Chapter 7
Distributed Empirical Modelling

for Requirements Engineering

It is increasingly recognised that one of the most intricate and important tasks in software
system development (SSD) is to understand the needs of users. No matter how well
designed they are, software systems that fail to satisfy the users™ needs will disappoint
users and bring grief to developers. Accordingly, Requirements Engineering (RE), which
aims to solve this problem by developing requirements in a systematic fashion, has
recently attracted widespread attention in the software community. Unfortunately, since
RE is located at the intersection of formal and informal, objective and subjective, and
technical and non-technical approaches, the RE process (REP) is very difficult to
understand fully [Fin94, Bub95]. The development of requirements remains the most

crucial, labour-intensive and expensive part of SSD.

7.0 Overview

This chapter seeks to apply the framework of DEM to effective requirements
development. In Section 7.1, a brief overview of RE and the difficulties of enacting the
REP are given. These difficulties, arising from the inability to provide adequate support

for the interpersonal interaction and take sufficient account of context (i.e. the real-world

206

environment in which requirements are developed and the system is used), have given

rise to the wide gap between research and practice [BL98].

Section 7.2 attempts to bridge this gap by reengineering the REP. Firstly, to reflect
the situatedness of requirements [Gog94|, a new definition of requirements that draws
more attention to the context in which the requirements are developed and used is given.
To correspond to this definition, the need for requirements to be incrementally formulated
through interpersonal interaction is identified. This section then reengineers the REP by
regarding it as a problem-solving process in which human agents interact with each other
in order to develop requirements within their context. In this way, requirements are
cultivated in order to solve problems as they are identified in the real world. Hence, the
REP must closely intertwine with SSD in a symbiotic manner rather than simply being
bolted on as a front-end to SSD. Section 7.2 also discusses the influence of the interactive
relationship between human agents on the interaction of the REP, and consequently
proposes that a computer-based, collaborative interaction environment is useful for

cultivating requirements.

In response to the basic characteristics of the REP, Section 7.3 proposes a human-
centred framework, called SPORE, whereby requirements as ‘solutions to identified
problems’ in the application domain are developed in an open-ended and situated manner.
Within this framework, people participating in the REP are able to cultivate requirements
through collaborative interaction with each other in order to solve the identified problems,
rather than by searching for requirements in the ‘jungle’ of users” needs. The principles
and concepts of DEM are applied to SPORE to support the collaborative interaction
between participants and the situatedness of the enacted the REP. By enacting DEM
using dtkeden, computer-based models can be created and used by participants to serve

two functions:

207

e as artefacts to explore, expand and experience the solutions to the identified

problems.

e as a powerful communication medium to support their collaborative interaction in
order to ‘grow’ the solutions through incremental development in a distributed

environment.

Two examples of the use of SPORE for requirements development are given in
section 7.4. The first example is that of developing requirements for an interactive
software system embedded in an automatic teller machine (ATM). A comparison between
SPORE and a viewpoint-oriented model, called VORD [KS98], of requirements
development is discussed. Another example is that of a warechouse inventory information
system. A use-case driven approach to requirements development for this application is

found in [JCJO92], and this is compared with SPORE.

7.1 Requirements Engineering

In his celebrated paper [Bro87], F. Brooks argued that “[t]he hardest single part of
building a software system is deciding precisely what to build. No other part of the
conceptual work is so difficult as establishing the detailed technical requirements ... No
other part of the work so cripples the resulting system if done wrong. No other part is
more difficult to rectify later”. Indeed, a poor understanding of the needs of users has
become the main cause of system failures. The detection and correction of errors arising
from such poor understanding is often the most difficult and expensive task in SSD
[STM95]. The worst thing is that such errors may remain undetected until system
operation, thereby provoking failures that have serious consequences, especially in safety
critical systems. Therefore, capturing the needs of users accurately is a vital component of

successful software system.

208

7.1.1 An Overview of Requirements Engineering

Requirements Engineering (RE) typically refers to that part of the SSD) life-cycle in
which application engineers investigate the needs of the user community and abstract
from these needs to form descriptive specifications for the development of software
systems. It involves intellectually challenging and creative activities, acknowledged to be
the most costly and error-prone parts of SSD. A systematic process is needed for RE to
derive the users’ needs for the software system that is to be developed. In order to
facilitate requirements acquisition, this process is conventionally divided into a set of
well-defined activities characteristic of an engineering discipline. The term

‘requirements’ is defined in IEEE-Std.”610” as follows [IEEE90]:

1. A condition or capacity needed by a user to solve a problem or achieve an

objective.

2. A condition or capability that must be met or processed by a system or system
component to satisfy a contract, standard, specification, or other formally

imposed documents.
3. A documented representation of a condition or capability as in 1 or 2.

In this thesis, people who are engaged with these activities for understanding and
acquiring requirements are referred to as participants. Typically, they come from two
camps: a usage camp, including end-users of the software system, managers and others
affected by the system; and a development camp, including analysts and designers
responsible for the system development, maintainers in charge of maintaining the
developed system, and requirements engineers enacting RE. For reasons of convenience,
the general terms ‘users’ and ‘developers’ will be used here to describe people from the

two camps.

209

So far, there has been no agreement on a standard definition of RE. For example, P.
Loucopoulos and V. Karakostas define RE as “the systematic process of developing
requirements through an iterative co-operative process of analysing the problem,
documenting the resulting observations in a variety of representation formats, and
checking the accuracy of the understanding gained” [LK95]. This definition is concerned
mainly with the frechnical issues of enacting RE for requirements acquisition. Non-
technical issues, such as social contexts and cognitive concerns, are only peripherally
implicated in this account through the references to co-operative interaction between
participants and to understanding gained. By contrast, according to J. Bubenko, RE “can
be said to be the area of knowledge concerned with communicating with organisational
actors with respect to their visions, intentions, and activities regarding their need for
computer support, and developing and maintaining an adequate requirements
specification of an information system” [Bub95]. This definition suggests that RE should
embrace not merely technical but also managerial, organisational, economic, social issues

and problems.

Although definitions of RE vary, it is commonly agreed that RE plays a very
critical role in the development of an appropriate software system with the required
degree of quality assurance [Rol94, LK95]. RE is conventionally viewed as a phase in the
carly stage of the life cycle of SSD [LK95, KS98, SS97]. It is assumed that the gap
between users and developers can be narrowed by obtaining well-structured, well-
described specifications of the needs of users. Given the specifications, developers can
confidently continue the remaining phases of the SSD life cycle and finally deliver the
system, fully satisfying the users’ needs. This linear dependency emphasises the

importance of RE in paving the way for successful SSD.

In spite of its importance, the process by which requirements are apprehended and

acquired is poorly understood [Fin94, Bub95]. In order to overcome this deficiency, a

210

model of REP is needed. Many process models serving this purpose have been proposed.
According to M. Dowson’s classification, each of them falls into one or more of the
following categories: product-oriented, activity-oriented and decision-oriented |Dow87].

These may be summarised as follows.

e Product-oriented

This kind of model focuses on the product of RE. It aims to help developers to
construct correct descriptive documents [DBP93a, DBP93b, FHW94, KS98, LL9%4,
LH94, Lou94]. Most such models decompose a root definition from the highest level into
a number of less abstract modules in order to understand the structure and functionality of
the whole software system which it is proposed to develop. The common assumption is
that requirements pre-exist and are hidden, and can then be retrieved from their sources
before being fixed in the form of a descriptive representation. When enacted by this kind
of model, the REP can be regarded as a process of transforming informal, fuzzy
individual statements of users” needs to a formal precise description of requirements that
is understood by all participants. The final result of this transition takes the form of
requirements specifications recording the users’ needs in a well-defined and well-

structured descriptive format.

Requirements specifications are typically a kind of paper-based documentation in
the form of text or diagrams. Rigid formality of requirements specification is usually
required in order to conform to certain characteristics such as completeness, correctness,
unambiguity, understandability, modifiability and consistency, though many of these
qualities are very difficult to achieve and test. In addition, from the product-oriented
perspective, it is maintained that the description of requirements should not involve any
design details, due to the conventional wisdom in RE that requirements are concerned
with only what is desired without referring to #ow it is to be implemented [Dav93, HJ89,

KS98, $S97].

211

Once the specifications are accomplished, they must be signed off by users and
developers. Thus, the specifications not only become a contract between users and
developers on all issues associated with the problem which need to be solved by the
system, but are also used as a blueprint to enable designers to develop the system.
Although, a change in the requirements can be requested after the specification is

finalised, each after-the-fact change will add to the costs and extend the schedule.

e Activity-oriented

An activity-oriented model concentrates on the process of RE itself. It is concerned
with finding and executing a set of activities for requirements acquisition [And94, KS98,
LK95, Rei92, SDV96, Sut96]. It is believed that engaging in these prescribed activities
can help developers to capture requirements from users and represent them in formal
notations. These actions are sequential in nature and provide a template for the manual

management of projects.

In this type of model, the REP itself is typically separated into three stages:
definition, description and validation [LK95, KS98], though different models may have
their own separations. The definition stage draws attention to the need to understand the
problem domain of the system that is to be developed. It is presumed that, after this stage,
the developers are well aware of the domain knowledge. The description stage aims to
document the understanding of requirements gained from the previous stage at an
appropriate level of detail. These documents, expressed in a formal manner, are the main
communication medium between developers and users. Finally, at the validation stage,
there should be a thorough certification of the documented requirements to ensure
consistency and completeness. The purpose of this stage is to detect problems in
requirements documents before the documents are used by designers as a blueprint for the

development of the system.

