
Modelling Human-Computer Interaction from an Agential
Perspective

0203669

Abstract

This paper argues for an agent orientated approach to modelling human computer interaction, through
the use of widgets. These are small fragments of a script that are used to help a human interact with
a computer model. An example implementation, the Agent Orientated Widget Toolkit, is presented
along with its notation. This is then compared to an object orientated approach to writing a ’user
Interface’ toolkit.

1 Introduction

The arena of human-computer interaction is the sub-
ject of much study. The basis of the field is firmly
rooted in psychology, ergonomics and graphic de-
sign. This is often problematic for a classical, com-
puter science, approach to programming. Consider
the following example.

How does Java’s Swing toolkit support the elemen-
tary principles of usability?

Swing is modelled on Object Orientated Program-
ming Principles. In this each widget is represented
by one object. Interaction between objects comes in
the form of visual placement and of event handling.
In the event handling mechanism a thread runs in
the background, receiving messages from the system
about keyboard and mouse input, sends event mes-
sages to event handlers that are registered with each
object which execute a java method.

The elementary principles of usability are briefly
presented below: (J, 1994)

1. Mapping - the relationship between controls are
their effects in the world should be obvious and
understandable.

2. Observability - the state of the program and the
appropriate functions in a given state should be
observable by the user.

3. Feedback - Information should be returned to
the user about what actions have been done and
what is has accomplished.

4. Forgiveness - users will make mistakes, so the
system should should allow account for this
through state reversal and warning messages.

5. Progressive Disclosure - increased functionality
should be modelled and availible only as the user
becomes more experienced.

6. Consistency - designing interfaces to have simi-
lar operations and similar elements for achieving
similar tasks.

The astute observer will have already recognised
the point: that Swing’s toolkit offerings and HCI the-
ory are almost a complete disjunct of each other. This
is not to say that you cannot build a good user in-
terface in Swing, there are examples. It is to say
that swing does not offer any support for building
a good user interface - it simply presents you with
tools in order to accomplish that goal. It fails to offer
a model that allows one to unify their understanding
of HCI with a programming model. Simultaneously
the traditional HCI principles have no place within a
Computer Science universe: it is impossible to unify
the HCI model with that of classical programming
because their domain ontologies are completely dis-
junct. In other words there are no unifying concepts
that exist within both.

It is also important to note that the elementary prin-
ciples are all situated and also emphasise the role
of the user’s experience in regards to the computa-
tional system. These are ideas more in line with the
paradigm of the Radical Empirical Modelling agenda
than traditional Computer Science.

This paper presents an Agent orientated perspec-
tive on the HCI agenda, which attempts to resolve, at
least, some of these conflicts. The compatibility of
these concepts is enabled by the agent orientated na-
ture of the empirical modelling research programme,
and its ability to deconstruct cognition into set of
modes of observation that tie agents together using
dependancy.

2 An Agent orientated Model
W.M.Beynon and A.A.Pasko (1994) presents a speci-
fication for the modelling and visualising the manipu-
lation of complex mathematical entities. The specifi-
cation of this paper includes the notion of specifying
the user’s cognitive interaction with the model, and
thus enables the paper to precisely model the nature
of the interaction between a computer and a human.
A generalisation of this interaction involves several
steps. The user views a visualisation of their model
on screen. The user’s mental state is updated to ac-
comodate what they have seen. The user’s interac-
tion with the model depends upon the state of their
mind, and at this point the user may change some-
thing in the model, or his curiosity may be satisfied.
The model’s internal agency and dependancy updates
what the user see.

This process can be viewed as analogous to the tra-
ditional view of HCI, where a user’s mental model of
what they are seeing is updated and their responses
depend upon this model. The beauty of the above
conception of Pasko’s is that it allows to be explicit,
in EM terms, about the HCI. The state of the model
depends upon the user’s agency. The state of the user
agent depends upon the model. Therefore any at-
tempt, in the empirical modelling paradigm, to per-
form HCI can be conceived as creating a dependance
between the model’s observables and the user, or
vice-versa through a visual means.

It is also important to note at this point that focus-
ing upon the user’s agency does not preclude the de-
velopment of N-Agent systems (where N > 1). Here
the user can be viewed as an agent in the system, as
any other. Whilst the other agents are tied together
through computed observables, as in the Tkeden sys-
tem, the dependancies on and from the user are visu-
alised and interpreted in a more sophisticated manner.
Conceptually, however, they remain identical.

