
Chapter 3

Theoretical Issues

3.1 Introduction

In the previous chapter, I have discussed reasons why empirical modelling is good

for geometry, and why strong geometry is bene�cial for empirical modelling. In this

chapter, the technical issues faced in trying to develop the relationships between

these two types of modelling are described, in terms of both conceptual issues and

the limitations of current tools that support empirical modelling. It is important

that the representation of geometric data and dependency between that data in

the implementation of such a tool is clearly consistent with the geometry itself.

Solving the problems posed by the technical issues is the motivation for the research

presented in the chapters that follow.

Interaction with geometric models reveals the integrity of the geometry. It is

often the case that what is apparently one piece of geometry is actually an assembly

of several component parts. A mechanism is required to manage the components

and their dependencies so that interaction, reference and rede�nition of the subcom-

ponent parts are consistent with the overall de�nition of the assembled geometry in

a de�nitive script. The way in which interaction with a geometric assembly a�ects

56

a copy needs to be appreciated by the modeller. An overview of the issues discussed

in this chapter is introduced in the following itemized list.

� The copying of geometric assemblies is a desirable feature in an interactive

notation for geometric modelling. What is the status of the internal subcom-

ponent de�nitions of a copied assembly and its dependency on the original

assembly?

� Dynamic instantiation and removal of geometric entities is a desirable feature

in some applications, for instance, drawing graph paper with scales that de-

pend on the contents of particular data sets. If component geometry is at one

level of de�nition in a script, are there higher-levels of abstraction in de�ni-

tions in a script dynamically to control the lower-level geometry consistently

with some high-level model?

� Where dependencies exist between geometric entities, these entities can be

de�ned in many di�erent modes. A mode describes the level in the data

structure of an entity at which its de�ning parameters are given by de�nitions

or by construction with constructors. How does this process a�ect a modeller's

interaction with geometry in a modelling environment containing dependency?

� Structure in data can be considered as a form of dependency between values

of di�erent types. What is the relationship between dependency and data

structure?

� Geometric data is often of a continuous rather than a discrete nature. A

straight line can be de�ned by two end points and it is also a point set de-

�ned by a set membership condition of the set of points that lie directly be-

tween the end points. A straight line can also have in�nite length, where it

is parametrised by a vector and a point through which is passes. Dependency

57

between geometric entities may need to be de�ned in terms of point sets rather

than de�ning parameters. By what methods is it possible to represent geo-

metric continuous data in an environment containing dependency on a discrete

computer system?

� Geometric data can be de�ned by parameters, is represented by point sets

and is often associated with many attributes for data such as colour, texture,

transformation, line width and so on. How is it possible to associate attributes

with geometric entities where there is dependency?

Each of these questions is considered in separate sections of this chapter.

Firstly, issues relating to empirical modelling tools that capture aspects of geome-

try are considered Section 3.2. This is followed in Section 3.3 by discussion of the

relationship between data structure and dependency, with motivating examples re-

lating to geometry. Secondly, issues relating to integration of good geometry with

empirical modelling are considered. Material in Section 3.4 examines issues of data

representation, the creation of good computer-based representations for geometric

data that can be bene�cial to a modeller and consistent with real world experience of

geometry. Finally, Section 3.5 presents the basis for a solution to the problems posed

by the technical issues raised. This is the basis for the practical work presented in

chapters 4, 5, 6, 7 and 8.

Where possible, examples of existing methods for handling the technical

problems that arise from the technical issues are presented. Often these methods are

only partial solutions and not suitable for the representation of complex geometry.

In particular, Section 3.4.1 examines the issues of representing geometric data within

the EDEN generic dependency maintainer tool [YY88, Yun90].

58

3.2 De�nitions and Dependency with Geometry

Dependency in geometry cannot be observed through static inspection. It is inter-

action with artefacts that reveals the integrity of their geometry. A polygon is a

geometric entity made up of interdependent lines, where the end point of every line

is also the end point of another. This relationship is a form of dependency that

is common in geometry. Empirical modelling principles can be applied to repre-

sent this dependency in a script of de�nitions. A polygon can be considered as an

assembly of integrated subcomponent lines with dependencies between them. An

assembly is de�ned as a grouping of de�nitions in a de�nitive script that combine

to construct an entity that contains subcomponent dependencies. The polygon and

its component lines can each be uniquely identi�ed and the indivisible relationships

between the lines expressed as de�nitions in a de�nitive script.

a
C

B A
B = line(a, l @ pi/3)

A = line(B.2, l @ -pi/3)

C = line(A.2, a)

Dependency relationships in empirical modelling are acyclic and therefore

there is a need to de�ne a starting point on which all the lines depend. Consider the

triangle T shown above. With de�nitions in de�nitive scripts, it is not possible to

de�ne the start of line A to be the end of line B, the start of C to be the end of line A

and the start of B to be the end of line C, because this is a cyclic dependency. With

the introduction of one more de�nition for point a it becomes possible to de�ne the

start of line A to depend on a and the end of line C to also depend on a. The loop

of cyclic dependency is removed in this way.

Triangle T is an assembly that integrates straight line subcomponents. The

59

construction of assemblies may take the form of one de�nition for the whole assembly,

for example \T = triangle(a; jjAjj; jjBjj; jjCjj)"1 or a grouping of separate de�nitions

for each separate line2. This section of the chapter examines the issues for the

de�nition and subsequent reference to or rede�nition of the subcomponents of an

assembly de�nition.

The �rst issue discussed in this section (Section 3.2.1) concerns the status

of a copy of assembled geometry. In a graphical drawing tool such as x�g, when

an object is copied its new instance is like a photograph of the original in the state

that the original is in at the exact moment of the copy operation. The copy is

completely independent of any subsequent changes to the original. If S is a triangle

de�ned by indivisible relationship to be a copy3 of T , i.e. a de�nition of the form

\S = copy(T)", the subsequent states of S and T are in some way connected.

Dependency introduces ambiguity into the concept of copy and a modeller needs to

be aware of the subtle qualities of the di�erent kinds of copy possible by de�nition.

Ambiguity can be introduced in respect of three types of activity:

� rede�nition of T or its subcomponents;

� referencing subcomponents of T ;

� privilege to make rede�nitions of subcomponents of S.

The rede�nition of T or its subcomponents, making reference to the subcom-

ponents of S and the permission to make rede�nitions of the subcomponents of S

can all have more than one possible interpretation in terms of the future state of

the script and may not match a modeller's expectation of the e�ect of the copy.

1The length of a line x is given by \jjxjj".
2The second grouping method is similar to the DoNaLD openshape notation construct.
3Copying is a general term that admits the possibility of operations such as rotation, scaling

and translation of shapes in a geometric modelling environment.

60

Dependency introduces ambiguity into the concept of copy and a modeller needs to

be aware of the di�erent kinds of equivalent copy possible by de�nitions.

In Section 3.2.2, the levels of abstraction for the de�nition of assemblies are

demonstrated. At a low-level of abstraction, a script may have operators and data

types for geometry such as triangles, rectangles, hexagons, circles and so on. At a

higher-level, an operator such as polygon may be available to construct assemblies of

lines to represent a generic polygon. In the high-level notation, a polygon is de�ned

to depend on a parameter representing its number of sides. Changing the value of

this parameter directly in
uences the number of component lines in the assembly

of the geometry at the lower-level. If de�nitions in the low-level script depend on

the lines that represent a high-level polygon, what happens if the value de�ning

the number of sides is rede�ned? This issue often creates a complex de�nition

management problem, especially if the number of sides is reduced. The references

that low-level de�nitions depended on for their evaluation may no longer exist.