212

Due to the differences between individual systems in respect of scope, objectives,
complexities and deliverables, and the difference between individual people in respect of
their knowledge and experience, it is not surprising that developers employ many
different methods to serve the purpose of each stage in the REP [LK95, Gog94]. Different
people usually enact a process to tackle a problem in different ways, and even one
individual may not be consistent in his/her choice of problem-solving strategy. This is
because the methods used for enacting the activities of a process depend largely on the
specific contexts of the people involved and the environment in which the process is
enacted. If the stipulated stages of the activity-oriented models are followed, it is argued
that the needs of users can be correctly captured, formalised and represented in

requirements specifications.

e Decision-oriented

Unlike the context-free accounts provided by the product- and process-oriented
models for REP, the decision-oriented type of model centres on the contextual aspect of
decision [And94, JP93, Rei92, RLI3, Rol94, STM95]. In general, the context of the
domain knowledge of the software system under development is not clear in advance and
is very unpredictable. Therefore, the decision-oriented models argue that developers
should be able to react with flexible analysis decisions to rapidly changing situations. To
achieve this, the enacted model should allow developers to advance the REP by taking
advantage of the domain knowledge that they have established by analogy with the
previous situations in which they have been involved. In other words, this kind of model
couples the context of the domain knowledge associated with a decision to the decision

itself within the REP. Such models explain not only how the process is carried on but also

213

why there is a transformation of the output' of the process. As a result, the risk of

misunderstanding the users’ needs can be significantly reduced.

Typically, a decision-oriented model® views the REP as a sequence of building
blocks, each of which is composed of a set of interrelated concepts, such as situation,
decision, action and argument, which contribute to the context definition. A situation is
most often a part of the output under development and serves to make sense of how a
decision is made. A decision guiding the REP reflects a choice that developers make at a
particular time in the REP. An action performing a transformation on the output changes
the context of the domain knowledge and may reveal new situations that in turn are
subjects for new decisions. Arguments are statements that lend support to or detract from
decisions within a given context. Developers make progress in the REP through dealing
with a context, that is, taking the appropriate decision in the right situation on the basis of
the current domain knowledge. Developers can refine the context by considering various
alternative scenarios, all of which have a bearing on the decision to be reached in this
context. In other words, the aim of decision-oriented models is not only to capture the
activities performed during the REP but also to record why these activities are performed
and when. Such an approach is intended to make it possible to determine retrospectively
what decisions were taken and what were the contexts for these decisions. With these

decision-making blocks, it is argued that requirements can be understood and refined.

! The output of a process can be in different forms, e.g. a prototype, a conceptual schema, a logical schema or
the implemented software system [Rol93]. Although the conventional output of REP is requirements
specifications, here “output” is used as a broad term to include diverse outputs.

? This paragraph is based on the reports of a famous long-term project called NATURE (Novel Approaches to
Theory Underlying Requirements Engineering) [Rol193, Rol94, JP94, JP93, JPRS94]. The decision-oriented
process model proposed by this project is one of the most important models in this area.

214

7.1.2 Difficulties Within the REP

As described above, many models have been proposed to guide the REP. However, in
many cases requirements are still gathered, analysed and implemented through a great
amount of informal interaction between users and developers, trial and error, and the
ingenuity of a few individuals [LK95]. One of the main reasons for this is that most
models of the REP offer developers well-defined guidelines for specifying requirements
rather than for solving the practical problems arising from developing requirements. For
example, many models suggest that developers should collect domain knowledge from
existing documents, but few of them tell developers what to do when these documents are
not consistent with users” practices. The documents may stipulate a detailed procedure for
users to follow, but what the users actually do in practice may reflect their precious
experience accumulated during many years of work. Developers are often puzzled at
having to decide which view of user practices should be considered. In effect, given
different contexts, developers are required to take pragmatic actions that are best suited
for solving particular problems. Since it is impossible for the suggested guidelines for the
REP to take all possible contexts of users into consideration, it is not surprising that these

guidelines are of limited use in the real world.

In practice, there is increasing consensus that requirements are not usually pre-
existent and hidden in the experts’ head waiting to be dug out and put into the
specification cabinet [BCDS93]. Neither can they be completely described in any form of
logical algorithm. On the contrary, requirements are designed and developed through the
participants’ interaction [Bub95] and are always liable to change. The simple distinction
between what and how (traditional in discussing specification and implementation) is
inappropriate and inadequate [Dav93, SB82, SS96] because complex requirements are

rarely complete and are liable to evolve faster than the REP itself proceeds [Bub95].

215

As K. Ryan stated in [Rya95], RE is located at the intersection of a formally based
technology and an essentially informal world. By concentrating only on the technical
side, most models of the REP have left developers with a number of difficulties when
these models are enacted in the real world. These difficulties mainly come from two

sources: the process model itself and the participants involved in the REP.

RE is more casily described by its products than its process. Current
understandings of the REP are dominated by phase-based models, whether they be
product, activity or decision oriented (see Subsection 7.1.1), in which a degree of rational
planning through a rigid sequence of prescribed phases is assumed. The character of each
phase reflects engineering practice, that is, the application of proven methods, techniques
and tools in a systematic and cost-effective fashion. However, experience shows that the
REP might not be as simple as these traditional models suggest, in particular for open

requirements which are poorly understood and dynamic [Blu93, Gog94, HED93].

The actual situation is usually that developers, according to the different contexts
involved, exploit diverse activities to understand requirements. These activities cannot
casily be invoked by following a predefined order or an algorithm. Instead, the sequence
may be decided by accident and varies in accordance with different situations. Also, the
activity undertaken may bridge several phases rather than be confined to a single phase in
the REP. This is illustrated in the case of prototyping techniques that involve both high-
level conceptual design and low-level implementation. These cannot then be assigned to
one particular phase, but assist the performance of tasks in several phases: analysis,
design and validation [And94, LK95]. In fact, there is a very popular trend in the software
community towards regarding SSD as a non-linear phase-based life cycle [Boe88, Leh97,
Pre97, Rac95]. In the same manner, the REP should not be restricted to step-by-step

algorithms [Gog96, Rya95, SS96].

216

Furthermore, since RE is regarded as an early stage of SSD, one of the aims of
most traditional models for the REP is to freeze the domain knowledge. Freezing domain
knowledge is essential for sensible use of orthodox techniques in the remaining stages of
SSD, such as design, implementation and validation, in the specified domain; otherwise,
these techniques are not applicable. To achieve this objective, many models for the REP
seek to specify the domain knowledge in a formal or semi-formal description. Such
specification can not only clarify the developers™ understanding of the domain but also

record the users’ needs for the system being developed.

Unfortunately, users’ needs are usually represented by fragmentary, individual,
ambiguous and unorganised statements. This is partly because of industrial specialisation:
individual users, limited by their own particular professional knowledge, are only familiar
with individual parts of the whole system. It is also partly because of tacit knowledge:
users are often able to do things without being able to describe precisely and
systematically #ow they do them [Gog96]. For these reasons, it is very difficult to prevent
the domain knowledge from changing. Moreover, users” environments are characterised
by uncertainty. Not only the solution domain (where the real needs of users are identified
and represented) but also the problem domain (the application domain where the users’
needs are produced and used) is likely to change. C. Potts’s field study survey of 23
software-development organisations confirmed that in users’ environments, requirements
change rapidly [Pot93]. In this context, it is evident that changing domain knowledge is

the norm rather than the exception within the REP [HED93, RL93].

The essential contradiction between most traditional models and their practices
over the status of domain knowledge leads to a major gap between research and practice.

Difficulties of enacting these traditional models in practice inevitably emerge.

One of the most important reasons for the gap between research and practice is that

traditional models for the REP are context-free. Most phases of a manufacturing process

217

are formalised by applying proven methods, techniques and tools in a systematic and
cost-effective fashion. The engineering discipline confers a well-defined character upon
cach of these phases, so that they can be repeatedly invoked without taking account of
their context. However, the REP differs from a manufacturing process: most activities
invoked in the REP are inherently ill-defined and ill-structured, and are hence inseparable
from their contexts, especially the social context [Gog94, HORRS95]. They are often
associated with the knowledge and experience of the actors who undertake the activities,
and with the contexts of the organisations and environments in which the activities are
invoked. Since, in general, the rigorous formalisation of activities cannot keep pace with
the rate of contextual change over time, formalising these context-dependent activities
within the rapidly changing real world remains a major challenge for most process
models. (For example, the activity of understanding and eliciting requirements from
documents and users’ statements is very hard to formalise, at least with the current state-

of-the-art technology)

In order to avoid this contextual problem, the conventional approach is to view
these activities at a higher-level abstraction where the change is no longer significant. By
means of such abstraction, context-free models can provide developers with instruction-
like abstract activitiecs to guide the REP, such as ‘definition’, ‘clicitation’,
‘understanding’, ‘specification’, and so on. No contextual details have to be considered in
these abstract activities, since they are not the concern of these models. The product-
oriented and activity-oriented models mentioned above are in principle based on this
context-free abstraction. Although these models have been gradually improving and are
definitely helpful for developing well-defined and well-structured software systems, some
researchers have confirmed the difficulty of enacting such context-free models in the real
world [Bub95, Eas93, EM95, Gog97, HED93, HORRS95]. In addition, even though

decision-oriented models try to take the context into account, they are still of limited use

218

in a real world of constant change [Rya95]. These models break up the REP into many
decision-making building blocks, in each of which the temporal aspect is explicitly
modelled. Within each block, developers, after making a choice, take an action to transfer
the old output to a new output in order to keep up with the new context of the application
domain. However, the application domain often changes too fast, so that the new context
emerges before the transformation of the output is finished. This makes the new output

out-of-date again in the new context.