3 Visualing Dependancy
Given the above theorising about the nature of the
HCI, we can derive two categories of interaction to
visualise. Those in which the state of the user agent
is dependant upon that of the system, and those in
which the state of a system observable is dependant
upon the user agent. The entities used to visualise the
dependancies (Widgets) in the former category shall
be referred to as dependant widgets, and the latter cat-
egory interactive widgets.

For example, a progress bar would be a depen-
dant widget, since it simply visualises an observable

describing the progress of some action. A textbox
would be an example of an interactive widget, since
here the user agent writes the text in the box. The ex-
ample of a textbox also identifies another characteris-
tic of interactive widgets - they frequently also act as
dependant widgets, but visualising their own observ-
able. This is because, whilst computational agents
can always be sure of the value of an observable (as-
suming no memory corruption occurs), in order to
meet HCI principles we must make the state of the
model observable to the user agent.

4 An introduction to the Toolkit
Due to the nature and scope of this project, only a
small selection of widgets have been written. Due to
the openness of Empirical Modelling at no stage in
time could the toolkit be considered complete, how-
ever, even given a standard conception of complete-
ness the widget toolkit could not be considered com-
plete. The implementation of the widget toolkit has
progressed to the stage, however, that it can be con-
sidered a complete proof of the concepts involved in
its design, and of the modelling of user interaction.
Currently five widgets have been implemented, along
with an accompanying notation.

4.1 Widgets
4.1.1 Progress Bar

The progress bar is the only dependant widget that
has been implemented within the toolkit. It attempts
to visualise a numerical observable on a scale. De-
spite its name, the semantics of this widget should be
considered interpretive. It can be used to demonstrate
more than just progress along some spectrum. For ex-
ample a model of a boiler may utilise this widget in
order to visualise the pressure levels inside the boiler.

4.1.2 Push Button

The push button offers an interaction with a boolean
observable. Its visual response is to change upon be-
ing pushed. The key difference between the way in
which this visualises a boolean observable and the
Radio Option (see below) is here the nature of the in-
teractive visualisation is a change in the viewing upon
the change in state of the observable. The Radio Op-
tion, however, offers different visuals dependant upon
the state of its observable.

There is a subtle difference here that is important to
understanding the visual semantic relation. A differ-
ence that the author only understood after modelling

this push button, and the radio option. The mod-
eller may wish to understand differing types of things
for observables with different meanings, but the same
type. It is, therefore, important to offer differing ways
of visualising an observable of a certain type. Whilst
the push button may be considered a more impera-
tive interaction and the radio button a more dependant
one, it is important that we recognise that such a dis-
tinction is only analogous, or metaphorical at best. It
this distinction is not real, only the experience is real,
and the existence of both these widgets adds richness
to this experience.

4.1.3 Discrete Slider

The discrete slider offers interaction with an integer
observable. When the user agent clicks within the
box, the horizontal position of the click determines
the value of this observable. This allows an analogue
’feel’ to the interaction with the numerical observ-
able. This kind of widget could be useful in models
that require the setting of some observable, which af-
fect the underlying rules in the model - for example
setting the gravity in a physics simulation.

4.1.4 Radio Option

The radio button offers an alternative visualisation of
a boolean observable to the Push Button (see above).

4.1.5 Textbox

The textbox allows the input of character strings.
Whilst there is a textbox within the Scout notation,
this textbox can be specifically placed using normal
scout coordinates.

4.2 Notation
The key notion within the AOWT notation is that of
observation. This is the keyword used to refer to the
idea of visualising a dependancy. If a widget ob-
serves an observable, then it attempts to visualise a
dependancy for the user agent upon that observable.
For example the following: displays a progress bar,

Progress { p , pp } observes val

that visualises the observable val. Terms in braces
are definitive relationships to properties of the wid-
get. Here, p is the point representing the top left hand
corner of the widget, pp the bottom right - this order-
ing and meaning is a common convention. Below are
the remaining Statements that the AOWT consists of.

1. val observes DSlider { p , pp } - Interactive wid-
gets observe variables, this creates creates a dis-
crete slider using the same point notion, observ-
ing the variable val.

2. val observes TextBox { p , pp } - The seman-
tics of the variables are identical to the DSlider
except that val is a string, a textbox is created.

3. val observes Button { t , tt , p , pp } - Creates a
button widget. Here t is the text when the widget
is up, tt the text when the widget is down.