The polygon operator is an example of higher-order dependency. Higher-order

dependency and the di�erent kinds of copy are compared in Section 3.2.3.

3.2.1 De�nitions for Copying Assemblies

The process of making a copy of an object in a de�nitive script is very di�erent from

the style of cut and paste copying provided by tools such as word processors and

drawing packages. The reason for this is that there is the need to consider the e�ect

of dependency maintenance between the state of original assembly and its copied

instance. An example of this in an application that contains dependency mainte-

nance is the use of the copy and paste system for a block of cells in a spreadsheet.

The default method for copying cells is one of many possible paths by which a copy

could be carried out. Subsequent alteration to the values in these cells by a user

may cause the update of other cells in a way that the user is not expecting.

61

Figure 3.1: Copying a region of cells in an Excel spreadsheet.

62

Close examination of the traditional copying operation in a spreadsheet appli-

cation illustrates some of the issues. Consider the spreadsheet shown in Figure 3.1.

The �rst step in its creation was to enter the values in cells A1 up to A10. Cell

A11 is then de�ned by a formula to be the average of these cells. The next step was

to highlight cells A1 through to A11, copy them and then paste them into column

B. Cell A1 contains only a number and not a formula, so only it's explicit value is

copied. Any subsequent change to A1 will not then update B1.

Cell B11, a copy of the formula in cell A11, is copied in a particular way.

The formula from A11 is not copied into B11 verbatim, character by character.

Instead, the range for the evaluation of the average formula is substituted with

cells B1 through to B10. Cell B11 remains independent of cells A1 to A11, even

if the users intention for the copy is that cell B11 is equal to the average of A1

through A10. This would be the e�ect of an exact character by character copy of

the formula. Many spreadsheet applications provide some form of a special paste

that allow a user to set the future behaviour of a paste operation to suit subsequent

interaction with a spreadsheet model4.

A de�nition for an observable is either explicit of implicit. An explicit de�ni-

tion is of the form \identi�er = value", where the identi�er on the left-hand side is

associated with the explicit value on the right-hand side. An implicit de�nition is of

the form \identi�er = function(arguments)", where the identi�er on the left-hand

side is associated with a value that is evaluated by applying the function to the

sequence of arguments.

The process of copying a single de�nition that is for an explicit value, has only

two possible outcomes in term of de�nitions to represent that copy in future states

of the same script. Consider the example de�nitions \a = 3" and \b = copy(a)".

4The spreadsheet used for this example is Microsoft's Excel 97 [KDS96, Jac97], which includes
a \Paste special" operation to give a user additional control over copying of cells.

63

The de�nition of b is a new de�nition that a user passes to a tool for dependency

maintenance that can implement the copy process for a in one of two ways, as shown

in the two cases below. To name the di�erent kinds of copy, analogies are drawn to

mechanisms used to copy images in the real world.

Photographic copy The value associated with identi�er b is set to be equal to the

value of a at the moment of the copy. In this case, the de�nition \b = copy(a)"

cannot remain in the script and should be replaced by \b = 3". This is similar

to a photograph where the image in the picture remains exactly the same as

the image viewed by a camera lens the instant that the shutter was open.

Mirror copy The value associated with identi�er b depends on the value of a and

subsequent change of the value of a changes the value of b. The de�nition

of b is unchanged. This is similar to the way in which the image in a mirror

continuously re
ects the image of objects placed in front of it, including the

motion of these objects.

When copying a single de�nition that is implicitly de�ned, there are at least

three possible outcomes in terms of de�nitions to represent that copy. Consider

the example de�nitions \a = c + d" and \b = copy(a)". Photographic and mirror

copies for the implicit de�nition are similar in the list below to the types of copy

for explicit de�nitions in the list above. Reconstruction copy is a more general case

than the �rst two and can take more than one form. Reconstruction of an image

involves the use of the same or apparently identical components of an original to

make a copied instance.

Photographic copy The value associated with identi�er b is set to be equal to

the value of a in the state of the script at the point of the de�nition of b. For

a value of c + d of 4, the de�nition \b = copy(a)" should not remain in the

64

script and is replaced with \b = 4". Subsequent change to the values of a, c

or d does not a�ect the value of b.

Mirror copy The value associated with identi�er b depends exactly on the value

of a and any subsequent change to the value of a changes the value of b. The

de�nition of b should remain unaltered.

Reconstruction copy The value associated with identi�er b is de�ned by the same

implicit formula as the value of a. The de�nition of b is replaced by the

de�nition \b = c+d". Subsequent rede�nition of a will not e�ect the value of b.

Further interpretations of the copy of a are possible in this case, where implicit

and explicit de�nitions are mixed in the right-hand side of the formula. For

example, if the current value of d is 2 then the de�nition of b can be replaced

by \b = c+ 2". In this mixed argument example, the value of b is e�ected by

subsequent change to c but not by subsequent change to d.

All the cases above are representations of copying processes that de�ne the

value of the copy to be identical to the value of the original de�nition at the moment

that the copy de�nition for b is introduced into the script. The process by which

the copy is represented in the creation of new de�nitions in a script determines the

e�ect that subsequent rede�nitions have in the propagation update of the current

state of the values in the script.

With an assembly of geometry, there are several more cases possible than

those listed for one single de�nition. If T is an assembly of some geometry, the

de�nition \S = copy(T)" can have many interpretations for the de�nition of the

subcomponents of the assembly. For every component de�nition of an assembly

that is implicit, there can be any of the three types listed for single implicit def-

initions above. The e�ect of subsequent rede�nition of the initial subcomponents

on the copy is determined by the procedure for the creation of the copied instance

65

by a tool for dependency maintenance. In general, it is better if every subcom-

ponent de�nition is handled in exactly the same way to avoid ambiguity. It may,

however, be necessary to consider mixtures of the procedures presented for copying

subcomponent de�nitions in certain applications.

Figure 3.2 is split into six parts. Each part contains an identical piece of

geometry de�ned by an assembly of de�nitions and the script to represent that

geometry. A brief synopsis of the script notation used in the �gure is presented

in Table 3.1. The diagram of the geometry is labelled with parametrisations that

correspond with the associated script of de�nitions and highlight the di�erences

between di�erent scripts the represent the same piece of geometry. The di�erences

relate to the dependencies between the subcomponents of the assembly and other

parameters in the script. In Figure 3.2a, the basic shape \section" represents the

assembled geometry that is considered as the original geometry. This is copied in

the other parts of the �gure. This original geometric assembly consists of two lines

(\l1" and \l2") and an arc (\a1"). The de�ning parameters of the geometry are a

centre \c" and a radius \r". The subcomponent geometry of the arcline assembly

depends on these parameters.