A more serious difficulty results from poor communication between users and
developers [Bub95, Eas93, Pot93, Son93, STM95, VPCI8, Zav95]. It is commonly
recognised that user participation is helpful for requirements development, in particular
for those systems whose domain knowledge is not well understood [EQM96]. However, a
well-known communication problem occurs: users have domain-specific knowledge and
use the vocabulary of their domain, whereas developers are familiar with information
requirements methodologies and use the vocabulary of software development. On the one
hand, users may not be able to express their needs in the technical terms understood by
developers. On the other hand, developers may have difficulties in understanding the
professional terminology of users. For example, object-oriented techniques have been
widely applied to software engineering [Boo94, CY90, Jac92, JCJO92]. Developers may
be keen to understand requirements in an object-oriented fashion. However, it is very
difficult for users to express their needs in terms of objects and classes [BE94, McG92,
0893, Pot93a, Zuc93]. As a result, the communication obstacle between developers and
users inevitably gives rise to errors in understanding the acquired requirements. These
errors, embedded in the developed system, should hopefully be detected before the
system is in operation. This is especially important in the case of safety critical systems.

The cost of detecting and correcting these errors is inevitably very high. Previous

219

attempts to solve the communication problem have so far resulted in little progress

towards a satisfactory solution [STM95].

In addition, most approaches to REP aim to achieve an agreed set of requirement
specifications in text and diagrams [Poh93]. They seek to document requirements in a
detailed fashion. However, paper is passive and can only serve as a repository for
collected information. It is hard for users and developers to know whether or not there are
differences between their interpretations of the same text. Many users sign off
requirement specifications without fully understanding the implications. It is usually
difficult for users to validate the technical documentation used by developers and
designers. In fact, users can often identify their true requirements only by experiencing
the operation of the system [HED93, RL93, LL94]. This is because they are familiar with
the operation for solving a problem in practice, but are unable to recognise its specialised,

abstract description in the specifications for the system.

Most process models for the REP fail to support group work effectively [Bub93,
Eas93, JP94]. The REP is dominated by participants from different backgrounds. They
may be responsible for different goals and may not be aware of each other’s goals. They
work together to embody their individual goals into the developed requirements. By
means of the successive interactions between participants, requirements are evolved and
hopefully move toward a consensus. (The trend of moving towards an agreement between
participants is highlighted in one of RE’s three-dimensional models proposed in [Poh93].)
The evolution, especially for open requirements, must be supported by collaborative

group work between participants.

In practice, the method of working collaboratively in a distributed environment has
been an economically necessary and efficient means of production in modern industrial
societies. Any process model for the REP should be able to support, in an effective and

efficient manner, collaboration among participants in a distributed environment.

220

However, most models for the REP are developer-centred, in that users are passive and
need only contribute to information provision. It is the developers, whose professional
experience 1s in different fields, such as computer science, who determine what
information is needed and how to integrate and embody the required information into the
intended system [You83]. They wait for users’ contributions before proceeding with
further activities. Process models that are centred on the developers’ tasks cannot casily

support group work between all participants in a collaborative fashion.

An exception to this kind of developer-centred models is provided by viewpoint-
oriented models, in which requirements are developed on the basis of different
perspectives or views describing parts of the intended system [KS98, NJJIZH96]. These
models regard the combination of a participant and his/her view as a viewpoint, and seek
to provide a framework for organising and structuring viewpoints for requirements
development. Though these models implement a general feature of group work, they are
carried out in a centralised manner. Developers are responsible for the integration of all
viewpoints. The interaction between users and developers is to a large extent similar to

that in other models, except that it can conducted in a distributed fashion.

The challenge that is addressed in this chapter is that of providing a framework for
the REP which recognises the difficulties identified above and provides participants with
an alternative means to support their work in developing requirements. To achieve this

goal, reengineering of the REP is vitally important.

221

7.2 Reengineering the REP

As already explained, the main cause of the difficulties described in the previous section
is that most models for the REP fail to take account of the situatedness of requirements. J.
Goguen argues that requirements are situated — emergent, local, contingent, embodied,
open and vague — and can only be understood in relation to the concrete situation in
which they occur [Gog96, Gog94|. This situatedness demands that developers should take
sufficient account of context in order to satisfy the actual needs of users, so that the
developed system can solve the users” problems in the real world. The context for
requirements is the real-world environment in which requirements are developed and the
system is used. The environment is deeply affected by its social and organisational

structure and the people therein.

Even though the issue of context has attracted widespread attention in the RE
community for many years [Bub95, HED93, HORRS95, Pot93, Sid94, SS96], most
models for the REP have made little progress on this issue due to the difficulty of
supporting situatedness by a step-by-step algorithm [BL98, Gog97]. To avoid being
trapped in the same situation that leads to the practical difficulties of traditional process
models, it is worth reengineering the REP from scratch by considering the original
process of requirements development without following the algorithms of any particular

model.

In this thesis, the term ‘requirements’ is defined as “a condition or capability that
must be met or possessed by a system to satisfy the condition or capacity needed by a
user to solve a problem or achieve an objective” (paraphrasing the definition in [[EEE90]
cited in Section 7.1.1). This definition acknowledges the usefulness of descriptive
documentation as a resource for RE, but does not overstate the extent to which

requirements can be captured via documented representation describing the behaviour,

222

properties and constraints of the system which is to be developed [KS98, LK95, SS97].
Traditional definitions of requirements are more concerned with the advantages of using
requirements as a contract between users and developers and as a blueprint for designers.
The definition adopted in this thesis, which attempts to relieve or even eliminate the
difficulties of enacting the REP, is more concerned with the real-world context, since it
addresses the production and use of requirements for the intended system in the real

world. It also recognises the importance of reconciling social and technical issues in RE.

In keeping with this definition, the process of developing requirements amounts to
the process of providing solutions to identified problems that arise in conceiving the
intended application in its domain. This problem-solving process should involve all
relevant participants in order to collect all necessary information. An informal account of
how this process appears to operate in practice follows below. Later sections will describe
the way in which the situated process of requirements engineering (SPORE), when

combined with DEM, can support this process.

At the outset, some fragments associated with solving the identified problem
emerge from the subconscious minds of individual participants in the form of concepts,
ideas, intentions, expectations, experiences, and so on. Many of these fragments may be
ambiguous, chaotic, vague and very difficult to articulate or record. In order to clarify
these fragments, participants must undertake certain activities that involve interacting
with each other and introspecting about their own mental model. Very common activities
include, for example, interviewing, brainstorming, video recording [HORRS95],
prototyping [And94, LR9I1, Luq93, RL93], goal analysis [RSB98], form analysis,
scenario analysis [Hol90, WPJH98], and so on. For the sake of convenience, as in

Chapter 2, the term ‘interaction’ is used to refer to both interaction and introspection.

When participants start to interact with each other, their individual fragments of

knowledge change: some of them disappear, but some new ones also emerge. The most

223

significant change arising from the interaction is that some of these fragments move
towards being unambiguous, ordered and clear. The interaction is continued until some
fragments finally become intelligible to all participants, and can be identified and
represented in terms of primary elements agreed and apprehended by participants. These
elements could, for example, take the form of objects and classes in an object-oriented
model [Boo94], entities and relations in an entity-relation model [Che76], viewpoints in a
viewpoint-oriented model [KS98], or simply statements in natural language. No matter
how they are represented, the intelligible elements are not fixed but are instead liable to

change.

Fragments in

@ participants’ minds
‘55 Requi .
equirements in

participants’ minds

@00
Vague <4—» Clear

Ambiguous ¢————p Unambiguous
Fuzzy <4—» (ertain

Figure 7-1. Requirements formulation: from fragments to requirements

As the interaction continues, more and more clements are obtained and coupled
with the existing ones to form a web of interconnected elements. Incrementally, this web
should converge to a provisional solution to the identified problem. At that point,
requirements providing a solution to the identified problem are developed. Whilst there is
no such convergence, the interaction must be continued until a provisional solution
emerges. Otherwise, requirements for the identified problem cannot be obtained and the

success of SSD becomes problematic. Clearly, the provisional solution is not fixed. Its

224

integrity could be undermined or its form changed at any moment as yet more intelligible
elements emerge. Section 7.3 will explain how EM can support the process of composing
fragments into a provisional solution illustrated in Figure 7-1 through ‘structural

coupling” (as described in Section 3.2).

Such a REP based on structural coupling, whereby new elements are dynamically
coupled with the existing elements, is difficult to achieve by the traditional top-down or
bottom-up approaches that are typically used in models for the REP. Top-down
decomposition presumes that the organisation of fragments is broadly established, and is
not applicable until the requirements of the developing system are sufficiently well
understood [Blu93]. Bottom-up analysis generates fragments of the requirement that are
exactly prescribed, and are therefore not suitable for representing vague, ambiguous or

fuzzy requirements.

One of the principles of reengineering the REP is to incorporate activities that are
normally undertaken by participants together with their context. It must be possible
within the REP to accommodate any interaction which it is within the competence of a
participant to choose as the most effective way to improve the current provisional
solution. Neither specific actions nor their sequence are rigidly stipulated in advance for
serving such a purpose. Instead, the development of requirements is fulfilled through
what L. A. Suchman has called ‘situated actions’, in which performance is matched to the
specific task situations existing at the time [Suc87]. The fact that the interaction between
participants is appropriately situated contributes significantly to the growth of

understanding and experience as the interaction continues.

