An Empirical Modelling Approach
To Software System Development in Finance:
Applications and Prospects

By
Soha Maad

Thesis

Submitted to The University of Warwick
In partial fulfillment of the requirements
For admission to the degree of Doctor of Philosophy

Department of Computer Science
University of Warwick
March 2002
Contents

List of Tables .. vii
List of Figures .. viii
Acknowledgements .. xi
Declarations .. xii
Abstract ... xiii
Abbreviations .. xiv

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction ...</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Overview ...</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Research Motivation and Aims</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Thesis Outline ..</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Contribution</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Computer-Based Technology In The Finance Domain ...</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Overview ...</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>The Key Issues of the Application of Computer-based Technology in Finance</td>
<td>20</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Application of Computer-based Technology in the Financial Enterprise ..</td>
<td>20</td>
</tr>
<tr>
<td>2.1.1.1</td>
<td>Software Integration</td>
<td>20</td>
</tr>
<tr>
<td>2.1.1.2</td>
<td>The Integration of Human and Computing Activities</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1.3</td>
<td>Coherent integration of computer mediated group social activities ..</td>
<td>25</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Application of Computer-based Technology in financial markets</td>
<td>26</td>
</tr>
</tbody>
</table>
2.1.2.1 Modelling stock exchange integration 27
2.1.2.2 Modelling for enhanced operation / lower transaction cost ... 28
2.1.2.3 Modelling the new financial trading environment 29
2.1.3 Application of Computer-based Technology in Investment 31
 2.1.3.1 Providing greater support and flexibility for the distributed
 financial modelling activity 32
 2.1.3.2 Providing greater support for the financial research
 development activity .. 33
2.2 Meeting The Needs of the Wider Agenda of Computing 33
 2.2.1 Tools limitation ... 35
 2.2.2 Technologies limitation 36
 2.2.2.1 Object Oriented Technology 37
 2.2.2.2 AI technology .. 38
 2.2.2.3 Virtual Reality technology 41
 2.2.2.4 Database Technology 43
2.3 Conclusion .. 45

Chapter 3 Empirical Modelling: A New Approach To Computer-
Based Modelling .. 47
3.0 Overview .. 47
3.1 Introduction to EM .. 48
 3.1.1 Key concepts in EM ... 49
 3.1.2 EM techniques .. 57
 3.1.3 EM notations ... 61
 3.1.4 EM Tools ... 63
3.2 Distinctive qualities of Model Building in EM 68
3.3 Conclusion .. 76
Chapter 4 EM Technology For Addressing The Wider Agenda For Computing 77

4.0 Overview ... 77
4.1 Meeting the Technical Demands of the Wider Agenda for Computing in Finance .. 78
 4.1.2 The Paradigm Shift in SSD .. 78
 4.1.3 The Broad Foundation For Computing 83
4.2 Meeting the Strategic Demands of the Wider Agenda for Computing 86
 4.2.1 Closer integration between the SSD activity and diverse activities in real world domains 86
 4.2.2 Illustrative Case Studies ... 89
4.3 Conclusion and Future Prospects of EM technology in Finance 100

Chapter 5 EM for Software Integration and Virtual Collaboration In The Financial Enterprise 104

5.0 Overview ... 104
5.1 Software Integration In The Financial Enterprise 105
 5.1.1 The need for integration ... 106
 5.1.2 Systems Integration Perspectives and Issues 112
 5.1.3 Framing the challenges of software integration 115
 5.1.4 The Situated Integration Model (SIM) 116
5.2 Virtual Collaboration In The Financial Enterprise 119
 5.2.1 Forms of virtual collaboration 119
 5.2.2 Human information behaviour and information horizons 121
 5.2.3 Challenges to virtual collaboration 122
 5.2.4 New principles For Virtual Collaboration 124
 5.2.5 Virtual Collaboration in Online Trading 126
5.3 Summary and Future Outlook .. 130
Chapter 6 **Empirical Modelling of The Financial Market** ……

6.0 Overview ………………………………………………………… 131
6.1 Challenges Facing Computer-based Support For the Financial Market …… 132
6.2 The OFMM Concept ……………………………………………… 136
 6.2.1 Motivations and aims of the OFMM …………………… 136
 6.2.2 Basic principles ………………………………………… 138
6.3 The OFMM: technical implementation and practical applications ……... 150
 6.3.1 The case study ……………………………………………. 151
 6.3.2 The OFMM: A proof-of-concept …………………… 153
 6.3.2.1 Model developed using EM technology ………… 154
 6.3.2.2 Model developed using VR technology ………… 159
6.4 Towards a Broad Foundation of Computing: a proposed EM – VR Merge … 161
6.5 Summary and future outlook …………………………………… 162

Chapter 7 **Distributed Modelling of Financial Instruments:**
 An EM approach …………………………… 164