Each part of Figure 3.2 other than the top left hand corner represents a

copy of \section" that is called \section2". These parts correspond to possible

interpretations of the de�nition \section2 = copy(section)" and the script shown

in each of these parts details the resulting de�nitions that persist in a script to

represent the copy. The following list describes each part of the �gure in more

detail.

b - Every single subcomponent de�nition in the mirror copy de�nes the value of

the associated identi�er in the copy to be equal and dependent on the value

of the identi�er with the same name in the original assembly. Any subsequent

66

r

h

h2

r2

c = {0, 0}
r = 2
h = 2 * r
object section {
 l1 = [c-{r, 0}, c+{0, h-r}]
 l2 = [c+{0, h-r}, c+{r, 0}]
 a1 = arc(c, r, c-{r, 0), c+{r, 0})
}

 l1 = section.l1
 l2 = section.l2
 a1 = section.a1
}

object section2 {

section.l1 section.l2

section.a1

object section2 {
 l1 = [{-2, 0}, {0, 2}]
 l2 = [{0, 2}, {2, 0}]
 a1 = arc({0, 0}, 2, {-2, 0}, {2, 0})
}

object section2 {
 l1 = [c-{r, 0}, c+{0, h-r}]
 l2 = [c+{0, h-r}, c+{r, 0}]
 a1 = arc(c, r, c-{r, 0}, c+{r, 0})
}

object section2 {
 r2 = r
 c2 = c
 h2 = h
 l1 = [c2-{r2, 0}, c2+{0, h2-r2}]
 l2 = [c2+{0, h2-r2}, c2+{r2, 0}]
 a1 = arc(c2, r2, c2-{r2, 0}, c2+{r2, 0})
}

{0, 0}
{2, 0}{-2, 0}

{0, 2}

2

c

e) Reconstruction Copy - replacement

c2

a) Basic Shape "Section"

l2l1

a1

section2 == section

section2 = copy(section)
and

section = copy(section2)

b) Mirror Copy

d) Reconstruction Copy - with reuse

c

r

h

c) Photographic Copy

f) Live Copy

Figure 3.2: Di�erent procedures for the copy of an assembly of geometric de�nitions.

67

Expression Description

id = expr
De�nition of identi�er id to be equal to the right-hand
side expression expr.

fp, qg A point on the drawing plane de�ned by scalars p and q.

[m, n] A line on the drawing plane with end points m and n.

arc(c, t, p1, p2)
An arc on the drawing place with centre c, radius r,
start point p1 and end point p2.

object o f : : : g
An assembly of de�nitions called o constructed from a
group of subcomponent de�nitions.

x.y Reference to subcomponent y of assembly x.

Table 3.1: Synopsis of the script notation used in Figure 3.2.

rede�nition of the original l1, l2 and a1 will propagate to e�ect the values

associated with the copy.

c - The photographic copy de�nes the assembly section2 to be equal to the values

associated with the de�nitions in the original section in the state as they are

in at the instance of the copy. Subsequent changes to the original shape or its

de�ning parameters will not propagate through to update the copy instance.

d - For the reconstruction with reuse copy, subsequent rede�nition of the original l1,

l2 and a1 parameters does not propagate to the copy. However, the change

of the value through rede�nition of the de�ning parameters c, r and h will.

Other possible interpretations of a copy are illustrated in Figure 3.2e and

Figure 3.2f. The reconstruction with replacement copy of Figure 3.2e is a variant of

the reconstruction with reuse copy. The right-hand side of the de�nitions for l1, l2

and a1 of section2 are similar to the right-hand side de�nitions for section with

the parameters c, r and h replaced by c2, r2 and h2 respectively. At the exact

moment of the copy, c2 is de�ned to be equal to c, r2 equal to r and h2 equal

68

to h. Subsequent changes to the parameters c and r will e�ect both the original

(section) and the copy (section2). The de�nition of the de�ning parameters can

be rede�ned to break their link with the original de�ning parameters. The copy can

become independent of the original in this way. This reconstruction copy can be

viewed as a way of creating templates of dependency that can be instantiated and

customised by their parameters.

Figure 3.2f illustrates a script in which the high-level de�nition \section2 =

copy(section)" is the persistent de�nition of the copy and there is no copy of the

assembly of de�nitions. This copy is like the image on a television set of a live

broadcast, where whatever happens in front of the camera lens in the television

studio is shown on the television screen. In this case, there is no rede�nable sub-

component geometry for section2 as de�nitions in their own right. If there were,

rede�nition of a subcomponent would cause section2 to be no longer consistent

with its de�nition as a copy. This kind of copy does not �t well in current de�nitive

programming environments. There are several possible ways in which subsequent

interaction with the subcomponents of section and section2 can be handled by a

dependency maintaining tool. For instance:

1. Attempts to rede�ne the subcomponents of section2 by the user cause a

runtime error to be reported.

2. A rede�nition of the subcomponents of section2 is considered as a rede�nition

of the same subcomponent of section. Using this procedure, the de�nitions

\section2 = copy(section)" and \section = copy(section2)" can coex-

ist in the same script.

In this section, several di�erent procedures for copying assemblies of geom-

etry with de�nitions have been discussed. Note that if there were no assemblies

69

0

1

2

3

4

5

6

7

8

9

x

m

Figure 3.3: Mass on a spring experiment.

of de�nitions then there would be far fewer possible procedures for copying single

de�nitions.

3.2.2 Higher-Order Dependency

The process of model making requires a period of observation of a real world phe-

nomena and the recording of quanti�able data during a period of experimentation.

This data can then be analysed, possibly through the preparation of a graph or other

graphical representation, in such a way that patterns of behaviour that exist between

certain observables can be determined. In the empirical modelling paradigm, this

dependency between observables can be represented in a de�nitive script. Once the

patterns between primitive observables have been represented in de�nitions, it may

be that it is possible to observe patterns in the de�nitions that could be expressed

in a higher-order de�nition.

70

For example, take the experiment that demonstrates Hooke's Law as shown

in Figure 3.3. Increasing the mass increases the length of the spring and reducing

the mass shortens the spring length. Experiments with several di�erent springs

can be carried out to measure the relationship between mass and extension. From

the data set of each experiment there can be observed, within a certain margin

for error, a proportional relationship between the mass and the extension. For

each di�erent spring tested, it is possible to express as a de�nition the observed

relationship between mass and extension by �nding an explicit constant for the

spring concerned.

At some level of abstraction above the single spring on experiment, it can

be observed that there is a common dependency to many spring experiments. Each

has the same template de�nition describing the relationship between the length of

the spring and the mass, the only di�erence is some constant of multiplication.

This pattern between de�nitions can then be represented as a template de�nition

describing all experiments involving masses suspended on springs.

This is similar to the reconstruction with replacement process shown in Fig-

ure 3.2 and described in Section 3.2.1 of the chapter. In this copying process, the

de�ning parameters for a geometric assembly are identi�ed independently of the

dependency between the subcomponents and a local version of these parameters is

created in the copied assembly. The equivalent in higher-order dependency is that

these parameters become arguments to a high-level implicit de�nition, where the

value associated with the left-hand side identi�er of the de�nition is an assembly.

With no original to copy from, the assembly is created by the high-level de�nition.

The higher-order de�nition is in a separate de�nitive script notation at a level of

abstraction above the representation of the low-level dependency for the geometric

assemblies.

The table below shows high-level de�nition and the associated low-level ge-

71

an observation

an instance of A

ob
se

rv
ab

le
A

an observation
at level 0

an observation
at level 1

an observation
at level 2

Figure 3.4: Levels of abstraction in observations.

ometric assembly generated by the high-level de�nition. In the high-level notation,

the de�nition below of the arc and two line shapes called \arcline" will generate

and maintain dependency for the assembly in the low-level script. The geometry of

the arcline is the similar to the examples in �gure 3.2. Rede�nition of the value of

r or the point c at the high-level will rede�ne the explicit values of section3.r and

section3.c at the lower-level.

High-Level section3 = arcline(r; c)

Low-Level object section3 f
c = Current value of c at high-level.
r = Current value of r at high-level.
h = 2 * r

l1 = [c-fr, 0g, c+f0, h-rg]
l2 = [c+f0, h-rg, c+fr, 0g]
a1 = arc(c, r, c-fr, 0g, c+fr, 0g]

g

This process of observing phenomena from patterns in experimental data to

form higher-level de�nitions at many increasing levels of abstraction is generalised

in Figure 3.4. The advantage of characterising common patterns in observed real

world data is that it is often more appropriate to represent these patterns rather

than to model the original data sets in their entirety. The diagram shows three

72

separate levels in the abstraction of higher-order dependency that are also listed

below.