Requirements cannot be isolated from the subsequent development and operation
of a software system. As explained earlier, requirements are closely associated with the
context of use in which the system is operated to solve users” problems. On the one hand,

the system is implemented in order to provide users with the solution represented by the

225

description of the developed requirements. On the other hand, the developed requirements
are validated and clarified through the operation of the system in the real world, and the
operation may in turn bring out the need for new requirements or a change in old
requirements. The contextual dependence between requirements and the system forces the
REP to be intertwined with the process of SSD in a symbiotic fashion as illustrated in
Figure 7-2. The interdependency between SSD and the REP fits in well with the
increasingly popular arguments that the REP is never complete but should be continued

throughout the whole life cycle of SSD [BL98, CGC96, Gog96, JP94, Rya95]

The metaphor shift in requirements development is analogous to that in software

development. In [Bro87], Brooks highlights the fact that the building metaphor, which

Problem domain Solution domain

Requirements cultivation System

Version 1

Problems
Version 1

System operation

Problems System
Version 2 P (Version 2
Problems System
Version 3 (Version 3)
Problems
(Version 4)
REP SSD

Figure 7-2 The interdependency between SSD & REP

likens the way in which software is constructed to a building process, has outlived its
usefulness, since software systems have become so complex that they cannot be fully
specified and designed in advance. He suggests that any software system should be grown
by incremental development. In fact, the growing metaphor should be also applied to
requirements development, due to the contextual dependence described above. It is more
appropriate to think of developing incremental requirements as opposed to eliciting or

acquiring ones from sources directly, which is the usual method emploved by many

226

traditional models for the REP [DBP93a, DBP93b, FHW94, Rei92, SDV96, Sut96,
KS98]. The concept of incremental development is consistent with the concerns of

changing requirements [Gog94, HED93].

It is evident that the interaction between participants provides the main impetus for
the process of developing requirements discussed here. A well-known drawback of most
RE models is that it takes the effective interaction between participants for granted. C.
Potts’s field study shows that interaction breakdown is the major problem in the REP
[Pot93]. In fact, the information arising from the interaction between participants is the
main resource for requirements development. A process model should not hinder the
emergence of the essential information, but should facilitate such emergence by
supporting the interaction between participants as much as possible. Recognising this
need, therefore, the alternative framework proposed in Section 7-3 exploits computers as

the best communication medium for achieving this purpose.

Another important principle of reengineering the REP is that the REP is guided by
participants and not by a process model. Within most models, human behaviour is
embedded into the mechanism of enacting the REP by assuming the invariability of
human factors and the context of requirements. Although this assumption reduces the
uncertainty surrounding human beings and their environment, it accordingly generates a
gap between research and practice, thereby leading to the difficulties discussed in the
previous section. This is because the inflexible mechanism hinders the essential ability of
human beings to accommodate themselves to the rapidly changing environment. As the
REP is located at the intersection of formal and informal, of objective and subjective, and
of technical and non-technical approaches, it needs to rely to a large extent not only on
the participation of human beings but also on their accommodating nature. Any process
model should recognise the existence of uncertainty, and make due provision to

autonomous interpersonal interaction to this end. For instance, it is not in general

227

appropriate to presume that interpersonal interaction is so reliable that it can be replaced
by a mechanism. It may also be necessary to allow human intervention to mimic the
unreliability of mechanism. This echoes Tully’s concern for enacting a software process
model as a symbiosis of human agent and computer that does not hint at particular roles

for either partner (see [Tul88] cited in Section 2.2.2).

In spite of the importance of individual experience and knowledge, the transition
from informal, fuzzy statements to formal, unambiguous requirements usually needs to be
carried out through interactions between all participants. The different relationships that
can shape this interaction have provided the foundation for most models and methods in
requirements engineering. There is a particularly significant distinction between
coordinative and subordinative relationships. A coordinative relationship stresses the
importance of user participation in design, and postulates responsibilitics for all the
participants. A subordinative relationship assumes that users should be responsible for
providing all the knowledge required by designers because only they know what they

want.

Traditional patterns of interaction favour relationships of these two kinds, since
they presume a clearer separation between analysis, design and use that modern business
practice and associated information technology promotes. In the development of
information systems, it is standard practice for feedback from users to affect the product.
This feedback operates both in validating and debugging the original design, and in its
subsequent enhancement. In the concurrent engineering of other products, the use of
information technology has subverted the rigid sequential stages of the traditional design
process. The ease with which design representations can be visualised and modified
enables wider and more opportunistic intervention from all kinds of participants. In these
contexts, the interaction for developing requirements becomes exceedingly subtle

[SKVS95]. In effect, the design of a software system and the shaping of the requirements

228

satisfying the needs of users often have to be negotiated in a symbiotic fashion. The
interaction amongst all participants that is appropriate in this context will be characterised

as a collaborative relationship.

A useful analogy can be drawn between the relationships of all participants for
developing requirements and the relationship between a teacher and pupils in a
classroom. A subordinative relationship resembles the context of a lecture context, where
the teacher imparts knowledge in the role of the expert, and there is no participation from
the pupils. A coordinative relationship, in which a rigid agreement sets out the respective
responsibilities of designers and users, resembles a tutorial context in which the teacher
imparts knowledge through a prescribed pattern of small presentations, exercises for the
pupils and evaluation of their performance. A collaborative relationship is concerned not
only with responsibilities but also with expectations, beliefs and other psychological
states that make developing by learning more feasible and powerful [DL91]. The
appropriate context for such interaction resembles a seminar, where the precise learning
goals are not set out initially, and the knowledge content is shaped dynamically by the
contributions of the participants. In the same way that all three paradigms can be used in
one educational context, each of the three different kinds of relationship amongst all

participants can be represented in the same process of developing requirements.

Collaborative relationships are concerned with interaction that is socially
distributed. They engage with issues of subjectivity and objectivity associated with
distributed cognition [Hut95] and common knowledge [Cro94, Edw87]. This involves a
reappraisal of distinctions that are taken for granted in other contexts. There is a potential

for several kinds of conflation:

¢ between the roles of all participants,

e between the properties associated with individuals and with artefacts,

229

e Dbetween the characteristics to be attributed to the internal mind and to the external

environment.

In a collaborative relationship, there is typically no possibility of relying entirely
upon closed-world representations and preconceived patterns of interaction. The
interaction between all participants has to be situated intelligent interaction that can only
be planned in advance to a limited degree, and domain knowledge for the process of

developing requirements emerges on-the-fly.

Supporting the situatedness of the REP is not a trivial task. Firstly, an environment
that cnables participants to interact with each other in a collaborative manner is
necessary. All participants involved in the REP share the responsibility of developing the
requirements that satisfy the users” need to solve problems in the real world. Not only
developers but also users are responsible for the success of requirements development.
The most common method, called introspection, that is embedded in most process models
for developers to collect information about the users’ needs and habit, cannot serve the

purpose of supporting collaboration [Gog97].

Secondly, each participant must be sufficiently qualified to make his/her actions
accountable to others. Considering the above example of a classroom, common
knowledge will obviously not be established unless the teacher is capable of taking
actions which make sense to a pupil, and vice versa. This may entail a coordinative
relationship, or even a subordinative one in which the responsibilities of each participant
are stipulated. Similarly, within the REP, if a participant is incapable of interacting with
others, it is inevitable that information pertinent to that participant will be missed.
Accordingly, this is likely to give rise to major problems. Fortunately, advances in end-

user computing have increasingly reduced the problem of incapability [DLO1].

230

Needless to say, the crux of supporting the situatedness of the REP resides in the
construction of the provisional solution in an open-ended, interactive fashion. Obviously,
if a fixed problem domain of the application is specified, it is not too difficult to find a
solution by means of so many existing tools and techniques that contribute to the search
process. However, in order to cope with the dynamics of context, the solution to the
identified problem, and even the problem itself, must keep changing in response to new
domain knowledge emerging from the interaction between participants. Therefore, the
solution needs to be constructed incrementally and interactively. Few tools and models
support the construction of a changing solution, or, more precisely, of changing
requirements. This is partly because of the technical difficulty in coupling the old solution

with a new context.

One of the main contributions of this thesis is to demonstrate that the computer-
based interactive modelling technique discussed in Chapter 4 has the potential to support
the situatedness of the REP in a significant way. The next section introduces a novel
framework for the REP motivated by the perspective on reengineering the REP described
here. The principles and concepts of DEM are applied to the framework in order to

provide a human-centred, computer-based environment to support the REP.

231

7.3 A Situated Process of Requirements Engineering

Due to the need to model the real world in which the target systems reside, to manage
many fragmentary yet interrelated requirements statements, and to cope with changing
assumptions and perceptions of requirements, the REP must be situated and human-
centred. This section provides a novel framework for the situated process of requirements
engineering. First, the framework called SPORE is proposed. Within this framework,
people participating in the REP are able to cultivate requirements through collaborative
interaction with each other in order to solve the identified problems, instead of searching
for requirements in the ‘jungle’ of users’ needs. The environment supporting the
framework is established by applying the principles and concepts of DEM. By means of a
computer-based interactive situation model (ISM), participants can collaboratively

interact with each other to ‘grow” requirements in an incremental development fashion.

7.3.1 A Framework for the REP

According to the definition of requirements and the principles of reengineering the REP
presented in the previous section, requirements may be seen to provide solutions to
identified problems. The REP begins in the problem domain associated with the
requirements of the developing system. This domain is generally informal, situated and
open to the real world [Gog96, Blu93]; hence it cannot be specified completely in
advance. Instead, the domain is represented by a situated, provisional, subjective, but
computer-based, model. It is sifuated because it is represented as organically connected to
its referent (the domain). Such connection is achieved by being continuously open to
revision through a comparison between the experiences of interaction with the domain

and those of interaction with the model. Accordingly, the model is not divorced from the

232

domain, as required for a preconceived ‘system’ with boundaries made sharp by some

form of idealisation or abstraction.

