
Modelling The Response Of Cars Travelling Along A Straight
Road To An Emergency Vehicle

Abstract

The purpose of this empirical modelling study is to model the scenario of three cars travelling
along a straight road and responding to an emergency vehicle, considering not only the model itself
but also the process of modelling undertaken and how this could be improved in the future. It will
firstly be described how the modelling process was undertaken. We will then discuss the problems
of specifying the model in the LSD notation and will suggest solutions to these problems. Finally
we will consider the difficulties encountered creating the working model in the Eden environment
and possible modifications to the modelling environment which could remove these difficulties in
the future. It will specifically be considered how modelling multi-agent systems such as the one
created in the model alongside this paper could be facilitated in the future both in by updating the
specification methodology and the working modelling environment.

1 How the scenario was modelled

This modelling exercise began by defining the three
main agent types in an LSD specification. The road,
car and emergency vehicle agents and their respect-
ive observables and inter-dependencies were
defined using the relevant oracles, states, handles,
derivatives and protocols.

The next stage was to create a graphical envir-
onment in which the model could be represented
and manipulated visually, a task which was under-
taken using a series of Scout windows.

Following this, the agents were defined as
graphical objects using the Donald notation. The
basic properties (states) of the agents were defined
as part of this notation.

Once there was a graphical modelling environ-
ment to work with, the inter-dependencies between
agents were described in Eden, keeping closely to
the dependencies specified in the LSD specification.
At this stage, a clock was developed to allow agent
animation, though this had not been pre-specified
using LSD. The processes involved in each of these
modelling stages will now be discussed in some
more detail.

1.1 Creating the LSD Specification

1.1.1 The road agent
This simple agent is used to describe states which
vehicle agents will have as handles, i.e. the purpose
of the road agent is to define global variables which
both cars and the emergency vehicle will be af-
fected by. These include the dimensions of the road,

the speed limit, the horizontal speed at which
vehicles should move away and the distance at
which cars should slow to match the speed of cars
in front.
1.1.2 The car agent
One car agent was described in LSD, though three
copies of this were later implemented in Eden. The
states and handles of this agent store basic informa-
tion about the car including its location, dimensions,
speed, which lane of the road it is in and the dis-
tance between it and other vehicles.

Oracles are required from all other agents. From
the road agent, the dimensions, slowing distance
and range at which the emergency vehicles’ lights
can be seen is required. From other vehicles (i.e.
both other cars and the emergency vehicle), their
speed, dimensions, location and lane must be
known in order to determine their location in com-
parison to the car in question. Specifically from the
emergency vehicle, the on/off status of its lights is
required.

Derivatives include whether or not cars are cur-
rently alert to the emergency vehicle, (only true in a
state of emergency when the emergency vehicle’s
lights are on), as well as the central position of cars
in each lane of the road.

Protocols for the car describe mainly the cars’
relationships to other cars and the emergency
vehicle. The distance between this car and other
vehicles must be known. If this car is within the
slowing distance behind another vehicle it must
slow to match the speed of the vehicle in front. If
the car is alert to the emergency vehicle, it must
move away in the right direction to allow the emer-

- 1 -

gency vehicle to overtake and must then move back
again once the emergency vehicle has passed.

1.1.3 The emergency vehicle agent
The emergency vehicle has the same states and
handles as the car (except for the moving away dir-
ection). In addition to these, the state of the lights
and whether it is stuck behind a car is stored.

Oracles are also similar to those of the car agent,
such as the location and dimensions of other
vehicles. In addition to these the speed limit is re-
quired (from the road agent), as well as whether any
car is currently alert to the emergency vehicle. De-
rivatives define the central position in each lane or
the road, as with the car agent.

Some protocols for the emergency vehicle are
the same as for the car agent, such as defining when
it is necessary to slow behind a car. If the emer-
gency vehicle must slow to avoid crashing in to a
car, it records the fact that it is stuck. When any car
is alert to the emergency vehicle and so pulls away
to make room for it to overtake, the emergency
vehicle must also move over so it can pass. It must
move in the right direction depending on which lane
it is in, and must move back once it has passed the
car. Finally, if the emergency vehicle is not stuck
behind a car, its speed should be set to the speed
limit.

1.2 Creating a modelling environment
using Scout and Donald

Before the dependencies described in the LSD pro-
tocols for the car and emergency vehicle could be
specified, the agents themselves and their states
needed to be defined so they could be displayed
graphically.

The first stage of achieving this was to create a
windowed environment using Scout notation. A
large window to display the road was defined, as
well as buttons to give the user control over some of
the vehicles’ states and the clock.

Following this, the Donald notation was used to
describe the road and car agents visually. The road
was created to fill the road window, with a line
down the centre to separate the two lanes. A car was
then defined. In addition to the basic states de-
scribed in the LSD, other information was added to
make the car slightly more realistic, such as a line
marking the bonnet and boot as well as wheels. The
completed car was then copied twice to make three
car agents in total and each car was differentiated
by changing its body colour.

At this stage interdependencies between cars
were defined (described in section 1.3) before the
emergency vehicle was created.