Level 0 Observation of data that may be related in some way, over the variation

of one or more parameters. In the �gure, a single straight line represents a

snapshot of a system's state and the dots represent the value of the observables

during the snapshot. In the Hooke's Law example the parameter being varied

is the mass and the e�ect on the extension is observed to see if it is possible

to establish a dependency between these parameters at level 1.

Level 1 Observation of data from level 0 shows that there is a dependency between

certain observed values. This dependency is represented as one level 1 de�ni-

tion. In the Hooke's Law example, the mass applied and resulting extension

for one spring experiment is represented as a de�nition.

Level 2 Observation of a number of dependencies shows that there are similarities

between the de�nitions that represent common level 0 phenomena at level 1.

These patterns of dependency also be observed and can be represented in

one level 2 higher-order de�nition. In the Hooke's Law example, the level 2

de�nition represents the fact that there is a linearly proportional relationship

between mass and spring extension in all such experiments.

Level n It is possible to extend the process of observing higher and higher levels

of dependency between sets of de�nitions up to some �nite level n. For the

Hooke's Law example, the top level possible is level 2 as there is only one

de�nition at this level.

This process, when used to construct de�nitions in a script, is an observation-

oriented method for identifying structure in observed dependency. It is motivated

by observation of phenomena that already exist in the world and can be experienced

73

in some way, even if that experience is one of some new conceptual model that has

never been realised as a real world referent5. In a geometric context, the process

can be used as a means to identify and represent common parameters and varying

parameters between geometry that has a common basis. For example, a rectangular

box has a height and a width at level 1 but consists of four lines in a geometric

assembly of de�nitions at level 0.

3.2.3 Comparison of Complex Dependencies

Many similarities exist between the many procedures for a copy in a tool that

supports de�nitive scripts and the management of higher-order dependency. The

two methods of structuring dependency for similar entities using assemblies and

level of scripts are compared in this section. Higher-order dependency is a useful

process for identifying patterns in real world observation for the construction of

computer-based artefacts. Copying is a useful tool in the incremental construction

of computer-based artefacts.

When a user interacts with a script, there are many ways in which a created

object can be instantiated and linked to its original object component. The problems

with many methods for copy, as detailed in Section 3.2.1, are associated with assem-

blies constructed from subcomponent de�nitions. Higher-order de�nitions allow a

user to go from observation to reusable templates for making several lower-level def-

initions, whereas making a copied instance of an object is used as a tool in creation

of objects in scripts. Tools that support empirical modelling with geometry should

incorporate both support for higher-order template de�nitions and the ability to

make copies of newly created de�nitions with a high degree of
exibility.

With higher-order dependencies, it is possible to create a template for ge-

ometry. This is similar to the way that a programmer creates a primitive object

5For further examples, see [GYC+96].

74

topSpeed = 100

nSegment = 10

100

90

80

70

60
50

40

30

20

10

0 80

70

60

50

40

30

20

10

0

topSpeed = 80

nSegment = 8

graph speedo
within speedo {
 real needleLength = 100.0
 real minA = 4 * pi div 3
 real maxA = - pi div 3
 real A = minA + (maxA - minA) * ~/curSpeed div ~/topSpeed
 line needle = [{0,0}, {needleLength @ A}]
 real gap1, gap2, LSpc
 gap1, gap2, LSpc = 10.0, 30.0, 50.0

 x<i> = ~/topSpeed * <i> div nSegment
 f<i> = minA + (maxA - minA) * <i> div nSegment
 nSegment = 8
 node = [
 label: label(itos(trunc(x<i>)), {(needleLength + gap2 + LSpc) @ f<i>});
 line: [{(needleLength + gap2) @ f<i>}, {(needleLength + gap1) @ f<i>}]
]
 segment = []
}

Figure 3.5: Two speedometer models and one template de�nition in DoNaLD that
represents both models.

75

constructor that can be used in a drawing application, such as x�g. The generic

template de�nition has a right-hand side that consists of parameters that will make

the left-hand side of the de�nition recon�gure, where the left-hand object entity con-

sists of assembled lower-level de�nitions. The example in the previous section for an

\arcline" demonstrates how the de�ning parameters for the low-level dependency

can depend on high-level values. The number of subcomponents of an assembly may

also change depending on high-level de�ning parameters. Changing parameters on

the right-hand side of the high-level generic de�nitions can cause the assembly of

lower-level de�nitions to recon�gure.

One form of higher-order dependency is already implemented for the DoN-

aLD notation [ABH86], which is part of the Tkeden tool. It is known as the graph

abstraction. Figure 3.5 shows generic template de�nitions in use in DoNaLD to

describe the layout of a speedometer that has a top speed and number of division

segments on the right-hand side. At the lower-level, there is a block of DoNaLD de�-

nitions representing the picture of a speedometer. Changing the number-of-segments

parameter, considered as on the right-hand side of the high-level de�nition for the

speedometer, leads to the recon�guration of the low-level subcomponent de�nitions

of the assembly of geometry.

The number of subcomponent de�nitions generated on the low-level left-hand

side will change depending on the value of the special parameter \nSegments". The

abstraction is considered as based on a two-dimensional plotted line with x values

along the x-axis and f(x) values along the y-axis. These are speci�ed by de�nitions

in the DoNaLD notation by descriptions of template de�nitions \x<i>" and \f<i>".

Where \<i>" appears in these de�nitions, the elements of the sequence \0, : : :, nSeg-

ments" are used to create new low-level de�nitions for \x 0, : : :, x nSegments" and

\f 1, : : :, f nSegments" respectively. The right-hand side of these de�nitions have

the token <i> replaced by the index through the sequence for the de�nition. The

76

\node" and \segment" de�nitions can be used to create a mini script of DoNaLD

automatically for each segment of the graph, depending on the values of x<i> and

f<i>. In the speedometer example, these mini scripts correspond to the speedometer

graduation lines and labels.

The problem with the DoNaLD implementation is that if a user rede�nes a

subcomponent de�nition then the graph is no longer consistent with its high-level

de�nition. Maybe a designer wishes to change the length of the 70 miles-per-hour

line segment to highlight the top speed limit on British roads. If the number of

segments for the speedometer is increased, then this change will be lost and, in the

worst case, there may no longer be a line segment corresponding to 70 miles-per-

hour on the face of the speedometer. The order in which de�nitions are introduced

into the script becomes important and the behaviour resulting from rede�nition of

parameters and the associated propagation of change introduces con
ict. For one

script of de�nitions there can be at least two possible states. The integrity of the

state between the higher-level and lower-level of abstraction in scripts should be

protected in some way.

The use of higher-order dependency in geometric modelling has a place once

commitment can be made to the description of generic element templates through

real world observations. In the creation of new geometry, these templates restrict

the open-ended geometric design process. Higher-order abstraction in de�nitions is

a tool that can be used for the constructing primitive geometric elements. Copying

entities is a process that allows a user to take existing structure and reuse it without

having to reconstruct of reason about dependencies between internal subcomponents

at di�erent levels of abstraction. The challenge of managing dependency between

assemblies of de�nitions is to �nd a consistent and unambiguous way to support

many kinds of copy and higher-order dependency in uni�ed de�nitive notations.

77

3.3 Data Structure and Dependency

This section examines the issues of integrating arbitrary data structure and depen-

dency into the same de�nitive notations. High-level programming languages provide

data types for the representation of atomic data such as scalar and Boolean values.