A human-centred framework, called SPORE, for building situated models for the
process of requirements engineering, is depicted in Figure 7-3. Key problems of the
domain are identified by the participants within the grey box in Figure 7-3 with reference

to their concerns for the functional, non-functional and enterprise attributes of the

Contexts

The identified *
problems (‘

Requlrements

cultivation

/ T New resources

New contexts

Provisional solutlons

New identified problems

Resources

Figure 7-3. The SPORE framework

developing system. The identification of problems can occur at any time during the REP
and is never regarded as being completed. Another two inputs of the SPORE model are
the available resources and the current contexts. The resources, such as documents,
technology and the past experiences of participants, are used by participants to facilitate
the creation of the SPORE model’s outputs. The contexts, such as the organisation’s goals
and policy, and the relationships between participants, act as motives and constraints for
the participants in creating the outputs. These three kinds of input may impact on
different parts of the model at different stages of its evolution. The arrows ending at the

inside of the grey box in Figure 7-3 convey this idea.

A SPORE model has outputs of four kinds. The most important one consists of

solutions to the identified problems. These are developed by participants on the basis of

233

the available resources and the current contexts. Moreover, the other outputs, including
new contexts, new resources and new problems, combine with their earlier versions and
form new inputs for creating the next output. That is to say, all these contexts, resources
and identified problems, even during the development of solutions, are still modifiable
and extensible. In view of this, participants can develop requirements in a situated manner
to respond to the changes in the contexts, resources and even the problems themselves.
This implies that requirements are apt to change all the time and thus are never
completed. In this respect, the SPORE framework is consistent with J. Goguen’s concern

for the situatedness of requirements [Gog94].

The SPORE framework determines neither specific activities nor their sequence. In
many cases, several problems can be identified simultancously. Some may be very
difficult to solve under the current contexts and resources, but others are not. Some are
interdependent and need to be solved concurrently, but some can be solved
independently. Different problems are likely to need solution by different methods. No
rule or algorithm can be postulated in advance to take all these factors into account. A
generic strategy for taking actions is ‘divide and conquer’, where the highest priority is to
undertake action for the easiest problem. But this is not a golden rule. Participants must
still take their current context and available resources into consideration in order to cope

with the diverse issues arising from the development of solutions.

The central activity in the SPORE framework is the requirements cultivation, in
which participants interact with each other and with their environments to develop
requirements, i.¢. the emerging solutions to the identified problems. The term
‘cultivation” is used to convey the idea that requirements (like plants) should grow
gradually rather than be conjectured from their initially fragmentary, chaotic and rapidly
changing states. It also emphasises the use of deliberate design activities by participants

on the basis of their contexts and available resources in order to develop requirements in

234

an effective and efficient fashion. Some models for the REP assume that requirements are
pre-existent but hidden in some sources [LK95, SS97], just like grown plants in a huge
jungle. The purpose of building these models is to search for (elicit) the right plants
(requirements) in (from) the jungle (available sources, such as documentation and the
expertise of users). Typically, the jungle is a mixture of numerous kinds of elements that
are fluctuating in response to the changes in their environment. It is clear that searching in
such a jungle for one eclement, which has never been seen before and might keep

changing all the time, remains a very difficult challenge [LK95, Bub95].

The concept of requirements cultivation, unlike that of searching for requirements
in a jungle, refers to the ‘growing’ of requirements for the developing system by
participants themselves through their collaborative interaction. The cultivating process
focuses on neither the problem domain nor the solution domain but instead on the
interaction through which participants seek to solve the identified problems on the basis
of their current context and available resources. For example, let us consider the
development of a simplified automated teller machine (ATM) which contains an
embedded software system to drive the machine hardware and to communicate with the
bank’s customer database. In order to acquire the requirements of the software system, a
problem of accessing the service is identified. The participants relevant to the identified
problem, such as customers, bank staffs, machine designers, database managers, security
officers, software designers and so on, must work together to solve the problem. The
solution is not located in someone’s head but is socially distributed across all participants.
Also, it is formed and shaped through the iterative and creative activities invoked by
participants in their interaction with each other. In this sense, requirements are cultivated

by participants through a variety of purposeful activities.

The work of requirements cultivation can be focused further on individual

participants. Within the REP, each participant has his/her own individual insight into the

235

identified problems and their solutions. This insight is based on the participants’ various
contexts and available resources. It is clear that individual insight is often of limited use
and inevitably has a bias. For example, in the ATM example mentioned above, for
reasons of security, bank staff may demand more rigorous security checking for access to
the service provided by an ATM machine. But from the customer’s viewpoint, the

convenience of using the service might be the main concern.

7.3.2 Applying DEM to SPORE

There are several approaches to cultivating requirements, but one of the most efficient
and cost-effective ways is by computer-supported modelling. Conventional computer-
based modelling is better oriented towards assisting subordinative and coordinative,
rather than collaborative, relationships. To fully support the collaborative interaction
between participants discussed above, it is essential to establish an individual ISM for

each participant within a distributed environment that:

o allows data about requirements to be collected in such a way that participants are

engaged in activities in their customary context [Gog96, LK95];

¢ makes it possible to explore and experiment with individual insights for different

participants;

¢ provides for open-ended interaction.

Given the principles and concepts of DEM described in Chapter 4, each participant
can construct an ISM within an interactive, distributed environment supported by
dtkeden. According to the principles of SPORE, the cultivation of requirements has to
stem from a representation of those identified fragments that are pertinent to the identified
problem being addressed. This representation will take the form of a seed ISM that

incorporates matter-of-fact observations of the current context. An ISM to represent these

236

observations will supply a visual representation for those identified fragments.
Participants can thus interact with their own ISM to extend, expand and explore their
individual insights through ‘what if® experiments resembling interaction with a
spreadsheet. The accumulated results of experiments not only change the participant’s
individual insight immediately but also are stored in the memory of the participant. The

latter is the most important resource used by the participant for taking situated actions.

In effect, this experimental interaction, using the computer as a modelling medium,
can — when integrated with other methods — provide more accurate and more powerful
resources for developing solutions to the identified problems. In this sense, interacting
with the computer model becomes a very critical situated action for creating a resource
for further actions. Figure 7-4 illustrates how a participant can take situated actions by
interacting with his/her computer model and/or external environment on the basis of
various contexts and available resources to explore individual insight. The insight into the
identified problems and their solutions evolves with the interaction. This will be
illustrated with reference to developing the requirements for an ATM system, as

described 1n the next section.

@ An ISM model

Intera%
Past Use Create ’ New
-, insight g n., insight
Interact\A

External
environment

P Time
Past Present Future

Figure 7-4. The experimental interaction of a participant

237

The ISM, with visualisation corresponding to the observed real world, plays an
enabling role in SPORE. Given the visualised scenarios, participants can ‘preview’” the
system in the current context to enhance and explore their understanding of the
developing requirements. More importantly, experiencing these kinds of visualised
scenarios can give users greater confidence that they understand their actions and those of
the intended system. The confidence prompted by experience is very significant and
useful for getting rid of user resistance in ISD. This concern is consistent with the result
of an empirical study proposed in [Kuw93] in which users and developers are mostly

concerned with how users themselves can recognise how the system will behave.

To some extent, an ISM is similar to a prototyping model [And94, BD93, DF98,
LR91, Rei92, SAGSZ97]. Both focus on “ecvaluating the accuracy of problem
formulation, exploring the range of possible solutions, and determining the required
interaction between the proposed system and its environment” [LR91, p.77]. They are
both working models, so that their users can have operational experience of what the
system should do and how it should look. This experience enables more effective
communication between participants to help requirements development, to reduce the risk

of misunderstanding and to clarify a designed solution to an identified problem.

However, unless it supports the collaborative interaction between participants, a
prototyping model is of limited use in exploring the domain knowledge of the developing
system. Typically, a prototype demonstrating a part of the developing system is used in
order to understand requirements for providing a solution to an identified problem. Users
and developers are separately responsible for model validation and model development.
Any improvement of the provisional solution must be fed back to developers so that a
new prototype can be reconstructed in a traditional fashion. This ‘backward’
reconstruction is very different from the ‘forward’ reconstruction of an ISM in which any

domain knowledge emerging from the REP is directly implemented into the ISM in an

238

interactive manner. Feedback is too late and too passive. It constrains participants from

exploring unknown territory.

What makes ISMs particularly powerful in this context is that they enable
participants to interact with each other in an open-ended, interactive manner. Through the
network communications facilities, all ISMs are connected together to create an
environment that can be viewed as a radical extension and generalisation of a distributed
multi-user spreadsheet. The connection makes it possible to propagate the experimental
interaction of each participant with his/her ISM to those of others, so as to consequently
affect their individual insights. Participants can interact with their own ISM privately by
making a variety of definitions in order to explore their own insight into the identified
problems and corresponding solutions. They can also interact with others and their ISMs
by propagating definitions through communication networks. The propagated definitions
first change the visualisation of others’ ISMs (given suitable authorisation) and
consequently may change their insights as well. Thus, participants can collaboratively
interact with each other through their ISMs and communication networks. Figure 7-5

shows this collaborative working environment.

Within the collaborative working environment described above, a working
understanding of the identified problems and their corresponding solutions, that is, of the
requirements, is established. This working understanding is distributed across participants
rather than in an individual mental representation. It is not expressed by a literal
specification that establishes a fixed relationship between the individual ISMs and their
referent, but as a commitment to constrain the interaction between participants in a way

that respects their common insight, but does not prevent new distinctions from emerging.

The working understanding is then cultivated, that is, grown incrementally,
through the successive interaction between participants for exploring and integrating

individual insights. Generally speaking, greater consistency between the individual

239

insights is associated with a better working understanding. For this reason, participants
continually refine their interaction with a view to achieving more coherence and
consistency. This process is open-ended, and consistency can only be achieved in relation
to some restricted work activities and assumptions about reliability and commitment. In
practice, there are likely to be singular conditions under which a higher viewpoint must
be invoked to mediate or arbitrate where there is conflict or inconsistency. The ‘global
view’ perspective depicted in Figure 7-5 represents such an overall viewpoint. It could
also be the view of a requirements engineer when acting in the role of negotiator between

differing or incompatible insights.