The emergency vehicle was initially modelled
by making a fourth car agent with no differences to
other cars. A light was then added and the boot
taken away to differentiate its appearance.

Finally, the Scout buttons were made functional,
so they could move vehicles between left and right
lanes, and change variables to store whether the
clock was started and the lights of the emergency
vehicle switched on.
1.3 Modelling inter-agent dependencies

in Eden

Dependencies between vehicles in general and spe-
cifically between cars and the emergency vehicle
were described in Eden, based on the LSD protocols
for the car and emergency vehicle agents.

Because in practice there are three car agents,
each of the protocols for the car agent had to be re-
peated multiple times for each car. Some of the pro-
tocols referred to other vehicles in general so also
had to be repeated to take the emergency vehicle in-
to consideration. As an example, in the case of cal-
culation of the distance between vehicles, this had
to be repeated a total of twelve times, as there were
four vehicles which each having to relate to the oth-
er three.

Before the protocols for inter-vehicle interaction
were defined, a clock was described in Eden to al-
low agent animation. This clock could be started
and stopped by the user via a Scout button.

Modelling the vehicle inter-dependencies was
not a simple task of entering the logical syntax of a
particular protocol once. Rather, an idea was input
in to Eden for how to model a dependency such as
when cars should be alert to the emergency vehicle.
The result of this was then viewed in practise,
which at first was never quite as expected. A pro-
cess followed of updating the code for a depend-
ency and then testing it and re-modifying it until the
desired responses could be clearly observed in the
graphical model simulation.

2 Difficulties in describing a
multi-agent model in LSD

In describing the multi-agent system in LSD as de-
scribed in section 1.1, there were three main diffi-
culties which had to be overcome.

The first of these difficulties arose from the fact
that three identical car agents needed to be defined,
each of which had relationships to each other. One
option in defining them would have been to copy
the same LSD agent three times and rename vari-
ables to reflect their ownership to a particular car.

- 2 -

However it was felt that a more appropriate way
would be to ‘cheat’ by separating implementation
from instantiation. In other words, it was decided
that a generic car would be defined, with variables
owned either by (this) car or by an (other) car. A
dot notation such as ‘this.width’ or ‘other.width’
was used to show whether a width was owned by
this vehicle or another one.

Another problem was in showing ownership of a
particular variable to a particular type of agent. In
some cases different agents had states of the same
name (such as the width of a car or of the road). It
was thus necessary to show which agent was being
referred to in a statement involving states of several
agents. Therefore, the dot notation was also used in
the form ‘road.width’ (rather than this.width) to
show the width was owned by the road (rather than
by this vehicle).

The final problem was in defining the emer-
gency vehicle. The problem arose from the fact that
a large amount of the emergency vehicle’s proper-
ties were identical to those of the car because they
were both road vehicles. In practise, the emergency
vehicle was defined separately from the car with
similar properties being repeated. However in any
specification (or implementation) repetition gives
more room for error and redundancy. The ideal situ-
ation would have been for the emergency vehicle to
automatically inherit specified properties of the car
agent, but this is not possible in LSD. A suggested
solution is discussed in section 3.2.

3 Suggested improvements to LSD
to aid the specification of multi-
agent systems

3.1 Ability to specify the ownership of
variables in LSD

The first two problems described in Section 2 are of
the inability in standard LSD to specify ownership
of a variable to either a particular agent type, or to a
particular instantiation of an agent type. The LSD
specification for the car, emergency vehicle and
road model cheated by introducing a dot notation to
specify this ownership. Perhaps such a notation
could be incorporated in to standard LSD practise
as a solution to this problem. However the dot nota-
tion used in this car/road model would need to be
more fully defined to be used in practise for real
world empirical modelling specifications.

If the idea of separating a generic agent defini-
tion to a reference to a specific instantiation of that

agent is to be taken further, (as in the class / object
idea of object-orientated programming), it would be
necessary to be able to create definitions and instan-
tiations separately in LSD notation. The current in-
ability to do this, corresponds to the same inability
in Eden. It might be counterproductive to increase
the conceptual separation between LSD and Eden,
and so Eden would need a similar modification to
the way agents are specified to be worthwhile. See
Section 5.1 for a discussion of how this could be ac-
complished.

Once this separation would be implemented, or-
acles could then be defined either to belong to an
agent type or to an agent instantiation. This idea
creates further problems in how to show precisely
what variables logical statements are referring to,
and this is addressed in Section 3.3 below.

3.2 Ability to allow one agent in LSD to
inherit the properties of another

The final problem discussed in Section 2 was of the
inability for one agent to inherit specific properties
of another, causing the necessity for identical prop-
erties to be repeated for each agent in which they
are defined.

The idea of inheritance comes from object in-
heritance in object-orientated programming. Objects
have a parent, from whom they inherit all the data
and methods, and can have children who inherit all
of their properties, as well as the properties of each
object higher up in the hierarchy.

It could be possible to implement some form of
inheritance in agent orientated programming. Thus
in the example of the model described in Section 1,
a parent agent called a vehicle could be defined
with properties owned by all vehicles such as width,
length, left, bottom, speed and lane. Two subagents
could then be defined called car and emergency
vehicle which would inherit all the properties of the
vehicle agent.