These atomic data types can be combined into arbitrary new data structures with

abstract data types (ADTs) [AHU82] that represent data that is more complex than

a variable of one atomic type can represent alone. The structure can be given an

identity in its own right and mechanisms exist for accessing components of atomic

or other constructed data types. Data structure is an association of component data

types that can be regarded as a form of dependency. De�nitions in de�nitive scripts

represent indivisible relationships between variables, considered as observables, of

any data type. In existing notations, de�nitions can record structural dependencies

(as in the point constructor \p = fx, yg") but not re
ect their special character-

istics.

For example, consider the case-study of assemblies of geometry in Section 3.2.

Data types exist in the example notation in Table 3.1 to represent scalar values

(integer or
oating point), two-dimensional points (two scalar values) and two-

dimensional lines (start and end points). These are the data types, and every vari-

able of the non-atomic data types has an internal structure: points are constructed

from the atomic data type for scalars, lines are constructed from component points.

These types are provided as an integral part of the notation and in order to rep-

resent more complex data a user must create assemblies that group de�nitions for

values of these types. Dependency can be established between single variables of

the built-in data types at di�erent levels in their internal data structures, where the

value of each component of data is either explicitly given or implicitly given by the

evaluation of the right-hand side of the de�nition.

78

The level at which the de�nition of a variable of a non-atomic data type is

constructed, rather than given by de�nitions, is known as its mode. The ARCA

notation [Bey83, Bey86a] for scripts of de�nitions that describe Cayley Diagrams

includes an implementation of modes for its variables. The process of assigning a

mode to ARCA variables is known as moding. The relationship between levels in

data structure and dependency is considered through the examination of moding

and ARCA in Section 3.3.1.

Data structure describes the association of component values within a com-

pound data type. Dependency in de�nitive scripts represents indivisible relation-

ship between variables. In Section 3.3.2, the argument that data structure and

dependency can be regarded as orthogonal concerns is presented. The possibility

of representing one dependency between variables of compound types as several de-

pendencies between their components at an atomic data type level is demonstrated.

The ambiguities introduced by dependencies that are expressed by de�nition be-

tween variables at di�erent component levels in data structures are discussed.

3.3.1 Moding and ARCA

ARCA was the �rst example of a de�nitive notation to be developed at War-

wick [Bey83, Bey86a]6. The data types and operators of ARCA are illustrated

in Figure 3.6. This shows an ARCA representation of the symmetric group S3 in

three sections. From top to bottom in the �gure, these are: a Cayley diagram for S3,

a graphical representation of its ARCA data structure and two segments of its script

of de�nitions in the ARCA notation. The explicit de�nitions for the diagram can

be subsequently rede�ned to experiment with the state of the diagram. In the tool

developed by Bird that implements ARCA [Bir91], the screen image of the group

recon�gures to re
ect the current state of the de�nitions and their associated values

6Earlier work on de�nitive notations can be traced back to Brian Wyvill [Wyv75].

79

(see example ARCA output in Figure 2.1).

The main compound data structure in ARCA is the diagram that represents

the coordinate location of the N component vertices in a diagram and the partial

injection mapping from f1; : : : ; Ng to itself associated with edges of each colour in

the diagram.

A variable (x) or a component of its structure (x[1], x[2], : : :, x[n]) can be

declared to be in either concrete or abstract mode. The signi�cance of these modes

is as follows:

abstract mode The value of the variable or component is given by a constructor at

the same level or de�ned by an implicit de�nition. It is not de�ned component-

wise.

concrete mode The value of the variable or component is constructed from the

de�nitions of its components.

In ARCA, if a variable is declared to be in abstract mode, then no declaration

is required for the mode of its components. If a variable is declared to be in concrete

mode then the mode of its components must also be declared.

The data structure for the diagram in Figure 3.6 is in concrete mode and

all component values are in concrete mode down to its leaves. The start of the

example script shows combined mode and type declarations for the identi�ers to

be de�ned by explicit values further through the script. A mode declaration of the

form \mode x = 'ab'-diag 6" describes x as a diagram with N = 6 vertices and

two colours a and b. Declaration of the mode of the component vertices and colours

is then required.

Declaration of the dimension of each concrete ARCA vertex is of the form

\mode y = vert 3", describing that the value of y is constructed from the values

of its components y[1], y[2] and y[3]. These components can be implicitly or

80

1 2 3 4 5 6 1 2 3 4 5 6

[1] [2] [1] [2] [1] [2] [1] [2] [1] [2] [1] [2]

!6

!5!4

!1 !2

!3

!1 !2 !3 !4 !5 !6

vertices

diagram

colours

a_

2 3 1 5 6 4 4 5 6 1 2 3

b_

Cayley Diagram

Data Structure

colours

a

b

mode dia = 'ab'-diag 6

mode dia!1 = vert 2

mode dia!2 = vert 2

mode dia!3 = vert 2

mode dia!4 = vert 2

mode dia!5 = vert 2

mode dia!6 = vert 2

mode a_dia = col 6

mode b_dia = col 6

.

.

.

a_dia = {1,2,3}${4,5,6}

b_dia = {1,4}${2,5}${3,6}

dia!1 = [-200, -150]

dia!2 = [200, -150]

dia!3 = [0, 250]

dia!4 = [-400, -300]

dia!4 = [400, -300]

dia!6 = [0, 500]

.

.

.

Figure 3.6: An explicit ARCA diagram for the symmetric group S3.

81

explicitly de�ned. The declaration of an abstract ARCA vertex takes the form

\mode z = abst vert". This signi�es that z is de�ned explicitly by a constructor

that creates a vertex, or de�ned implicitly to be dependent on other vertices or

scalar values. With this declaration for variable z, its value cannot be established

by the de�nition of its components.

For every variable in ARCA, there are levels ar which its components are in

abstract or concrete mode. These levels can be considered as establishing a moding

template for de�nitions. These templates allow a user to establish dependencies

between components that would otherwise be considered as cyclic dependencies (see

Section 4.2.3). For example \x[1] = x[3]" is not a cylic dependency with concrete

mode variable x constructed from components x[1] and x[3]. In contrast, an

abstract mode variable x with de�nition \x = [3, 2, x[1]]" does lead to cylic

dependency as the evaluation of the right-hand side depends on itself.

The ARCA notation treats the mode and type declarations as if they were

de�nitions. In e�ect, the moding of variables is handled by an auxilary de�nitive

notation. In theory, it is possible to rede�ne them and hence a�ect the mode and

data structure associated with identi�ers in a script through indivisible propagation

of change. In practice, it is technically di�cult to implement a system that can

handle radical rede�nition of the type associated with an identi�er. For example,

an implementor of the ARCA notation has to consider mechanisms for handling the

e�ect of the interactive redeclaration of a variable of diagram type to be of vertex

type, or redeclaring an existing abstract mode diagram to be concrete (so as to allow

dependencies between its components to be speci�ed).

In a high-level language, the underlying algebras over the atomic types in-

clude a look-up table for each operator. This table determines the type of the value

returned by the operator, which depends on the types of the arguments. Type

checking is performed during compilation of code to check that the data types de-

82

clared to be associated with variable identi�ers are consistent with those returned

by right-hand side expressions. In ARCA, built-in operators in the notation exist

that can be used in de�nitions to de�ne indivisible relationships between values of

compound data types. This requires that every operator has a look-up table for

return type and its return mode.

Every variable in a de�nitive script such as ARCA has an associated mode

and every expression in the script also has a mode. The reasons for moding expres-

sions are:

� to attach a structure to values returned;

� to ensure this structure is consistent with the left-hand side variable in a

de�nition.

