction
between two players, for example by changing the definition s1 = x (received from player
X) to s1 = o (signifying the placing of a nought in position s1) and sending it to the player
O. As a result, a surprising inconsistency occurs in the players’ computer models. The
unexpected contexts that arise from interference at the S-node can enrich the

understanding of all the modellers involved in the system.

¢ A monitoring system for an educational game

The jugs model in tkeden implements a simple educational game intended to
teach pupils elementary number theory (sece [Bey89+, BS98] for details). A dtkeden
system has been developed by extending the stand-alone version of the jugs model in
tkeden. This system allows a teacher (sited at the S-node) to monitor the progress of
several pupils who are independently playing jugs. The interaction mode at the S-node
for this system is set to the private mode so as to establish private channels to individual
pupils for monitoring their playing context. In this way, each interaction performed by a
particular pupil who is playing jugs on his/her computer model is propagated to the
model at the S-node and only affects the part of the teacher’s model which corresponds to
that pupil’s context. Figure 6-11 illustrates how different contexts, corresponding to the
models of different pupils, can be shown in the same model at the S-node, though these
models essentially have the same observables and dependency for each pupil. This system
demonstrates the archetypal usage of the virtual agent concept, viz. to localise definitive
scripts in accordance with their contexts. This concept of localisation gives rise to the

concept of adaptable reuse.

194

Send/receive
definitive scripts

Send/receive
definitive scripts

Broadcast interaction
< |

Figure 6-9. Interaction in the broadcast mode

Umpire in the interference mode
(the S-modeller’s view)

The script sent

by X (sl=x (
.< > .

A new script
changed by the
S-modeller
(s1=0)

PlayerX PlayerO

Figure 6-10. Interaction in the interference mode

195

Figure 6-11. Different contexts of a jugs game in the private mode

196

Appendix 6-A: An LSD Account for the Railway Accident

This appendix presents an LSD account of the agents involved in the Clayton Tunnel
railway accident. The account is subject to change as more knowledge emerges from the
modelling. In addition, for the sake of convenience, each of the key positions of a train in
this account is represented by a simple letter. These symbols and their meaning are

explained after the LSD account.

agent Killick {
state
set_alarm_off
set_signal
showing_flag
oracle
clock time
train_position(i) /* get this agency when he can see the train i, but lost this agency when
the train i enters the tunnel. */
telegraph_needle position
alarm_ringing
handle

set_needle position /* sct telegraph needle position to OCCUPIED(1) */

set_signal /* set signal_sign to ALL. CLEAR(0) or CAUTION(1) */
set_alarm /* we assume alarm will keep ringing until Killick reset it */
showingFlagColour

protocol

/* when telegraph needle position is in CLEAR, set it to NEUTRAL
and reset signal to ALLL. CLEAR */
telegraph needle position ==-1 -> set_needle position = 0, set_signal = 0

/* when train is entering the tunnel, Killick wants to set telegraph

197

needle’s position to OCCUPIED and no showing flag */
train_position(i) >=e¢ ->set_needle position = 1, showing flag == FALSE
/* when the alarm is ringing, Killick wants to set it off and show a flag to indicate situation */
alarm_ringing == TRUE -> set alarm = OFF, showing_flag = TRUE
/* when Killick wants to showing an indicating flag and a train is
in the tunnel, he shows the red flag. */
showing flag == TRUE && telegraph_needle position == 1 -> showingFlagColour="RED"
/* when Killick wants to showing an indicating flag and no train is
in the tunnel, he shows the white flag. */
showing flag = TRUE && telegraph _needle position ==0 -> showingFlagColour="WHITE"
h
agent Brown {
oracle
train_position(i) /* will get this agency when the train i is leaving the tunnel. */
telegraph_needle position
handle
set_needle position /* set telegraph_needle position to CLEAR(0) */
protocol
trans_position(i) + train_length(i) >=f > set_needle position = -1
h
agent driver(i) {
state
pedalAccelerator /* TRUE or FALSE */
pedalBrake /* TRUE or FALSE */
set_train_speed /* UP, KEEP, DOWN and STOP */
incrAccPos /* pedal accelerator further(1), still(0), or less(-1) */
set_gear
oracle