7.0 Overview ……………………………………………………….. …… 164
7.1 The Case Study …………………………………………………… 165
 7.1.1 About Affine interest rate models …………………… 165
 7.1.2 The spreadsheet model implementation ………………… 169
 7.1.3 Classroom Observation ………………………………… 171
 7.1.4 The use by practitioners ……………………………… 171
7.2 Re-engineering The Spreadsheet Model ………………………… 172
 7.2.1 The web-based model …………………………………… 172
 7.2.2 The dtkeden model ……………………………………… 174
7.3 Distributed EM for Modelling Financial Instruments ………………. 181
7.4 Summary and Outlook ………………………………………… 185
List of Tables

3.1 Empirical Modelling Framework .. 48
3.2 Eden script for OLS regression ... 51
3.3 Eden, Donald, and Scout scripts for the CAPM 55
3.4 LSD account for the broker agent in the story of a retail trade in NYSE 62
6.1 Different construals in the case study 156
8.1 User defined data types used in methods implementation 193
8.2 Preliminary statistics on the scale of programs written 196
List of Figures

1.1 Emerging links across the two fields computer science and finance 17
2.1 classification of tools used in the financial industry 21
2.2 The interface between applications in computer sciences and applications in real world domains .. 34
2.3 The wider agenda for computing: a more intimate relationship between computing and activities in real world domains 34
2.4 The use of VR technology to depict the trading activity in NYSE 42
3.1 State and state representation in EM ... 50
3.2 Introducing a definition / re-definition .. 52
3.3 Use of Eden, Donald and Scout to explore the efficient frontier 56
3.4 Solving problems in the real world domain 58
3.5 A snapshot of the ISM for a retail trade in NYSE 60
3.6 The ttkeden interpreter .. 63
3.7 Star configuration of the distributed game 65
3.8 Distributed communication of definitive scripts 66
3.9 The semantic relationship between the computer-based artefact and its real world referent ... 72
4.1 Modelling vs programming in traditional SSD 79
4.2 Snapshots: Railway accident ... 90
4.3 The teacher’s view in the VEL model ... 92
4.4 A snapshot of the Temposcope .. 95
4.5 The EM Attribute Explorer .. 97
4.6 Views of different human participants in the warehouse model 98
5.1 The integrated application chain ... 107
5.2 Integration of e-commerce (Virtual Shop Model) and ERP applications 110
5.3 Logical and physical data independence ... 113
5.4 An integrated agent oriented system ... 116
5.5 The use of EM to complement the conventional approach to software
Integration ... 118
5.6 Observables and the information horizon ... 122
5.7 Correlating states for successful Virtual Collaboration 124
5.8 A Situated Human Information Behaviour Model (SHIB) 126
5.9 A typical information horizon of an investor .. 129
6.1 Integrating the trading process and the financial analysis models in the re-
engineering model .. 135
6.2 The social Network in the financial Market ... 149
6.3 Investor’s behaviour in response to dealer quotes 152
6.4 The distributed monopoly dealer simulation .. 158
6.5 The VR scene .. 159
7.1 Spreadsheet implementation of the affine term structure model 169
7.2 Comparative graph of the real and fitted term structure data 170
7.3 Macros used in the model .. 170
7.4 The flow across the financial enterprise of a shared model of a financial product
requested by a client ... 172
7.5 The web-based model .. 173
7.6 A snapshot of the teacher view in the distributed model 177
7.7 Views of participants in the distributed model .. 177
7.8 Open ended interaction with the model beyond the visual interface 178
7.9 The distributed model for sharing experience ... 180
7.10 Features of the formalized language to describe financial contracts proposed
by Jones et al (2000) .. 183
8.1 The Research Development Cycle .. 189
8.2 Sharing knowledge about the state of the financial research and its computer-
based support ... 200
8.3 FRDC Vs. SSDC .. 201
In Memory Of My Father
I would like to deeply thank my supervisor, Meurig Beynon, for supporting my research work and encouraging me to pursue my research objective. I would like also to thank Steve Russ for his comments on my research work and focus. Many thanks also to Graham Nudd for advising me throughout my research.

Further thanks goes to Mike Holcombe for his constructive comments during the viva and to Steve Russ for his useful help on the final version of the thesis.

The financial concepts and their technical implementation presented in this report has benefited from the discussions with, and attendance of MSc and doctoral workshops of Abhay Abhiankar, Peter Corvey, Marcus Miller, Nick Webber, J. Harrison, Nick Taylor, Mark Taylor, Van Sebastian Strien, and Mark Stewart at Warwick Business School and the Department of Mathematics and Statistics at the University of Warwick. Many thanks also to my colleague, Keng-Yu Ho, at Warwick Business school, for sharing with me the technical part of his doctoral research study. Thanks also to Samir Garbaya, at the Robotics Laboratory in Paris “Laboratoire de Robotique de Paris”, for the joint publication work on virtual reality.