For example, consider a concrete mode list l with three elements, declared

as follows:

mode l = list 3

Consider also a general list operation reverse for list reversal. The mode of the

expression reverse(k) is abstract, as the operator returns a list with a di�erent

number of component elements depending on its argument k. Due to the varying

length of the returned list, it is not appropriate to de�ne the three element list l by

the de�nition

l = reverse(k)

or by the group of de�nitions

l[1] = (reverse(k))[1]

l[2] = (reverse(k))[2]

l[3] = (reverse(k))[3]

83

The concrete mode of the operator reverse3 for reversing the order of

three element lists is list 3 ! list 3. In this case, the mode de�nition \l =

reverse3(k)" is appropriate as the returned value always has three components.

Notice how the mode of a variable also a�ects the nature of a reference its value on

the right-hand side of another de�nition. If a variable v is in abstract mode then it

is possible to refer to the third component of the value of the variable v (through

a projection operator p3(v)) but not to the value of the third component of the

variable v (by v[3]).

Moding is required in a de�nitive notation with compound data types. The

ARCA interface to moding can be improved to better support moding outside of

the script notation. This improvement is hard to implement, especially to support

the the degree of
exibility envisaged. The machine models developed later in this

thesis handle this well and do more towards supporting user-de�ned data types

and operators than EDEN. Existing tools are not good for implmentations that

support moding, with particular problems posed by the representation of EDEN

lists (discussed in Section 3.4.1). A solution is needed (such as will be described

later) that not only allows user-de�nition of underlying algebra, but also deals with

moding to accompany this.

3.3.2 Orthogonality between Data Structure and Dependency

In a de�nitive script, there can be dependency between components of the data

structure for a variable and dependency between variables. In this section, the

relationship between dependency and data structure is considered. It is appropriate

to represent data structure and dependency as if they are orthogonal concerns. Every

identi�er and component reference in a script of de�nitions can have both a location

in a data structure and be dependent on other data values through de�nition. A

value is made up from component parts if it is of a compound data type and, as

84

discussed in Section 3.3.1, can be de�ned in di�erent modes.

In general, it is possible to �nd a way of representing all dependency given

at non-atomic data type level as dependencies between component values of atomic

types. If all dependency is represented at the atomic type level, then there is no

ambiguity introduced as to which relationships are dependency between values and

which relationships exist for data structure. All structure in dependency is between

scalar values in the level of the atomic data types and all compound data types are

constructed from these atomic values to form levels in data structures for high-level

vatiables. In this way, data structure is considered in this thesis to be orthogonal

to dependency by representing dependency at the scalar data structure level.

For example, Figure 3.7 shows a representation of the levels of data struc-

ture for a two-dimensional straight line data type. The line is represented by two

component end points and each of these points is represented by a pair of scalar

values. These scalar values are atomic types in the example. The �gure is separated

into three sections and the value of line variable l is the same in each. Figure 3.7a

shows a line that is explicitly represented at all levels. Figure 3.7b and Figure 3.7c

show the line with components de�ned implicitly.

Dependency between data of the same type at the same level is diagrammat-

cally representable as embedded in that level. In Figure 3.7b and Figure 3.7c, it

is possible to extract and describe a low-level of dependency between atomic scalar

data types, another level of dependency for point compound data types and another

for line compound data types. Dependency can also exist between data types at

di�erent levels. For example, an inner product operator maps two point arguments

to a scalar value. The linking of di�erent levels in data structure by dependency

in this way leads to an ambiguity in the possible combined representation for the

data values and the dependencies between them as variables in a script. The same

dependency is shown represented in Figure 3.7c as in Figure 3.7b, except that it is

85

p = {p1, p2}

l = [p, q]

q = {q1, q2}

q1 = 10*p1

q2 = 10*p2p1 = 10

p2 = 12

Key

Implicit
Explicit
Data Structure
Dependency
Link at Level

p = {10, 12} q = 10*p

10

l = [p, q]

lines

points

scalars

{10, 12}

12010

l = [{10, 12}, {100, 120}]
lines

points

scalars

{100, 120}

a) Explicit Line b) Implicit, dependency at point level

c) Implicit, dependency at scalar level

100

12 12

Figure 3.7: Levels in data structure and dependency for the de�nition of a straight
line.

86

represented at the scalar level rather than the point level.

Data structure can be constructed by implicit de�nition. For example, a

two-dimensional point value is represented by a data structure with component

scalar values. A variable for a point can be constructed by implicit de�nition with

a de�ning function makePoint that maps from two scalar values on the right-hand

side to point variable on the left-hand side. In this case, it is not clear whether the

point is a variable constructed in concrete mode or is implicitly de�ned. It is still

possible to handle dependency between components in this case without introducing

cyclic dependency. For example, consider the following de�nition for constructing

point p from components p1 and p2:

p = makePoint(p1, p2)

A dependency between p1 and p2 cab be expressed with a de�nition such as \p1 =

2*p2". A high-level de�nitive notation with support for moding can be represented

at a lower-level by operators for constructors and dependencies between component

de�nitions.

3.4 Data Representation and Dependency

In this section, methods for data representation for observed values that are appro-

priate to de�nitive scripts are considered, with a particular focus on geometry. To

put this discussion in context, existing methods for the representation of geometric

data in existing tools are presented. This is followed by a discussion of data where

the parametrisation of entities is of a discrete nature but the actual representation of

the value is apparently continuous and can be sampled at arbitrary values. Functions

that are used on the right-hand side of de�nitions to create indivisible relationships

between entities can operate over internal parametrisations of the entities and from

a continuous representation of the entity (such as a function representation of its

87

shape). Section 3.4.3 considers additional types of data that may be associated with

geometric entities, such as graphical attributes, that ideally need to be represented

in a de�nitive notation for geometry.

3.4.1 Existing Data Representations

The EDEN tool has built-in support for some atomic data types and one compound

data type. The atomic data types represent integer values,
oating point values,

characters, strings of characters and a special type called unde�ned (represented

by symbol \@"). The tool supports dynamic typing. The type associated with a

variable is determined by interpreting the script of de�nitions and inferring types

to be associated with identi�ers on the left-hand side of explicit de�nitions from

the string of characters on the right-hand side. For a implicit de�nition, there is a

lookup table for each operator that determines the type associated with a variable

from the arguments to the operator. The rede�nition of a variable of integer type

to be of string type may cause implicitly de�ned variables with numeric expression

de�nitions to become unde�ned, the one and only value of the unde�ned type. Any

other value that depends on an unde�ned value can itself become unde�ned.

This process is in one way very powerful as there is no need to declare vari-

ables before use to be of one particular type. The system can make sensible changes

to types of variables and propagate type change through a script of de�nitions. A

modeller using the EDEN notation bene�ts from this process, as they can concen-

trate on interactively constructing the model and identifying the best observables

for a particular model without worrying about the types of the variables used to

represent the observables. The rede�nition of a variable that causes another im-

plicitly de�ned value to become unde�ned is not reported to the modeller and the

process of establishing where the relationships between variables cause a value to

be unde�ned can be time consuming.

88

No facility exists for the creation of abstract data types in EDEN, DoNaLD

or SCOUT. A list type exists that can be used to group integer,
oating point, string,

character and other list values. Elements of a list can be references and set by an

index value inside of square brackets \[]" and the whole list can be referenced and

de�ned by a comma separated list of implicit and explicit de�nitions. For example,

consider the de�nition of the list l1 shown below.

r = 10;

l1 is ["circle", 2*r, 10, 10.5];

The list l1 has four elements and is used to represent the parameters of a

circle shape in two-dimensional space, where the second argument is the implicitly

de�ned radius that depends on the current value of r and the third and fourth

elements represent the centre point. The centre point in this example is explicitly

given by an integer value (10) and a
oating point value (10.5). To declare that the

list represents a circle shape, the �rst element of the list is set an explicit de�nition

of the string of characters \circle". The EDEN parser establishes that the �rst

element of the list is explicitly given and of string data type, that the second element

is implicitly given and currently of integer data type and so on for all the elements.