signal sign /* the driver gets this agency when he can see the signal */

198

showing_flag /* the driver gets this agency when he can see the flag showing by Killick */
handle
treadlePressed /* to see if the train has press the treadle */
signal treadle /* set signal sign to CAUTION(1) or FAIL(-1) when the train passes it */
brakePos /¥ 0~1 %/
accPos /F0~1%
privilege
train_position >b ->train_press_treadle = @
train_position <= b -> train_press_treadle = TRUE
train_position + train_length <=b ->train_press_treadle = FALSE
/* when the train i passes over b point and havn’t pressed the treadle,
press the treadle and make it set the signal or alarm */
train_press_treadle == TRUE && treadlePressed == FALSE
-> treadlePressed = TRUE, signal_treadle = ON
train_press_treadle == FALSE && treadlePressed == TRUE -> treadlePressed = FALSE
/* When the driver see ALL._CLEAR sign indicated by signal or a flag,
he speeds up or keeps the train speed */
signal sign == 0 || showing_flag == "WHITE"
->set_train_speed = UP or set_train_speed = KEEP
/* When the driver see CAUTION sign indicated by signal, he slowes
down the train’s speed by reducing his accelerator*/
signal sign=1 ->set train_speed = DOWN
/* When the driver see OCCUPIED sign indicated by the red flag, he
stop the train behind the point d by using his braker*/
showing_flag = RED -> set_train_speed = STOP
set_train_speed = UP -> pedal Accelerator = TRUE, pedalBrake = FALSE, incrAccPos = 1
set_train_speed = KEEP -> pedalAccelerator = TRUE, pedalBrake = FALSE, incrAccPos = 0
set_train_speed = DOWN -> pedal Accelerator = TRUE, pedalBrake = FALSE, incrAccPos = -1

set_train_speed = STOP -> pedalBrake = TRUE, pedal Accelerator = FALSE

199

h
agent signal {
state
signalSign /* CAUTION(1) and ALL CLEAR(0) */
currentSignalSign /* current signal sign */
signal treadle /* cause the signal to be set to CAUTION(1) */
treadlePressed
handle
signalSign
set_alarm
protocol
/* When the treadle is sct to ON by a train and the signal doesn’t fail,
reset the treadle to OFF and set signal to CAUTION. */
signal treadle == ON && signalFailure = FALSE ->signal treadle = OFF, set_signal = 1
/* When the treadle is set to ON by a train and the signal does fail,
set the alarm to ringing and reset the treadle to OFF. */
signal treadle == ON && signalFailure = TRUE
->set_alarm = ON, signal_treadle = OFF, set_signal = -1
set_signal == 1 -> signalSign = 1, currentSignalSign = 1
set_signal ==0 -> signalSign = 0, currentSignalSign = 0
set_signal == -1 -> signalSign = currentSignalSign
/* When the treadle is set to ON by a train, it wants to sct signal
CAUTION by a given way (here I assumed it is random) */
signal treadle == ON -> signalState = rand(100), signalFailure = @
signalState <= signalReliability * 100 -> signalFailure = FALSE
signalState > signalReliability * 100 -> signalFailure == TRUE
h
agent telegraph {

state

200

telegraph_needle position /* OCCUPIED(-1) NEUTRAL(0) CLEAR(1) */
protocol
set_needle position = -1 -> telegraph _needle position = -1
set_needle position=0 ->telegraph needle position = 0
set needle position=1 ->telegraph needle position =1
h
agent alarm {
state
alarm_ringing
protocol
set_alarm = ON -> alarm_ringing = TRUE
set_alarm = OFF -> alarm_ringing = FALSE
h
agent train (i) {
state
train_position(i)
train_speed(i)
train_length(i)
gearFw
derivate
movedDistance = train_speed(i) * timePeriod + 0.5 * Acc * timePeriod /2
train_position(i) = [train_position(i)| + movedDistance * movedDirection
protocol
gearFw = TRUE -> movedDirection = 1

gearFw = FALSE -> movedDirection = -1

201

The following shows various positions of a train passing through the Clayton Tunnel (from the

right end to the left end).

< London
R<————— R<mmmmm——— R<————— RLmmmm - RLmmmmm e RL—————— X<~
g f e d c b a

point a: start point - it is assumed that the driver can see the signal from this point.
point b: the position of the signal

point ¢: the position where Killick and the drivers can see each other, this is changeable
point d: the position of Killick

point ¢: the entrance of the tunnel

point f: the exit of the tunnel where Brown sees the train emerging

point g: the end point where the train disappears from Brown’s view.

202

Appendix 6-B: An Example of a Generic Observable (GO) — train

%donald
><trainDriver
viewport ~site
openshape TRAIN
within TRAIN {
int trainLength, trainHigh
trainHigh = ~ SITE size! div 10
point train_pos
int train_pos_x, train_pos_y
train_pos_x = (~_SITE size! div 50) + (~_SITE railLen!)
train_pos y =~ SITE rail pos y!
train_pos = {train_pos_Xx, train_pos_v}
rectangle trainBody
trainBody = rectangle(train_pos, train_pos + {trainLength, trainHigh})
label trainLabel
char trainNo
trainLabel = label(trainNo, train_pos + {trainLength div 2, trainHigh div 2})
?°"A_"// str(eval(~trainDriver)) /" TRAIN_ trainBody"™ = "fill=solid,color=purple";
h
Y%eden
_TRAIN trainLength=100 * ~len_ratio;
_TRAIN _trainNo = str(~train_id);
trainStartPos = (float(~_SITE size) / float(50)) + (~_SITE _railLen);
Killick see train = FALSE;
Brown_see train = FALSE;
driver_see_signal = FALSE;
driver_sce_flag = FALSE,;
defineCrash = FALSE;,
driverSeeSignalPos is eval(~driver_see signal pos) * ~len_ratio;
KillickSeeTrainPos is eval(~Killick see train_pos) * ~len_ratio;