4. val observes Option { t , p , pp } - t is the label of
the option. val a boolean observable It is on true
when the Option’s radio is black, false when it is
lightblue.

4.3 Implementation Details

A broad overview of the implementation is described
here, in addition to some interesting specifics that
shed light on what it is to write definitive scripts.
Each widget is supplied as a function that generates
a string of eden commands to execute, creating the
widget. These functions are passed up the parse tree
in the notation from the matching rules using the ’$v’
variable provided by the AOP. Once at the top of the
parse tree, the function can be coalesced with its ar-
guments and executed. The implementation makes
use of EDEN, the AOP, SCOUT & DONALD in this
manner.

5 Comparison

Here a comparison between the AOWT and Swing
is presented. Since this comparison is being made
across paradigm lines it is necessary to compare
in terms of a broader and more flexible system of
understanding - that of philosophy. This has al-
ready been used as a system of comparison between
traditional programming paradigms (imperative and
declarative), software engineering methodologies and
database models. There have also been published at-
tempts to use philosophy to gain deeper understand-
ing into some of the conceptions within Computer
Science by academics such as Cantwell Smith. Af-
ter a comparison of the ontology and epistemology
of the AOWT & Swing, a more standard comparison
suggesting the advantages of each is offered.

5.1 Ontology

Ontology is the underlying conception within meta-
physics - that of the state of existence of an entity,
or within some domain. An ontological comparison
within this context compares the nature of existence
of the widgets in the Empirically Modelled AOWT
with those in Object Orientated Swing Toolkit.

It is generally accepted (Descartes, 1641) that cog-
nition is a process that exists, within the empirically
paradigm cognition is inconceivable without the no-
tions of agency and dependancy. Therefore these
must exist. This is furthered by the explicit nature of
agency and dependancy within definitive scripts. It is
also clear that the model itself exists notionally, since
it is referrant of an entity within what some may term
the neumenal world. (Kant, 1787) The model also ex-
ists within phenomenal world of the modeller, and if
he/she has done his/her correctly then it should have
the same nature.

The clearest different when comparing with a stan-
dard object orientated toolkit, such as swing is that
there exists a user interface within the domain ontol-
ogy of swing. This acts as a barrier through which
all user interaction must pass. In other words, within
empirical modelling, the model of the machine is the
model within the mind of the user, whilst within a
normal ’User Interface’ there exists a ’mental model’
(J, 1994) through which user conceptions of the sys-
tem are formed. It is important to note that the AOWT
is not a user interface, and it is in this sense that an
empirical model can reach beyond the bounds that
the Turing Machine imposes upon traditional compu-
tation.

The objects within the Swing toolkit are of partic-
ular interest. Some programming theorists define an
object as a collection of methods and variables. Some
define an object as a collection of methods and vari-
ables about something. It is the existence of this refer-
rent which one knows exists that determines whether
one can assert anything about the ontological status
of a programming object or not.

The important difference between the object orien-
tated approach and agent orientated approach, there-
fore, is that whilst the object orientated approach em-
phasizes the existance of a user interface, that it mod-
els with objects of questionable ontological status, the
agent orientated approach affirms the existence of its
model, breaking the barriers between the modeller’s
mind that of the modelling environment.

5.2 Epistemology

Epistemology is the study of the what it means to
know something and how knowledge is accumulated.
Within the context of this comparison the epistemol-
ogy compares the extent to which the widgets can be
said to accumulate knowledge, depend upon knowl-
edge, and the nature of their knowledge.

Since it is sometimes difficult to state whether ob-
jects exist, it is even more difficult to state the na-
ture of their knowledge. It is especially important
to recognise that since the user interface widgets that
are provided by swing are not references to neume-
nal objects they can know nothing. The user and
the program both hold their knowledge seperately -
the user in a mental model of its interaction with the
program and the program in an explicit and formal
manner - through the storage of binary encoded se-
quences within a computer’s memory. The user in-
terface merely allows the exchange of some of this
knowledge.

The modelling of user interaction definitively al-
lows the knowledge of user to me embedded within
that of the model, through the existance of the ob-
servables. It is also true that any agents within the
model can be understand to have knowledge: their
knowledge is simply their mode of observation upon
the knowledge of the user. It is through the expe-
rience that the dependancy based interaction gives
that allows all the agents (including the modeller)
to gain knowledge. It is also important to under-
stand the manner in which this knowledge is gained:
the dependancies that the AOWT provide are situated
within the model. The knowledge is gained within
the model: whether the modeller chooses to gener-
alise from this experiement and investigation is up to
them, it is not a necessary condition of the creation of
the model.

