An Approach
to Computer-based
Knowledge Representation
for the Business Environment
using Empirical Modelling

by
Suwanna Rasmequan

Thesis
Submitted to The University of Warwick
in partial fulfilment of the requirements
for admission to the degree of
Doctor of Philosophy

Department of Computer Science
University of Warwick

November 2001
To my parents

and

every member of the family
Table of Contents

List of Tables ... v
List of Figures... vi
Acknowledgements ... viii
Declarations ... ix
Abstract ... x
Abbreviations ... xi

Chapter 1 Introduction

1.1 Framework ... 1
1.2 Motivation ... 10
1.3 Theme .. 13
1.4 Outline ... 16
1.5 Thesis Contributions .. 17

Chapter 2 Review of Computer-based Support Systems for Business Activities

2.1 Introduction ... 21
2.2 Defining the Term ‘Computer-based Support Systems’ for Business Activities 23
2.3 Current Usage of Business Support Systems

 2.3.1 Usage in terms of types of support 25
 2.3.2 Usage as classified by tools .. 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Development of DSS</td>
<td>29</td>
</tr>
<tr>
<td>2.4.1 History</td>
<td>30</td>
</tr>
<tr>
<td>2.4.2 Current issues</td>
<td>35</td>
</tr>
<tr>
<td>2.4.3 Future trend</td>
<td>53</td>
</tr>
<tr>
<td>2.5 Issues of business support systems</td>
<td>54</td>
</tr>
<tr>
<td>2.6 A Need of an Alternative Environment for Business Activities</td>
<td>63</td>
</tr>
<tr>
<td>Chapter 3 Empirical Modelling as a Paradigm Shift in Computing for the Business Environment</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.2 An Empirical Modelling Approach</td>
<td></td>
</tr>
<tr>
<td>3.2.1 The principles</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2 The EM environment</td>
<td>71</td>
</tr>
<tr>
<td>3.3 Theoretical Arguments</td>
<td></td>
</tr>
<tr>
<td>3.3.1 The nature of business environment and the limits of mathematical reasoning</td>
<td>79</td>
</tr>
<tr>
<td>3.3.2 Matters of state</td>
<td>84</td>
</tr>
<tr>
<td>3.3.3 The use of cognitive artefacts</td>
<td>91</td>
</tr>
<tr>
<td>3.3.4 The modelling process as an alternative means of constructing computer-based support systems</td>
<td>97</td>
</tr>
<tr>
<td>3.4 A Proposal for a Paradigm Shift</td>
<td></td>
</tr>
<tr>
<td>3.4.1 The need for a shift in paradigm</td>
<td>101</td>
</tr>
<tr>
<td>3.4.2 The potential of EM for supporting a paradigm shift</td>
<td>105</td>
</tr>
</tbody>
</table>
Chapter 4 Empirical Modelling
Knowledge Representation

4.1 Introduction 117
4.2 Views of Knowledge and Representation 118
 4.2.1 Philosophical view 120
 4.2.2 Psychological view 125
 4.2.3 Business operational view 128
 4.2.4 Computational view 130
4.3 Knowledge Representation in EM 132
4.4 Implementation of EM
 Knowledge Representation
 4.4.1 Open-ended system versus closed system 147
 4.4.2 Modelling instead of programming 151
 4.4.3 Integrated environment 154
 4.4.4 A sense-making model:
 the Interactive Situation Model (ISM) 159
4.5 Summary 161

Chapter 5 A Natural Environment for
Business Solutions

5.1 Introduction 163
5.2 Software System Development
 for Business Solutions
 5.2.1 Difficulties of the engineering paradigm 164
 5.2.2 Alternative approaches 168
 5.2.3 Complement to conventional approaches 172
5.3 The EM Environment for Business Solutions ... 174