driverSecFlagPos is eval(~driver_see flag pos) * ~len_ratio;

proc changeTrainAgency : TRAIN train pos X {
auto trainPos, temp, temp1, temp2, i;
trainPos="_"//str(eval(~trainDriver))//" TRAIN train pos x";
if (TRAIN train pos x <=~ SITE Killick pos + KillickSeeTrainPos &&
_TRAIN train pos x + TRAIN trainLength >=~ SITE tunnel r pos &&

203

3

IKillick see train) {
addAgency("Killick", "oracle", trainPos);
Killick see train = TRUE;

if ((TRAIN train_pos x >=~ SITE Killick pos + KillickSeeTrainPos ||

3

_TRAIN train pos x + TRAIN trainLength <=~ SITE tunnel r pos) &&
Killick see train) {
removeAgency("Killick", "oracle", trainPos);
sendClient("Killick", trainPos // " = 99999;\n");
Killick see train = FALSE;

if (TRAIN train pos x <=~ SITE tunnel 1 pos &é& !Brown see train) {

3

addAgency("Brown", "oracle", trainPos);
Brown_see_train = TRUE;
sendClient("Brown","autoClearButton();\n");

if (TRAIN train pos x+ TRAIN trainLength <0) {

3

removeAgency("Brown", "oracle", trainPos);

Brown_see_train = FALSE;

if (TRAIN train pos x -~ SITE signal pos <= driverSeeSignalPos &&

3

_TRAIN train_pos_x >=~ SITE signal pos && !driver_see signal) {
addAgency(eval(~trainDriver), "oracle", "signalSign");
addAgency(eval(~trainDriver), "handle", "signalSign");
addAgency(eval(~trainDriver), "handle", " ALARM ringing");
sendClient(eval(~trainDriver), "signalSign = "//str(~signalSign)//";\n");

driver_see_signal = TRUE;

if (TRAIN train pos x+ TRAIN trainLength <= ~ SITE signal pos &&

3

driver_see_signal) {

removeAgency(eval(~trainDriver), "oracle", "signalSign");
removeAgency(eval(~trainDriver), "handle", "signalSign");
removeAgency(eval(~trainDriver), "handle", " ALARM_ringing");

driver_see_signal = FALSE;

if (TRAIN train pos x -~ SITE Killick pos <= driverSeeFlagPos &&

_TRAIN train_pos_x >=~ SITE tunnel r pos && !driver_see flag) {
addAgency(eval(~trainDriver), "oracle", " FLAG_showing");

addAgency(eval(~trainDriver), "oracle", "showingFlagColour");

204

addAgency(eval(~trainDriver), "oracle", " FLAG flagpole pos_x");
addAgency(eval(~trainDriver), "oracle", " FLAG_ goLeft");
sendClient(eval(~trainDriver), " FLAG showing = "//str(~ FLAG_showing)//";\n");
sendClient(eval(~trainDriver), "showingFlagColour = \""//str(~showingFlagColour)//"\";\n");
sendClient(eval(~trainDriver), " FLAG flagpole pos x =
"//str(~ FLAG flappole pos_x)//";\n");

sendClient(eval(~trainDriver), " FLAG goLeft = "//str(~ FLAG_goLeft)//";\n");
driver_see_flag = TRUE;

b

if (TRAIN train_pos x <=~ SITE tunnel r pos && driver_see flag) {
removeAgency(eval(~trainDriver), "oracle", " FLAG_showing");
removeAgency(eval(~trainDriver), "oracle", "showingFlagColour");
removeAgency(eval(~trainDriver), "oracle", " FLAG flagpole pos_x");
removeAgency(eval(~trainDriver), "oracle", " FLAG_ goLeft");
driver_sce_flag = FALSE,;

b

if (!defineCrash && ~trainList# > 1) {
for (i = 1; i <=~trainList#; i++) {

if (str(~trainList[i]) != eval(~trainDriver))
~defineTrainCrash(str(~trainList[i]), eval(~trainDriver));

b
defineCrash = TRUE;

3

>>

message = "train_id =\"" // str(train_id) / "\";\n";

message = message / "trainDriver =\"" // str(trainDriver) // "\";\n";

message = message / "include(\"/dcs/res/sun/dtkeden/railway/train.panel\");\n";
sendClient("Killick", message);

sendClient("Brown", message);

append trainList, trainDriver;

205