What is the e�ect of the following rede�nitions of the list l1? Rede�nitions

of lists and elements of lists may not result in the e�ect that a modeller expects.

1. l1[2] is 3 * r;

2. l1[2] = 3 * r;

3. l1[3] is l1[2];

4. l1 is ["circle", 2*r, l1[2], 10.5];

The �rst rede�nition (1) fails with an error reported to the modeller because

it is not possible to implicitly de�ne only an element of a list is EDEN. The second

rede�nition (2) succeeds as it is an explicit de�nition that takes the current value of

r, multiplies this value by three and assigns this as the explicit value of the second

89

element of the list. This rede�nition actually alters the de�nition of l1 without the

modeller explicitly requesting this rede�nition. The third rede�nition (3) fails with

an error reported for the same reason as the �rst rede�nition. It is not possible to

introduce a dependency between elements of a list in this way, or in the declaration

of an entire list as shown in the fourth rede�nition (4). The EDEN interpreter

regards the de�nition of a list with a dependency between its elements as a cyclic

dependency.

The only way to identify the type of data in a list is by placing some marker

such as the \circle" string in the list. Operators in EDEN are called functions

and are de�ned on-the-
y by sections of interpreted procedural code. The operators

to these functions have their types determined automatically. In an application

that represents geometry, the use of operators over geometry represented in EDEN

lists requires that the operator type checks its arguments to see if the arbitrary list

passed as an argument contains the expected parameters.

It is di�cult to represent the assemblies of de�nitions introduced in Figure 3.2

using lists in EDEN because of the problems of establishing dependency between

elements of lists. One of the purposes of grouping de�nitions in assemblies is to

represent dependencies between components of an entity, and there needs to be

another way to represent these. The DoNaLD notation, implemented as part of

the Tkeden interpreter, uses EDEN as its back-end dependency maintainer tool.

All DoNaLD de�nitions are translated into EDEN and assemblies of de�nitions

in DoNaLD known as openshapes are represented in EDEN by variable naming

conventions.

Table 3.2 shows a DoNaLD script of de�nitions and some EDEN de�nitions

that represent the DoNaLD script. The openshape construct is used to create an

assembly of de�nitions. In the table the assembled de�nitions are l and i2. All

DoNaLD de�nitions that are not part of an openshape are preceded by an underscore

90

DoNaLD De�nitions Translated into EDEN De�nitions

int i

i = 10 i is 10;

openshape test

within test f
int i2

i2 = 20 test i2 is 20;

line l

l = [{~/i, ~/i}, {i2, i2}] test l is line(cart(i, i),

g cart(test i2, test i2))

Table 3.2: Translating DoNaLD openshapes into EDEN.

character \ " in EDEN and for an openshape called \x", all de�nitions are preceded

by \ x " in EDEN. In this way, dependency between assembled de�nitions can

be represented in EDEN. However, because the current version of EDEN has no

support for the automatic manipulation of this naming convention consistent with

some higher-level script, the DoNaLD translator must retain a record of the EDEN

names.7.

3.4.2 Parametrised Data Sets

Conventional computer systems are �nite machines that are good tools for the rep-

resentation and manipulation of discrete data. When continuous parameters, often

analogues of real world observables, are represented on a computer system, they

need to be digitised from the measured analogue parameter and represented dis-

cretely within a margin for error. Idealised geometry in Euclidean space is of a

continuous nature and can only be represented on a computer system within certain

margins for error. This section examines data values represented by parametrised

data sets where instead of storing discretely representable value, a membership con-

dition for the set is used to determine the value by sampling. The modelling of

geometry of a continuous nature in a de�nitive script relies on good data structures

7Pi-Hwa Sun is currently working on introducing control in EDEN for this style of grouping of
agents. His method is known as virtual agency.

91

height

width

corner

a) Rectangle b) Circle c) Combination Shape

radius

centre

Figure 3.8: Parametrised shapes and their combination.

and mechanisms for the representation of parametrised data sets.

The solid two-dimensional geometric entities shown in Figure 3.8 are exam-

ples of sets of data of a continuous nature. Figure 3.8a is parametrised by a height

value, width value and a corner point. The circle in Figure 3.8b is parametrised by

a centre point and a radius. For both shapes, it is possible to implement algorithms

that will draw graphical representations of the shapes on a computer screen and

other procedural function code to establish dependencies between the parameters

and the shape by de�nition.

The shape in Figure 3.8 is a combination of a solid rectangle shape and

solid circle shape. One parameter-level method for representing the combination of

shapes in de�nitive notations involves:

� describing parametrisations for combined shapes made from one rectangle and

one circle shape and all combinations of shape primitives;

� implementing speci�c algorithms to render each of the combined shapes;

� establishing dependencies between the parameters for combined shapes and

the parameters of their de�ning primitives.

This method allows for the construction of preconceived parametrised shape

primitives but not for the arbitrary combination of any shape. The combined shape

92

of Figure 3.8c can also be regarded as representing a point set union. A desirable

feature in de�nitive script notations for geometric modelling is the inclusion of oper-

ators for the combination of arbitrary shapes, where the dependency is established

between non discrete point sets rather than discrete de�ning parameters8.

The CADNORT tool, developed as part of my third year undergraduate

project [Car94b], translates scripts of de�nitions for two and three dimensional solid

geometric shapes into EDEN de�nitions. For every shape description in the CAD-

NORT notation, there is a block of EDEN de�nitions representing the parameters

for that shape and an associated procedural function that tests for membership of

the point set for the geometry. A similar naming convention to that used by DoN-

aLD and shown in Table 3.2 is used to represent the parameters of shapes in the

EDEN model rather than a list representation.

In CADNORT, the function representation of shape [PASS95] is used as the

mathematical basis for determining point set membership for the shapes. For any

point in n-dimensional Euclidean space, point set membership is determined by a

function f that maps from any point to a real value. To test point membership of

a shape S at any point p, the solid geometric shape is represented by function f ,

where

f(p)

8>>>>><
>>>>>:

< 0 p is outside S.

= 0 p is on the surface of S.

> 0 p is inside S.

(3.1)

Figure 3.9 shows the CADNORT graphical output for a table with a lamp

placed on its top. The �gure shows both front and side views of the sampled ge-

ometry at particular planar slices through the shape. The output shows only the

outline of the solid shape. The generation of graphical output in CADNORT is a

slow process due to the evaluation of interpreted code that represents the function

8DoNaLD is a notation for line drawing and does not attempt to represent �lled shapes. Shapes
can be displayed as �lled by using attributes for the rendering of the geometry.

93

Figure 3.9: Graphical output from the CADNORT tool for a table and lamp script.

representations. The graphical output requires sampling of the function representa-

tion for the shape at every pixel. The dimensions of the graphics shown are 200 by

200 pixels and the generation of the �gure was so slow in 1994 that plotted points

could be observed to appear one by one.

CADNORT has some limitations. These include:

1. Managing the scripts of de�nitions in CADNORT and EDEN. The high-level

de�nitive script for the table is approximately eight times shorter than the

length of the EDEN script used to represent it.

2. Templates (called generators) representing families of geometry can be created

on-the-
y. These templates cannot be rede�ned on-the-
y.