5.3.1 A natural environment 175

5.3.2 Abstraction-based versus experience-based 177

5.3.3 ISMs for business applications 180

5.4 Empirical Modelling for DSS

5.4.1 A case study: Restaurant Management Model (RMM) .. 188

5.4.2 DSS for unstructured problems 197

5.4.3 Extension of mental models 200

5.5 Strategic Decision Support 203

5.5.1 The use of DE to support strategic decision 204

5.5.2 The use of EM to support strategic decision 209

5.5.3 Comparison of DE with EM modelling 212

Chapter 6 Conclusions

6.1 Overview ... 214

6.2 Assessment .. 215

6.3 Future Work ... 218

Appendix A .. A-1-6

Appendix B .. B-1-5

Appendix C .. C-1-26

Bibliography .. 223
List of Tables

Table 1 DSS versus EDP after Steven Alter
Table 2 Comparative features between formula and general programming
Table 3 ‘Hard’ versus ‘Soft’ approaches after Pidd
Table 4 Order of definitions does not matter for state
Table 5 Order of definitions does matter for state transition
Table 6 Two modes of computer use
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A screenshot of a speedometer and its DoNaLD definitions</td>
</tr>
<tr>
<td>2</td>
<td>A screenshot of the above speedometer after a redefinition</td>
</tr>
<tr>
<td>3</td>
<td>State-as-abstracted and state-as-experienced</td>
</tr>
<tr>
<td>4</td>
<td>The method-tool-user framework</td>
</tr>
<tr>
<td>5</td>
<td>The computer-as-agent framework for open-ended modelling with scripts</td>
</tr>
<tr>
<td>6</td>
<td>A screenshot of the EM version of OXO</td>
</tr>
<tr>
<td>7</td>
<td>Views of knowledge in an EM approach</td>
</tr>
<tr>
<td>8</td>
<td>EM system development environment: Two-way Open-ended Interaction (TOI)</td>
</tr>
<tr>
<td>9</td>
<td>Conventional system development environment: One-way Closed Interaction (OCI)</td>
</tr>
<tr>
<td>10</td>
<td>An integrated human and computer environment</td>
</tr>
<tr>
<td>11</td>
<td>Integration of Hard and Soft components</td>
</tr>
<tr>
<td>12</td>
<td>An example of a script of definitions in an EM model</td>
</tr>
<tr>
<td>13</td>
<td>The waterfall model of system development</td>
</tr>
<tr>
<td>14</td>
<td>A RAD system development</td>
</tr>
<tr>
<td>15</td>
<td>An Empirical Modelling system development</td>
</tr>
<tr>
<td>16</td>
<td>An EM cycle of learning</td>
</tr>
<tr>
<td>17</td>
<td>The timetabling model</td>
</tr>
<tr>
<td>18</td>
<td>Definitions from the timetabling model</td>
</tr>
<tr>
<td>19</td>
<td>The Warehouse Management Model</td>
</tr>
</tbody>
</table>
Figure 20 An ISM for Restaurant Management
Figure 21 A screenshot of new table allocation after redefinition
Figure 22 A personal mental model of a market
Figure 23 Screenshot of Decision Explorer
Figure 24 Screenshot of choices of concept properties in DE
Figure 25 Screenshot of options of analysis in DE
Acknowledgements

First of all I would like to thank my supervisor, Steve Russ, for his advice, guidance and care to overcome the necessary difficulties of the process of research and writing this thesis. And a special thanks to his patience on those unnecessary difficulties arising from differences between our culture and language.

I would also like to thank Meurig Beynon and members of the Empirical Modelling Group at the University of Warwick to whom without their initiative and contributions this thesis would not have been written.

My thanks also goes to Tomkanok Jantarujirakorn who introduced and encouraged me to take the opportunity to complete my dream of doing PhD and to Tawatchai Iempairote and Seree Chinodom for their kind support. And to the Thai Government who sponsors the research.

Finally, my deepest gratitude goes to my parents and special thanks to my sisters, brothers, nieces, nephews and friends for their love and care that inspire this research.

Further thanks goes to Malcolm Crowe for his constructive comments during the viva and to Steve Russ and Meurig Beynon for their useful help on this final version.
Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree. The work in this thesis has been undertaken by myself except where otherwise stated. Significant ideas in this thesis have appeared in:

During the research work associated with this thesis, two other publications were written jointly by the author and other members of the Empirical Modelling group: [Beynon+00b, Beynon+01a].
Abstract

The motivation for the thesis arises from the difficulties experienced by business people who are non-programmers with the inflexibilities of conventional packages and tools for model-making. After a review of current business software an argument is made for the need for a new computing paradigm that would offer more support for the way that people actually experience their business activities. The Empirical Modelling (EM) approach is introduced as a broad theoretical and practical paradigm for computing that can be viewed as a far-reaching generalisation of the spreadsheet concept.

The concepts and principles of EM emphasise the experiential processes underlying familiar abstractions and by which we come to identify reliable components in everyday life and, in particular, business activities. The emphasis on experience and on interaction leads to the new claim that EM environments offer a framework for combining propositional, experiential and tacit knowledge in a way that is more accessible and supportive of cognitive processes than conventional computer-based modelling. It is proposed that such environments offer an alternative kind of knowledge representation. Turning to the implementation and development of systems, the difficulties inherent in conventional methods are discussed and then the practical aspects of EM, and its potential for system building, are outlined.

Finally, a more detailed study is made of Decision Support Systems and the ways in which the EM focus on experience, and knowledge through interaction, can contribute to the representation of qualitative aspects of business activities and their use in a more human-centred, but computer-supported, process of decision making. Illustrations of the practical application of EM methods to the requirements of a decision support environment are given by means of extracts from a number of existing EM models.
Abbreviations

AI – Artificial Intelligence
DEM – Distributed Empirical Modelling
DBMS – Data Base Management Systems
DE – Decision Explorer
DSS – Decision Support Systems
EM – Empirical Modelling
GDSS – Group Decision Support Systems
IS – Information Systems
IT – Information Technology
ISM – Interactive Situation Model
ISMs – Interactive Situation Models
KR – Knowledge Representation
OCI – One-way Closed Interaction
RMM – Restaurant Management Model
SDSS – Strategic Decision Support Systems
SSM – Soft Systems Methodology
SODA – Strategic Option Development and Analysis
TOI – Two-way Open-ended Interaction