It is important to recognise that these distinctions
are subtle, but definite. In terms of their implementa-
tion details, both Swing and the AOWT have a thread
that updates variables, and executes machine code in
order to facilitate changes with their respective sys-
tems of user interaction. The important thing is that
as a model of user interaction swing forces one to pro-
gram against this raw implementation, not focussing
the interaction around dependancy to and from a user
agent. It is this distinction that underlies the epistemic
differences, because in order for it to be knowledge,
and not just data an agent has to be performing the
’knowing’, or there must be some theoretical frame-
work in which this knowledge can exist. Swing has
neither of these. In reality there is a user agent in
swing, but because swing doesn’t try to to model this

user agent, it doesn’t exist within the swing domain
ontology, and cannot be there to underly the episte-
mology.

Therefore we can say that whilst a traditional user
interface provides a bridge through which knowledge
may pass, the AOWT empirically generates knowl-
edge, both for the modeller and the agents that the
modeller has created.

5.3 Pros/Cons
Since the comparison provided between Swing & the
AOWT is one of binary opposition, I have presented
the pros of each of the toolkits.

5.3.1 Agent Orientated Pros

1. Simple - integrating the widgets follows the
standard agency and dependancy patterns within
Empirical Modelling, and does not require addi-
tion design patterns such as observers and event
listeners. It also does not require any semantic
fudges, such as anonymous inner classes.

2. Provides a Model - User interaction clearly re-
quires some paradigm in order to operate within,
in order to support the process of designing good
user interfaces. The agency/dependancy style in
which the AOWT is implemented provides this
model, whilst not forcing the modeller into some
enforced formalism.

3. Unification with HCI - the ability to situate the
computation with an agent orientated perspec-
tive, and give the modeller a paradigm in which
to construct their interaction with the user en-
ables one to unify the perspectives of HCI and
programming within a modelling world.

5.3.2 Swing Pros

1. Performance - Java offers substantial perfor-
mance advantages over the scripted, dependancy
maintaining approach of Tkeden. These advan-
tages can be furthered for fully compiled lan-
guages running with compiled widget toolkits
(eg C with GTK).

2. Sophistication - Swing offers layout manage-
ment, different font rendering, the option to have
multiple windows open - none of which the
AOWT currently posses.

3. Development Tools - Swing has sophisticated
interface builders that allow one to graphically

manipulate and build its user interfaces. The
AOWT lacks these.

4. More and More varied Widgets - Since the
AOWT is primarily at proof of concept stage it
lacks a lot of the widgets that swing has and also
lacks a lot of the variety that swing widgets pos-
sess.

6 Conclusion
An important observation to make when comparing
in terms of the pros of each toolkit over each other
is that all of the Swing pros are practical in consid-
eration. In other words: they are problems for the
AOWT that are soluble, given the necessary human
resources. It is in this light that the AOWT should be
seen: it is not a solution to the problems of HCI, but it
should be a step in the right direction. The AOWT &
Empirical Modelling provides a paradigm in which
good application of HCI principles can occur. This
is enabled by situating the modeller in a perspective
where the interaction of the user agent with the sys-
tem is a part of the system - not an interface to the
system.

It is also important to understand the semantic re-
lation that has been visually developed here. The rich
and interactive nature of the widgets means some-
thing to the modeller. This is why there are two ways
of visualising and interaction with a boolean observ-
able. Each of the two interactions means something
different. The semantics here are not those of for-
mal logics, given to a proof by some modality. It is a
meaning that is to be interpreted by the user agent, as
part of their interaction with then model. The ability
to view the interaction between the user agent and the
model definitively is enlightening, accordingly. Since
the view of semantics has become one of interpreta-
tion, the existence of the AOWT and its associated
notation are not simply syntactic sugar: they mean
something that Swing could not.

References
R. Descartes. Meditations of first philosophy. Vari-

ous, 1:0, 1641.

P. J. Fry. Empirical modelling. Journal of the Future,
3000:1–42, 2005.

Preece J. Human-computer interaction. Addison-
Wesley Books, 1:0, 1994.

I. Kant. Critique of pure reason. Various, 1:0, 1787.

V.D.Adzhiev W.M.Beynon and A.A.Pasko. Inter-
active geometric modelling based on r-functions.
Proc CSG’94: Set-Theoretic Solid Modelling, 1:
253–272, 1994.