A great thanks is directed to the previous Secretary General of the Council of Ministers in the Lebanese Republic, Honorable Hisham Chaar, for supporting my scholarship from the Islamic Development Bank (IDB) in Saudi Arabia. Many thanks as well to all the staff of the IDB Merit Scholarship office for their careful follow up of my scholarship.

A warm thanks is directed to my mother, and sisters Maria, Nihal, Eva, and my little dear sister Hoda, and my Aunts Racha Nahas and Nabil Nahas for their moral support to me during this challenging period.

Finally I thank God for helping me to do this study and I highly confess that no matter how human knowledge grows it stays limited.
Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree. The work in this thesis has been undertaken by myself except where otherwise stated.

The perspective on the integration of financial systems in this thesis has been published in [BM99]. The various aspects of building a web-based environment for virtual collaboration appeared in [BM00]. The timetabling model was considered in [BWMRR00]. The integration of e-commerce and ERP applications was researched in [Maa99]. The EM and VR models of the monopoly dealer simulation were introduced in [MBG01]. The financial analysis in the Ho case study can be found in [AH01].
Abstract

The financial industry is witnessing major changes. The financial enterprise is undergoing major business process renewal accompanied with the introduction of new technologies including electronic commerce; the financial market is shifting from an old to a new trading model that introduces major structural changes to the market and new roles for market participants; investment offers access to ever larger repositories of financial information and a wider choice of financial instruments to fulfill rising needs and expectations. In all these developments, there is a central role for human intelligence that can potentially influence the pattern of change and direct appropriate decisions in adapting to change. There is also a vital need for computer-based technology to support this human activity.

The relation between human and computer activities in classical models for computer-based support is characterised by rigidity and framed patterns of interaction. The emphasis in such models is on automation, not only in respect of routine trading operations, but even of the role of market participants. An alternative culture is emerging through the use of advanced technologies incorporating databases, spreadsheets, virtual reality, multi-media and AI. There is an urgent need for a framework in which to unify the classical culture, in which mathematical financial modelling has a central place, with the emerging culture, where there is greater emphasis upon human interaction and experiential aspects of computer use. This thesis addresses the problem of developing software that takes into account the human factor, the integration of the social and technical aspects, human insight, the experiential and situated aspects, different viewpoints of analysis, a holistic rather than an abstract view of the domain of study, cognitive rather than operational activities, and group social interaction. The ultimate aspiration for this work is to transform the computer as it is used in finance from an advanced calculator to an 'instrument of mind'.

Meeting the challenges of software support for finance is not only a matter of deployment, but also of software system development (SSD): this motivates our focus on the potential applications and prospects for an Empirical Modelling (EM) approach to SSD in finance. EM technology is a suite of principles, techniques, notations, and tools. EM is a form of situated modelling that involves the construction of artefacts that stand in a special relationship to the modeller’s understanding and the situation. The modelling activity is rooted in observation and experiment, and exploits the key concepts of observables, dependencies and agency. The thesis extends the major findings of Sun (1999), in respect of the essential character of SSD, and its contextual and social aspects, by considering its particular application to the finance domain.

The principles and qualities of EM as an approach to SSD are first introduced and illustrated with reference to a review of relevant existing models. The suitability of EM as a framework for SSD in finance is then discussed with reference to case studies drawn from the finance domain (the financial enterprise, the financial market, and investment). In particular, EM contributes: principles for software integration and virtual collaboration in the financial enterprise; a novel modelling approach adapting to the new trading model in the financial market; computer-based support for distributed financial engineering; and principles for a closer integration of the software system development and financial research development activities. This contribution is framed in a Situated Integration Model, a Human Information Behaviour Model, an Open Financial Market Model, a framework for distributed financial engineering, and a situated account of the financial research development cycle.
Abbreviations

AI – Artificial Intelligence
EM – Empirical Modelling
CRM – Customer Relationship Management
CAPM – Capital Asset Pricing Model
APT – Arbitrage Pricing Theory
OOP – Object Oriented Programming
XML – Extensible Markup Language
ERP – Enterprise Resource Planning
P/E – Price to Earnings ratio
ISM – Interactive Situation Model
EMH – Efficient Market Hypothesis
OLS – Ordinary Least Square Regression
EMF – Empirical Modelling Framework
VR – Virtual Reality
DEM – Distributed Empirical Modelling
ISM – Interactive Situation Model
CD – Cognitive Dimensions
IA – Information Artefact
SOM – Self Organized Maps
SSD – Software System Development
RE – Requirement Engineering
SPORE – Situated Process of Requirement Engineering
DSS – Decision Support System
GDSS – Group Decision Support System
HCI – Human Computer Interaction
VR – Virtual Reality
ODM – Open Development Model
BPM – Business Process Modelling
BPR - Business Process Re-engineering
SE – Software Engineering
OOSE – Object Oriented Software Engineering
NPV – Net Present Value
IRR – Internal Rate of Returns
DOT – Distributed Object Technology
GO – Generic Observable
Jam – Java Maintainer Machine
API – Application Interface