Global view

{7 Working ™
/ understanding;

,..,.-~"Evolvin

insight

i.e.w. : individual external world
. A participant /\/ : communication network

Figure 7-5. A Collaborative working environment for cultivating requirements

The most important benefit of interacting with computer models is to make
individual insights and the working understanding between participants visible and
communicable. Of course, most models for the REP involve the interaction between
participants in order to facilitate the establishment of the working understanding, for
example by requirements eclicitation and validation [LK95]. However, the working

understanding within these models is invisible and incommunicable. Even given a

240

requirements specification, the visibility and communicability of the working
understanding are still restricted to the boundaries of language description and
comprehension. Also, paper documentation, as used in a repository or archive, fails to
support the needs of its users in exploring and integrating information. In practice, it is
very difficult to keep requirements specifications synchronised with the working
understanding between participants [DS97, LR91, Luq93], because the latter emerges
from experimental interaction and evolves much faster than the evolution of

specifications.

In contrast, the experimental interaction between computer models invoked by
participants immediately changes the visualisations of these models. The change leads
quickly to the evolution of individual insights as well as to a working understanding. The
synchronisation between the evolution of computer models and individual insights allows
participants to ‘se¢’ the viewpoints of other participants and to ‘communicate’ with them
by interacting with their own ISM. In the same manner, the working understanding is also
embodied in these computer models. From the perspective of users, the visible and
communicable computer models illustrating the solutions to the identified problems
represent a crucial contribution to understanding that complements the passive textual
descriptions of conventional specifications. In this sense, ISMs are communication media
through which the commitments between participants are conveyed. This account of
ISMs as ‘communication media’ fits in well with the view expressed by T. Winograd and
F. Flores in [WF86, p.79]: “computers are not only designed in language but are

themselves equipment for language™.

Whilst the interaction between participants through ISMs has obvious advantages,
it should not be thought that other more traditional methods of communication between
participants need be foregone and replaced by the computer-mediated communication

through ISMs. On the contrary, those methods, such as face-to-face communication,

241

assume even greater importance because they are the best means for compensating for the
limitations of computer-mediated communication, such as the absence of the normal

social cues inherent in group work [Smi97].
7.4 Two Examples of SPORE

Two examples using the SPORE model for requirements cultivation have been studied.
One is the software system embedded in the automated teller machine (ATM). This
example has been studied by using the viewpoint-based requirements method (VORD) in
[KS98]. A comparison between two models (i.e. SPORE and VORD) for developing
requirements is also provided. In the second subsection, another example, relating to a
warchouse information system, is given. The example attempts to compare the SPORE

model with the use-case approach proposed in [JCJO92].

7.4.1 An ATM Software System’

The system embedded in an automated teller machine (ATM) has been used as an
example by several researchers in the field of requirements development [KS98, RSB98,
SDV96] The ATM system accepts customers requests, produces cash and account
information, drives the machine hardware and communicates with the bank’s customer
database. Multiple participants are involved, such as bank tellers, bank managers, ATM
operators, customers, hardware designers, bank database managers, bank security officers
and so on. It is a good example to show the development of requirements in a distributed

fashion.

The principles and concepts of SPORE have been used to cultivate requirements

for the ATM system by the present author. First, participants, such as customers, bank

3 Due to the limitation of the author’s research time, the system is not completely accomplished (only the part
discussed in this subsection has been finished).

242

tellers, bank managers, database managers, ATM hardware designers and software
designers, are involved. Then, problems are identified by them in order to highlight their
respective concerns. Table 7-1 shows some of these problems. It should be noted that
they are not frozen, so new problems can be added and old problems may disappear or be
changed. Also, it is unnecessary for them to be solved sequentially or independently. A
typical strategy for solving problems is ‘divide and conquer’, where the casiest or the

most important problem has the highest priority.

Participants Identified problems for developing the system embedded in an ATM

Start-up and shut-down an ATM machine

Gaining access to an ATM for administrative services
Available services

Gaining access to customers’ account details

The identification of customers

The notification of notes deficiency

Bank tellers

The identification of customers
Customers Available services
Acceptable response time

Allowing customers to gain access to an ATM
Hardware Allowing tellers to gain access to an ATM
designers Security control

Supporting available services

Driving and communicating with hardware devices
Software Interaction with tellers and customers

designers Communication with bank database

Supporting available services

Security control of the ATM
The identification of customers

Bank Accuracy and performance of the requested services
managers Reports of each transaction

Reports of each administrative access

Cost of each ATM
Bank Providing and updating the details of customer’s account
database Recording each transcation
designers Security control over database access

Table 7-1. Some problems identified by participants for an ATM system

To illustrate the collaboratively experimental interaction between participants, one
of the identified problems (see. Table 7-1) is considered as an example: the identification
of a customer accessing an ATM (‘the ID problem’). Based on their different contexts

and resources, cach participant creates his/her own seed ISM and prepares for the

243

o ™ S
Welcome to EMP bank

Please input your FIN
and end with ENTER key

Figure 7-6. The ISM of a bank customer

experimental interaction with others. Figure 7-6 shows a snapshot of the seed ISM of a
bank customer, as developed using dtkeden. A collaborative working environment for
participants in this example has also been constructed (cf. Figure 7-7, for which Figure 7-
5 is the archetype). Here requirements engineers interact through ‘God’s view’ to guide
the negotiation between participants and the integration of their individual insights in the

solution of the ID problem. Table 7-2 illustrates some of their initial insights expressed

Requirements Hardware

Banker . .
anke engineers designers

customers
0Ty O m—
O
§ /l/ DB designers
Banker

tellers - Q; — I |

/v e
Software
designers
,_,y > Clle—0
Banker
@ - An ISM

managers
Figure 7-7. A collaborative working environment for an ATM system

244

using the EM definitive notations. For example, the bank manager is concerned with the
safest control of access to the service. Hence, confirmation of user identity, to include the

card, the card-holder and the card account, is rigidly demanded.

Participants | Individual insights

customer account NO is card NO;
customer ID is 6-char-PIN received;
customer confirmed is check customer ID(customer account NO, customer ID);
accessing to service is customer _confirmed;
current_screen is
(accessing_to service)? send out services manu() : send out try again screen();

Bank tellers

customer account NO is card NO;
customer ID is 4-digit-PIN-received;
customer confirmed is check customer ID(customer account NO, customer ID);
accessing to service is customer _confirmed;
current_screen is
(accessing_to service)? send out services menu() : send out try again screen(),

Customers

checking card logo is (card being inserted)? (check card logo()) : FALSE;
card confirmed is card logo confirmed,

card magnetic NO is (read card NO)? read magnetic NO() : FALSE;
received 4 digit PIN is (get 4 digit PIN)?input 4 digit PIN() : FALSE;
received 6 char PINis (get 6 char PIN)? Input 6 char PIN() : FALSE;

Hardware
designers

get 6 char PIN is (card confirmed)?send input 6 char PIN screen(): send invalid card screen(),
read card NO is card confirmed;

Software card NO is card magnetic NO;

designers 6 char PIN receivedis (get 6 char PIN)? Receive 6 char PIN() : FALSE;

get 4 digit PIN is (card confirmed)?send input 4 digit PIN screen(): send invalid card screen();
4 digit PIN received is (get 4 digit PIN)? Receive 4 digit PIN() : FALSE;

Bank) o
accessing to_service is card _confirmed & customer confirmed & account confirmed;
managers — = - - -
Bank
database account confirmed is check customer account(customer account ID),
designers

Table 7-2. Individual insights of different participants for an ATM system

On the basis of individual seed ISMs, participants interact with each other for
cultivating requirements. For example, it is found that bank tellers, bank managers and
customers have different perspectives on the ID problem (see the italicised entries in
Table 7-2). For the sake of convenience, customers prefer to be identified by the account
number on the inserted card together with a 4-digit personal identification number (PIN).
For safety reasons, bank tellers instead suggest using a 6-char string as a PIN code for the

verification, since many customers use their birthdays as PIN codes. However, bank

245

managers have a broader insight into the identified problem and wish to take the status of
the customer’s account and the cost of building each ATM into consideration. In addition,
since these insights of customers, bank tellers and bank managers impinge on the
hardware and software systems of the ATM, the bank database, hardware and software
designers and database managers are also involved in the interaction for cultivating

requirements.

/4-digit PIN codes 6-char PIN codes \

cost: 5 cost: 8
security: 3 security: 9
satisfaction: 8 satisfaction: 2
total points: 16 total points: 19

5-digit PIN codes
cost: 5

security: 8
satisfaction: 8

ktotal points: 21 j

Figure 7-8. The ISM of a bank manager (snapshot)

At this stage, a new problem is identified: the data format of PIN codes (‘the PIN
problem”). To address this problem, the contexts and resources around participants are
changed and mutually affect their ISMs in a situated manner. For example, for hardware
designers, two different panels for inputting PIN codes have to be provided in order to
support the conflicting ideas of bank tellers and customers. This provision can give
insight into the cost of building each ATM, which is a main concern of the bank
managers. Another concern of ‘customer satisfaction” may also be introduced by bank
managers to measure the feelings of customers about using both kinds of panels. The
measures” of these concerns are shown in Figure 7-8. These situational changes highlight

the fact that requirements are situated and depend greatly on the context and resources.

* The created ISM may involve the implementation of a decision support model, but the details are out of the
scope of this thesis. It is assumed here that these measures can be accomplished and obtained by the bank
manager through certain ways, when such measures are identified.