3. It is not possible to reference the components of shapes constructed using

set-theoretic operations.

For all its limitations, CADNORT demonstrates the representation of point

sets by de�nitions, with indivisible relationships established between point sets.

94

3.4.3 Geometric Data and its Associated Attributes

Large volumes of data are associated with representations of geometry on a computer

system. Computer-based tools to assist a designer to model geometry typically

represent geometric entities together with their de�ning parameters. There is a

wide diversity of data that may also be associated with each model. This can be

represented in additional data �elds in the data representation of the geometry. The

kinds of �eld that may need to be considered include:

Attributes Data that can describe non-geometric information associated with a

geometric object. This can include the objects colour, texture, material, den-

sity, line width.

Location In addition to relative point locations within a geometric entity itself,

the entity may be transformed into a di�erent location before it is rendered.

Geometric shapes are often placed in virtual computer-based worlds with other

geometric shapes. The location of a shape in such as world may be di�erent

from the location where it was originally constructed.

Bounding Box Solid geometry, which has an associated point set that occupies a

volume of space, may be boundable by a containing rectangle if de�ned in two

dimensions, by a containing box in three dimensions, and so on. The bounding

shape in any dimension is known as the bounding box and has sides that are

parallel to the axis of the space. The bounding box is often required to assist

algorithms for rendering geometry. Such a bounding box is particular useful

for rendering shape represented by function representation.

Structure A geometric entity may itself be a child component of another entity

or be the parent entity for other sub-entities. If this relationship is more

than just a dependency given in a script, then it may be necessary to store

95

information about the parent/child relationships with the data representation

of a geometric entity. For example, there may be data concerning how the

colours of entities appear to blend together when they are joined.

Reference A geometric entity contains information that may be useful for con-

structing the parameters of other entities. For example, a circle shape de�ned

by centre and radius parameters may have an implicitly determined diameter

parameter that can be used in the de�nition of other shapes that depend on

the de�nition of the circle.

When creating a geometric model in a de�nitive script notation, it is desirable

that a modeller should be able to modify not just data relating to de�ning shape,

but also attributes, overall location, bounding box, structure and reference. The

user should be able to make novel de�nitions between this data also, such as the

colour of an object changing dependent on permissions to modify it. The challenge

is to provide a data representation for geometry that not only handles de�ning

parameters, point sets and the information in the above list, but is also able to

handle the e�ect of the extended data representations when instantiating copies or

forming high-order de�nitions.

Support for attribute data in existing de�nitive notations for geometry is

poor. Attribute data in DoNaLD is not held as part of the geometric entity but

instead relies on the underlying EDEN implementation of the DoNaLD interpreter

to insert attribute information for use by the drawing actions of the interpreter. It

is, for example, possible to link the colour of a line to its length but this has to be

done at the EDEN interpreter level rather than within DoNaLD itself. Attributes

cannot be applied to a group of de�nitions simultaneously and must be applied one

by one. When making a copy of a group of de�nitions in an openshape in the form

of a translation or a rotation, the attributes are not copied and it is not possible to

96

assign di�erent attributes to the components of the openshape.

3.5 Proposed Solution to the Technical Issues

The previous sections of this chapter have introduced some of the technical issues

associated with representing data and manipulating data with scripts of de�nitions.

Although these are general issues for empirical modelling, they pose particular prob-

lems when associated with geometry. The aim of the work presented in the chapters

that follow is to develop a way of using de�nitive notations for geometry that over-

comes these problems. An overview of the underlying approach adopted in this

research follows.

The following list summarises some of the technical issues:

� The ambiguity in the status of copying de�nitions in a script occurs when

copying an assembly of geometry rather than a single de�nition. Two copy

procedures (photographic and mirror) exist for single explicit de�nitions and

three classi�cations of copy procedures (photographic, mirror and reconstruc-

tion) exist when copying implicit de�nitions.

� Issues concerning the mode of de�niton and the level at which dependency

is de�ned in data structure arise when values are represented by data types

other than atomic data types. Only one abstract mode exists for variables of

atomic data types, which are either explicitly or implicitly de�ned at the same

scalar level.

� Functions are required for de�nitions that represent indivisible relationships

between:

{ de�ning parameters for geometric entities;

{ the point sets represented by geometric entities.

97

The above discussion motivates the introduction of a special \atomic" data

type that can be used to represent all the explicit values associated with variables

in a de�nitive script. The term serialisation will be used to refer to the process of

transforming an explicit value of any data type into an encoded atomic value. If all

values referenced in a de�nitive script notation (including all parameters, attributes

and point inclusion algorithms and assemblies of de�nitions) can be represented by

serialised data types in this way, many of the issues raised in this chapter are greatly

simpli�ed. Every value is either implicitly or explicitly de�ned and all explicit

values are on the same data structure level. Higher-order dependency is a method

for creating a lower-level script of assembly of de�nitions. If a value of a serialised

data type can be used to represent all the information for an assembly, reference

can be made to what previously would have been the subcomponent de�nitions of

an assembly through the use of a special operator. These special operators map

from a value of a serialised data type to a representation of a component its value.

A low-level script is not required. For example, consider the arcline higher-order

de�nition shown in Section 3.2.2. Table 3.3 shows atomic data types and operators

that can be used both to create an arcline shape and make reference to its internal

components. The script of de�nitions in Table 3.3 illustrates the construction of an

arcline and reference to its component arc shape (a1).

Single values of serialised data types will need to be interpreted as represent-

ing a wide diversity of data, including sets. The operators that create indivisible

relationships between these values will need to be able to extract and relate many

di�erent aspects of the data represented. As every value incorporates all informa-

tion required for a particular type of data, interpretation of this data can include

methods for determining set membership. These methods can be related to one

another through special operators used in de�nitions in the same way as de�ning

parameters.

98

Atomic
Data Types

scalar Floating point values.

point Points in two-dimensional space.

arc A curved section of a circle.

arcline
A shape formed from an arc and two lines,
as shown in Figure 3.2.

Operators makeArcline
De�ne an arcline dependent on a scalar
and a point.

arcFromArcline
De�ne an arc to be equal to the arc of the
arcline that is an argument to the opera-
tor.

Example
Script

r = 2

c = f0; 0g

al = makeArcline(r; c)

a1 = arcFromArcline(al)

Table 3.3: Replacing higher-order dependency with atomic data types.

99

In this way, all data structure, expression trees and set representation for

a model can be represented by a script of de�nitions. The atomic types of the

notations are similar to objects in object-oriented programming (OOP) [CAB+94].

Every object represents a thing through its data �elds and its relationships to other

things through its methods. The di�erence from OOP is that the values are de-

�ned in interactive, open-ended scripts and communication between values occurs

through indivisible relationships established by de�nition. In OOP, the communi-

cation between objects is given by the procedural ordering of the methods and is

prescribed at the time that the code is compiled.

In the next chapter, the potential for implementing de�nitive notations to

handle serialised data types and operations is assessed, by examining dependency

in scripts that have only one data type. This concentrates on issues that are related

only to e�cient dependency maintenance. This model is used as the basis of an

implementation of dependency maintenance that only implements one atomic data

type and requires a programmer to make decisions on how to organise the data of

that type in a useful way (the DAM Machine in Chapter 5). The model is also

the basis for an object-oriented implementation for dependency maintenance that

supports the programmer in the implementation of serialised data types and special

operators (the JaM Machine API in Chapter 6). For both implementation method-

ologies, the case-studies presented are based on geometric modelling examples.

In Chapter 9, the technical issues described in this chapter are reviewed with

resepect to the special atomic data type approach to dependency maintenance.

100