This would mean that states, protocols or other
properties would not need to be repeated for all
agents which are similar in some way. For example
the distance between one vehicle and another could
be defined in the vehicle agent rather than in its
children. In the car agent, only properties specific to
cars would be defined, such as whether they are
currently alert to an emergency vehicle, or whether
they need to pull away to the side of the road. Sim-
ilarly the emergency vehicle agent would only need
to describe properties relevant to itself, such as the
status of its lights, or whether it needs to adjust its
speed to overtake a car.

- 3 -

3.3 Ability to use First Order Predicate
Logic in LSD

The solution discussed in Section 3.1, of defining
both a generic agent and instantiations of it creates
other problems in how logical statements can be ex-
pressed. Introducing the possibility of lots of ver-
sions of an agent means that it needs to be possible
to refer in logic to either a specific, more than one
of, or all such agents. Thus propositional logic,
which can only refer to specifically named vari-
ables, is unable to meet these requirements.

A sensible solution to this problem would be to
introduce the use of First Order Predicate Logic into
LSD specifications (particularly into the derivatives
and protocols of agent definitions). This would al-
low either universal of existential reference to in-
stances of a particular type of agent allowing great-
er flexibility in what can be described.

As an example of a statement requiring this, let
us consider the model road system described in Sec-
tion 1. A statement might want to be made as a pro-
tocol to the emergency vehicle such as: ‘if there is
any car that is alert then move to overtake it’. The
notion of ‘any’ could not be made with proposition-
al logic alone, but instead a reference would have to
be made to each and every car agent, connected
with ‘ands’ to specify universality, (if all cars…), or
‘ors’ to specify existentiality, (if a car exists such
that…). The quantifiers of First Order Predicate Lo-
gic would solve this problem, but would need a way
to be implemented in a modelling environment such
as Eden, (discussed in Section 5).

4 Difficulties in describing a
multi-agent model in Eden

The difficulties that were experienced in modelling
the multi-agent car / emergency vehicle / road sys-
tem using Eden were the same in nature as those
that were found in initially describing the model in
LSD. Namely, the difficulties were found of spe-
cifying multiple versions of the same agent type,
and of finding a way to implement agent inherit-
ance.

The other problem of specifying ownership was
partly solved by the Donald system of being able to
define data items within a ‘shape’ item. Thus a
notation was used such as ‘_car1_height’ and
‘_car2_height’ to specify whether the height in
question was owner by car 1 or car 2 respectively.
In cases where agent specific variables were created

in Eden rather than Donald, the same notation was
used without the initial underscore.

5 Suggested improvements to
Eden to aid the implementation
of multi-agent systems

5.1 Ability to create multiple instances
of a single agent type

In the current implementation of the Eden environ-
ment, each agent is both a type of agent and an in-
stance of an agent. Each agent is unique and con-
tains both descriptions of its properties and its cur-
rent state.

Unlike in LSD, the concept of an agent in Eden
is a very loose one. There is no pre-defined data
type called ‘agent’. Rather an agent is a collection
of variables which the modeller has chosen to create
and associate with one another.

Others have discussed whether the Eden system
should be strongly or weakly typed. However what
is being suggested here is more of a ‘construct’ than
a type; the notion of being able to collect all the
definitions for a type of agent into one construct
which can itself be referenced. For example, a file
could be created called ‘car’ which defines in full a
generic description or a car agent. Another place
will then be needed to create and manipulate specif-
ic instantiations of these ‘agent types’. In this case,
three cars would be created of a car type and related
to an instance of a road type.

This idea raises many questions which this pa-
per does not have enough scope to consider. These
questions would need to be answered before an im-
plementation of ‘agent typing’ could be considered.
One question would be to consider the effect on the
versatility of empirical modelling tools if agent typ-
ing is enforced. Another would be in choosing a
notation to refer either to a generic ‘agent type’ or
an instance of it. The way logical statements are
created would have to be extended to include quan-
tifiers, as discussed in relation to LSD in Section
3.3.

5.2 Agent inheritance in Eden

As described in Section 3.2, it would be useful to be
able to extend an agent type so that a ‘sub-agent’
could inherit its properties. This is assuming the
idea of an ‘agent type’ from Section 5.1 would be
implemented in Eden. Syntax to specify agent ex-
tension would be required, as would a set of rules to

- 4 -

define precisely what is allowed and what is not,
such as multiple inheritance or circular definitions
where an agent tries to become a descendant of one
of its own descendants.

6 Conclusion

The solutions described above are in essence a uni-
on of Object Orientated and Agent Orientated Pro-
gramming. Specifying ownership, multiple in-
stances and inheritance are all problems solved in
an Object Oriented framework. Considering the dif-
ficulties and suggested solutions discussed for this
modelling task, perhaps an amalgamation of the two
paradigms would serve to bring them closer. The
challenge would be to maintain the ability to define
inter-agent dependencies and the flexibility of the
modelling environment.

Acknowledgements

N/A

References

N/A

- 5 -