246

Now ‘what if” experiments can be invoked. For example, customers can make use of their
ISMs to explore different data formats of PIN codes, as when taking into account upper

case and lower case characters in PIN codes.

If an agreed solution to the PIN problem cannot be obtained, it might either be left
unsolved or managerial authority might be invoked to make a decision that suits the
current context. In the former case, an unresolved conflict between participants occurs.
Conflicts are not allowed in most traditional models, and are always viewed as errors that
need to be corrected. In practice, a conflict need not always be regarded as an error.
Conflicts disclose possible alternatives and are actually a very useful resource for making
a decision. For the PIN problem, the conflict reveals individual concerns about PIN codes
from different viewpoints. Customers focus on convenience of use, bank tellers pay
attention to security control, but bank managers have an economic account of cost. In

order to highlight its importance, the conflict is deliberately left unresolved here.

In a similar manner, it is clear that many problems can emerge and be either solved
or unsolved. Details are beyond the scope of this thesis. It is supposed that some
problems, such as the maximum number of permitted attempts to enter PIN codes,
cancellation of PIN code input, validation and retention of a cash-card, and the diverse
messages displayed to customers, have been identified and solved during the interaction
between participants. It is not necessary for these problems and their respective solutions
to be developed in a particular sequence; they can be addressed as they arise in particular
contexts in a responsive manner. In this process, a provisional solution to the earliest
problem — the ID problem — is obtained through collaborative interaction between

participants.

At this point, with the ID problem provisionally solved, the PIN problem (still
unresolved) may arise again, since a new context emerges: if the number of attempts to

enter a PIN code exceeds the permitted number of attempts, the cash-card will be

247

retained. In such a context, customers may strongly object to using 6-char PIN codes by
awarding lower points of satisfaction. The change will immediately be propagated to the
ISM of bank managers so that bank managers will understand the objection of customers
to 6-char PIN codes. On the other hand, from the security perspective, a 4-digital PIN
code is too simple to protect against fraud, especially given the evidence that customers
are prone to use someone’s birthday as a PIN code. Brainstorming activity supported by
informal social interaction and ‘what if” experiments thus commences. A new proposal
that takes both viewpoints into account may be developed, for example, using a 5-digit
number as a PIN code and providing customers with the facility to change their PIN
codes on ATMs. This new proposal not only changes the provisional solution to the ID
problem, but also has an impact upon the problem of ‘available services’ identified by

banker tellers and customers in Table 7-1.

This special case of providing a solution to the ID problem illustrates the fact that
changing requirements is the norm in developing requirements, even in such trivial a
problem. Recognising this fact, SPORE deals with the rapid change of the identified
problems, contexts and resources by the collaborative interaction between participants in
a situated manner. Just as the knowledge of a human being grows in everyday life,
requirements are grown by participants through interactive, iterative and creative

activities on the basis of the principles and concepts of SPORE.

To explore the difference between SPORE and traditional process models, a
viewpoint-based model called VORD is chosen. This is because some of the details of
using VORD to formulate the requirements for the ATM are given by the authors of
VORD and can be found in [KS98]. With these details, a fair comparison can be made,
since the possibility of using VORD incorrectly can be eliminated. More importantly,
VORD is a viewpoint-based model whereby requirements are principally developed in a

distributed manner [FS96]. Within VORD, the information needed for developing

248

requirements has been separated to different viewpoints from diverse perspectives. The
general feature of supporting group work, which is given little or even no support in most

models for the REP, is one of the main concerns in SPORE.

Abstract viewpoints and
abstract requirements

Identify Identify Analyse Specify
viewpoints viewpoints requirements requirements

Identify > Identify > Analyse > Specify
viewpoints viewpoints requirements requirements

Requirements information space

Figure 7-9 VORD process model. (from [KS98, p. 218])

VORD?’ is primarily intended for specifying an interactive system and is based on

viewpoints from different perspectives. The following are its three main iterative steps:

1. viewpoint identification and structuring

2. viewpoint documentation

3. viewpoint requirements analysis and specification
Figure 7-9 shows the iterative process model of VORD. The processes are shown as
round-edged boxes, and the products as square edged boxes. Each product can be viewed
as the checkpoint for a review process. In the ATM example, VORD commences from

the identification of abstract viewpoints by recognising what are called ‘system

authorities” from relevant perspectives. These abstract viewpoints can then be further

3 The following paragraphs and some figures about VORD are mostly extracted from [KS98].

249

decomposed from the highest level into a number of less abstract modules in order to
understand the structure and functionality of the whole software system that is to be
developed. Information can be inherited by sub-class viewpoint, and so global
requirements are represented in the more abstract classes and inherited by sub-classes.

Figure 7-10 shows some of the ATM’s viewpoints.

2.1 [Operator/Bank customer

—

Home customer Security officer
2 | Operator

Bank customer L 22 | Operator/Bank customer 4 Organisation
Foreign customer Bank

1.1 | Operator/Bank staff 5 System
Bank manager Customer database
1 | Operator 1.2 | Overator/Bank staff 6 | System
Bank staff Bank teller Card issuer database
1.3 | Operator/Bank staff
ATM operator

Figure 7-10. Viewpoints for an ATM system in VORD (from [KS98, p. 221])

The second step of VORD is to document the requirements of different viewpoints
identified in the first step. Viewpoint requirements are made up of a set of functional,
non-functional and control requirements. Control requirements describe the sequence of
events involved in the interchange of information between a viewpoint and the intended
system. These viewpoint requirements are documented in natural language or graphical
notations. For example, Table 7-3 describes the initial requirements from the customer
viewpoint. Also, Figure 7-11 illustrates an event scenario for service access. The method
of using different notations to represent the same requirement in VORD is for the purpose

of enhancing communication and aiding understanding between different participants.

The third step is concerned with validation by identifying errors and conflicts and

resolving them. The end result is a requirements specification document.

250

Viewpoint Requirements

Id?mlf Label Description Type Source

1 Bank staff 11 Provide access to administrative service based on valid staff 4
ank sta ’ PIN and the access permission set out for the bank staff v

1.1 Bank 1.1.1 Provide transaction reports to bank manager 3% 1.1
manager
The bank manager requires transaction reports to be
1.1.2 . . . nf 1.1
provided on a daily basis
Bank Provide access to ATM services based on valid cash-card,
2 2.1 valid PIN and access permission set out for the bank 3% 4
customer
customer
2.2 Provide for withdrawal of cash by bank customers 3% 4

Table 7-3. Initial requirements from some participants in VORD

VORD is a hybrid of the product- and process-oriented models discussed in the
first section. It aims to specify requirements from multiple viewpoints in a distributed

manner. The principle advantages offered by viewpoints [SS97] are:
e to extract more complete requirements,
¢ to avoid dealing with conflicts between viewpoints before they are well-informed,
¢ to enhance traceability.

However, VORD takes no account of context and does little to help cope with the
relevant issues of changing requirements. For example, if a change (entering the cancel
key) is added to Figure 7-11 as shown in Figure 7-12, other documents associated with
this requirement become inconsistent with the changed documents. In addition, since
VORD ends up with specification documents rather than a working model, some
problems associated with system design and operation cannot be easily disclosed (a
typical consequence of conventional wisdom concerning #ow and what in RE mentioned
carlier). For example, the PIN problem discussed above could be left to designers or be
neglected in VORD. When the problem is identified in the latter stage of SSD, the steps

described in VORD will need to be revisited. Morecover, the understandability of these

251

specification documents to all participants could be another problem for validation. A
brief comparison of SPORE and VORD in developing requirements for the ATM system

is given in Table 7-4.

Enter(PIN
Insert(card) nter(PIN)

[card e validCard] (\
< validate J >

[card ¢ validcards]
/display error message
/return card

< verify
[PIN ¢ validPINs]é&
[attempts > maxAllowed]

/retain card
/sisplay card retention message

p -
Quit [PIN e validPINs]

/retrun card /display service menu 3

Enter(PIN)

[PIN ¢ validPINs]é&
[attempts < maxAllowed]

Note

Attempts = number of attempts at PIN
MaxAllowed = maximumallowed attempts .
ValidPINs = set of valid PINs /display error message
ValidCards = set of valid cash-cards

Figure 7-11. Event scenario for service access (quoted from [KS98, p.233])

Enter(PIN
Insert(card) e i (\
[card e validCard]
4 validate >
[card ¢ validcards]
/display error message Enter(CANCEL)
/return card /return card

1 verify
[PIN ¢ validPINs]&
[attempts > maxAllowed]

/retain card
/display card retention message

y -
Quit [PIN e validPINs]

/return card /display service menu | 3

Enter(PIN)

Attempts = number of attempts at PIN [PIN ¢ validPINs]&
MaxAllowed = maximum allowed attempts [a‘.[tempts < maxAllowed]
ValidPINs = set of valid PINs /display error message
ValidCards = set of valid cash-cards

Note

Figure 7-12. A modified event scenario for service access

252

SPORE

VORD

Fundamental principle for
the REP

Situatedness

Step-by-step algorithm

Main aim Requirements development Requirements definition

Final target Working models Documented specifications
Collaborative interaction,

Main information sources ‘what if” experiment, and Domain knowledge
domain knowledge

Orientation Problem-focused Solution-driven

.. , . . . Subordinative/

Participants’ relationship Collaborative Coordinative

Participation Users and developers Users and developers
Supported Semi-supported

Group work (human-centred) (developers-centred)

Work style Interactive, open-ended Non-interactive

The relationship between the
REP and design

Design has been embedded
into the construction of
working model

Support the transition to
object-oriented design
manually

The relationship between the
REP and SSD

Throughout the whole life
cycle of SSD

Only in the early stage

Context in the REP

Contextual dependence

Contextual independence

Table 7-4. A comparison between SPORE and VORD

7.4.2 A Warehouse Distribution System®

Specifying the requirements for a warchouse is taken as a case-study by Jacobson in
[JCJO92]. Jacobson’s concern is to identify the software requirements of a computerised
system, and his approach is based on use-case analysis. For Jacobson, each use-case is
associated with a particular kind of interaction between human agents and the computer

system, such as might be directed towards one of the required functions of the warchouse

(c.g. manual redistribution between warechouses).

® This case study is still proceeding. Most practical work described here has been conducted by another Ph.D.
student, Y-C Chen. This subsection is closely based on Beynon’s account of joint research reported in our

paper: Cultivating requirvements in a situated process of requirements engineering [SCRB99].

233

Within the framework of SPORE, the requirements engineering task can be seen in
the broader context of developing a business process model and determining the role that
computer technology can play in carrying out the characteristic transactions of the
warchouse. The perspective proposed here is through-and-through agent-oriented in the
sense that warehouse activity is conceived with reference to state-changing protocols for
human and automated components with the system. In effect, where the action of human
agents is constrained by the business process so that it follows reliable patterns, it is
possible to regard their co-operative activity as a form of computation. The characteristic

transactions of the warchouse are then analogous to use-cases in Jacobson’s sense.

o Seed ISMs for the Warehouse State

In SPORE, the cultivation of requirements has to start from a representation of those
clements of the warchouse state that are pertinent to the particular problem being
addressed. This representation will take the form of a seed ISM that — because of the
situated nature of SPORE - incorporates matter-of-fact observations of the current state
of the warehouse. Typical observables that are significant in this view are the items and
locations in the warchouse, and the inventory that connects items with locations. An ISM
to represent these observables will supply a visual representation for items and locations,

and the status of the inventory

Such a representation of the current state of the warchouse will be complemented
by informal actions, for example: represent the relocation of items, look up an item in the
inventory, or take receipt of a new item for storage. In some contexts, this will motivate
visualisations to represent intermediate states in the operation of the warchouse that are
associated with items in transit, or items located via the inventory but yet to be retrieved

from the warehouse.

254

A model of the warehouse has to incorporate such aspects of state and state change
in order to be faithful to its referent. If such aspects are neglected, there is no means to
consider behaviours that, though undesirable or outside the scope of normal operation,
have a profound influence on the requirement. For instance, the requirements activity has
to address matters such as the loss of items or warchouse locations, the concept of items

being mislaid, or the significance of perishable items.

There is no single ISM that can represent all the aspects of the warchouse state that
are potentially relevant to a requirements identification. The state of the warehouse will
typically be represented by different seed ISMs according to what problems are being
addressed in the SPORE, and each will be introduced to mimic particular scenarios. For
instance, it may be appropriate to construct seed ISMs to represent different varieties of
perishable item, or to represent a very large number of items to assess the interface to an

inventory database.

o The Warchouse Business Process Model (BPM)

Over and above the naive perception of states and state changes just considered, there is a
business perspective on warchouse operation. This focuses on the particular agents that
are intended to operate and the protocols that they follow in carrying out preconceived

characteristic transactions. These define the business process model.

The observables in the BPM are different in character from items and locations.
They relate to phases in preconceived transactions. The state changes are concerned with
the systematic execution of protocols and the associated transition from one phase to the
next. There may be no counterpart in the BPM for activities that might be possible in
practice, such as the illicit retrieval of an item by its owner. An important aspect of the
observables associated with the BPM is that they should not only serve to determine the

current state, but must also incorporate a transaction history appropriate for auditing.

255

The ISM which is to be developed to represent the BPM is modelled on the
practices that were used in the operation of the warchouse prior to the advent of
computers. In that case, forms and paper inventories serve to record the operation of the
BPM by rendering the abstract observables associated with phases and roles visible and
tangible. Manual data entry, following systematic processes of form transfer, was the
means to represent both the current status of all transactions (such as: which items were in

transit) and the history of transactions.

To some extent, the forms and inventories can be interpreted as a paper-based ISM
for the business process. In performing a particular transaction, specified procedures are
to be followed in filling forms and transferring them between personnel. These manual
activities effectively identify which agents have roles in the transaction, which are
currently active in any phase, and how their interaction is synchronised (cf. Figures 7-13
and 7-14). The current status of any transaction is determined by what sections of forms

are currently completed and who currently holds the forms.

The full details of how the BPM is construed to operate are reflected in the specific
details of what each agent enters on a form. These details refer to the observational and
interactive context for each agent: the observables the agent can refer to (its oracles),
those that can conditionally change (its handles) and the protocol that connects these.
Note that the relevant observables in this context may refer to the state of the warchouse
itself (e.g. an item can be signed off only if it is presently to hand), and relate to the high-
level context for interpretation (e.g. issues of legality, safety, etc.). The persistence of the

record that the forms supply is also significant for auditing and traceability.

256

e Applications of SPORE to Warchouse Requirements

Just as paper records and protocols for interaction with them can be viewed as an ISM, so
the process by which such procedures evolved can be construed as EM. The activities

mnvolved m this evolution are as described in the above discussion:

¢ the identification of agents: e.g. foreman, warchouse worker, driver, office clerk;

o the conception of the roles for these agents corresponding to their characteristic

skills;

¢ the apportioning of responsibilities for particular phases within a given transaction;

¢ the refinement and formalisation of their precise observables and protocols.

In applying SPORE to developing warchouse requirements, this general process is
emulated using computer-based technology. The ISM constructed for this purpose
incorporates the seed ISMs for the warchouse; the form-based abstractions that capture
the state of the BPM and the activities of the agents; and additional observations such as
those associated with the wider significance of the warchouse operation (e.g. those
concerned with the legality and the integrity of the business process). The transformation
from a paper-based to a computer-based ISM illustrates the potential of SPORE as a

framework for business-process re-engineering.

The distributed nature of dtkeden makes it possible to separate the viewpoints of
the agents in the model, and to complement these with an external interpretation. In the
first instance, computer-based forms are used to represent the environment for each
agent’s interaction. The mechanisms through which a particular kind of agent, such as a
warchouse worker, interacts can be subsequently elaborated through the development of
special-purpose interfaces. In this way, the distributed ISM serves as a medium in which
to identify and enact appropriate transactions, and to debug and refine these through

collaborative interaction between the various participants.

257

Examples of how requirements can be addressed by SPORE in this way include:

o Through experimentation at different workstations, it is possible to identify issues
that are problematic from the perspective of particular agents: for instance, “how
does the office know which drivers are available?” “How does the office determine

whether a transaction is completed?”

e Through the elaboration of different seed ISMs, additional issues can be addressed,

such as transportation costs, perishable goods, security and trust concerns.

e Through the modification of dependencies and communication strategies, the
effects of different technologies, such as mobile communications, the Internet,

optical bar code readers, or electronic locking agents, are considered,

e Through collaboration and synthesis of views, it is significant to distinguish
between subjective and objective perceptions of a state e.g. to contrast “I remember
doing X” with “I have some record of doing X with “There is an official record of

X, or to model misconceptions on the part of an agent.

Through intervention in the role of superagent, it is possible to examine the consequences
of singular conditions that arise from opportunistic interaction or Acts-of-God, and to
assess activities outside the scope of normal operation such as are associated with fraud,

or manual back-up to automated procedures.

258

<,'4| Real World Environment ||:"> : dl Interactive Situation Models ||:>

e s)

CFillRF1,2,3,4,5
.Pass RF1, 2,3, 4to
worker and keep RF5
3. When receiving RF4,
update item quantity

]

Source Warehouse

Foreman

|
|
j ‘ visualisation

handle Foreman

Artefact

. Mark items

. Fill loading time,
loading platform into

RF1,2,3,4

]

handle Warehouse
Worker

Artefact

Worker

Tick ‘On-Transport” on
RF4 after loading

N —

\ RF1{2.3

/1. Check TF and decide which

oracle

I

I
J/ visualisation
oy (C)} vl

I

I

I

|

driver for this redistribution I Forklift

2. Fill driver name, expected . Operator
arrival time and unloading Forklift Operator | AII‘)te fact
platform in RF1, 2, 3 Office |

handle visualisation

3. Keep RF1 Personnel
4. When receiving TTP1, I
_ fill'update TF 4”

1. When receiving RF3
from office, fill into
TTPL, 2

2. Keep TTP2

| Office
Artefact

oracle

()
F handle
I Truck Drive
\ | Artefact
Foreman
|
@ P\ N=
| Foreman
I Artefact

‘When receiving RF2,
update item quantity

Decide on place for the ~— — —— A __ Tt
teceived items and fill in Warehouse -t » @
RF2 9 ‘Worker I

Warehouse Worker

I Artefact
Tick ‘Redistribution PO U D RO
Done’ in RF2 when Forklift \~—~—/ = TTttreeeennnllll. I.’ §

finishing unloading or I
Destination Warehouse !
- | Forklift Operator
| Artefact

User in warehouse C?User actions Y) Process (form delivery) Computer model

Figure 7-13: A collaborative working environment for manual redistribution between warchouses

259

<4 Real World Environment b : <H| Interactive Situation Models :::>

Forklift Operator |

I
N I visualisation
handle

| Foreman
| Artefact
V |
|
|
|
RF1|2[3,4 |
|
|
|
|
\/ |
‘Warehouse |
Worker |
|
oracle |
\ visualisation
handle —»
—)
| Warehouse
RF1{213 | Worker
Artefact
|
.
Office Forklift I
Personnel Operator |
|
|
|

© User in warehouse

Yy Process (form delivery) Computer model

Figure 7-14a (above): Detailed view of the
forms used in the warechouse
artefacts

Figure 7-14b (right): Detail of panels
representing observables (handles or
oracles) for some warchouse agents

260

