

ELS – An Eden Based Digital Logic Simulator

0315420

Abstract

This paper will explore the possibilities and problems associated with modelling digital logic cir-
cuits in a definitive language. This will be achieved by attempting to model a digital circuit (the
logic, its visual representation and an editor) using a definitive notation. It is hoped that wires in a
circuit can be modelled as dependencies in Eden - the output from the wire (and therefore input to
the next component) is the output of the previous component. The methods used by the model (and
possibly the efficiency of a dependency based simulation) will then be compared and contrasted
with the methods used in the Java based OLS solution.

Weighting : 40% Paper, 60% Model

1 Introduction

This paper was inspired by the authors work on
Open Logic Sim 2 (OLSv2) - an open source digital
logic simulator written in Java and previously used
in the "Computer Organisation and Architecture"
module of the 1st year computer science degree at
The University Of Warwick. The author made many
improvements to OLSv1.36 in his second and third
years so has an in depth understanding of OLS's
implementation. The authors initial aims were to
create a tool that could be used for modelling digital
circuits in Eden based on ‘is’ dependencies in Eden.
Then, the model could be extended for use as a
teaching aid (see ‘5 Future Directions’). There was
also the possibility of developing a new notation
(using the AOP) for creating and interacting with
the circuits. As the model was written, it became
clear this was not all possible (partly due to time
constraints, partly due to the constraints of TkEden
itself).

2 The Model

With the model, the user can construct a simulation
of a digital circuit. There are two main sections of
the model – the circuit editor and the logic to actu-
ally run the circuit. The editor allows the user to add
and remove components and wires, save and load
ELS files and gives access to rudimentary undo/redo
functionality.

Before the model was implemented, it became clear
the idea of modelling wires as dependencies would

not work as any sort of feedback network would
never terminate. Therefore, the system was imple-
mented using a clock. The Eden clock is set to tick
every 10ms. In practise, each tick usually takes
more than 10ms to run and therefore the clock just
ticks continuously whilst allowing other procedures
to be run between ticks e.g. refreshing the screen.

There are several pieces of information that must be
kept about each component. In a classical pro-
gramming language (e.g. Java) this would have been
implemented as a data structure/class. However,
since Eden does not support user defined data struc-
tures, all the information about a component had to
be held in lists of a specified structure. This made
programming difficult at times as instead of using
the dot notation (position.x) one must access all the
information just using its index (position[1]). For
the component data structure this became quite con-
fusing at times, as some parts of the structure are 5
lists deep.

The visual representation of the circuit (and the abil-
ity to edit that representation) was based on the
DMT graph although the model has been heavily
modified to reach this stage. The DMT used macro()
as a way to emulate classes. Macro allows code rep-
resented as a string to be modified by replacing ?1
(etc.) with a given argument. This means a particu-
lar piece of code can be applied to multiple ‘objects’
without writing it out by hand. The author learnt
about macro (and execute) from the DMT graph
model and these functions became essential to the
construction of this model. It allows, for instance,
the code for drawing an and component to be used

as many times as necessary (once for each and com-
ponent in the component array).

The visual representation of the model attempts to
represent the circuit in a human ‘readable’ way –
allowing the user to recognise what a component is
and showing how the components are intercon-
nected and (for some) what the components current
state is i.e. switches and LEDs. Although not really
considered as components, ‘wires’ also show their
current state by changing colour depending on
whether the output they are connected to is ‘on’ or
‘off’.

3 Issues

A discussion follows of several issues encountered
when constructing the model.

3.1 The Concept

One of the key inspirations for this project was the
possibility of modelling wires in the circuit as de-
pendencies in the model. Unfortunately, this was
quickly discounted due to the problems that would
arise from self-referential circuits e.g. the not-SR
latch. This uses 2 nand gates to store 1 bit of infor-
mation by feeding the outputs of each nand gate
back to one of the inputs of the other nand gate (see
figures 1 and 2 in 4.2 Comparison As A User).
When trying to enter this circuit into TkEden, if the
model was made using dependencies, an error
would have been generated. Therefore, the model
was implemented using a clock so the model would
perform 1 step each clock tick. However, this would
also have lead to a problem as the order in which
components were ticked would have mattered –
components may have used some data from the pre-
vious step and some from this step. Therefore, a
notion of ‘previous state’ had to be used so all out-
puts could be calculated from the components input
state when the step was started.

3.2 The Implementation

There were two areas where problems arose in the
implementation of this project – problems with me
and problems with the model. I had 2 problems –
firstly, my knowledge of TkEden and its languages
is very basic. Having only had limited exposure to
the use of Eden before this project, writing any
model in TkEden would have been a struggle since
it takes time working out how to perform relatively
basic tasks. Secondly, having to use execute and
macro to emulate classes was difficult to understand

(and debug) sometimes since any functions used
with macro had to be entered as a string.

Now, the more important problems are those con-
cerning the model itself. They will be presented here
in order of significance (least significant first).

1. The model will not run on TkEden 1.68. This
seems to be a bug in TkEden (as opposed to in the
model) as the model works on 1.66.

2. There seems to be a memory leak although I can-
not tell if this is something the model is doing
wrong or a fault of TkEden. I tried to debug this
using several commands found in the Eden docu-
mentation (e.g. symboltable and symbols) but noth-
ing was of any use. I do not know how to debug this
problem and find where the fault lies.

3. The most important problem - the model slows
down dramatically as more components are added.
The laptop used for writing and testing the model is
an AthlonM 3000+, approximately 2 years old.
When tested, the model slowed down noticeably
after adding approximately 25 switches (simple to
draw components) or 15 nands (more complex com-
ponents). This was with no interconnections having
been made, just adding lots of components. Again, I
am unsure as to whether this is due to a poorly writ-
ten model, bugs in TkEden or simply that Eden is
not an appropriate language to write this type of
model in. The latter possibility occurs because Eden
is an interpreted language and will therefore be
comparatively slow anyway (which will only be
noticeable when workload is high).

3.3 Eden and TkEden

The final set of issues is issues with TkEden itself.
Firstly, the documentation of Eden and the other
languages is difficult to use in the text form and
difficult to find in the web form. The amount of
documentation is comparatively tiny – if a pro-
grammer needs to find out how to do something in,
for example, Java, they will usually be able to find
an answer through any search engine. However, in
Eden one either must read through all the documen-
tation hoping to find something relevant or try to
guess what the functions may be called and search
for it. Now, maybe this is an unfair comparison
(since Java’s user-base is rather larger than that of
Eden) but it does not negate the fact that the vital
resource of community help is almost non-existent.

The more important issues are those concerning the
Eden language itself (and, indeed, perhaps the very
basis of Empirical Modelling). Coming form a clas-
sical computer science background, there are some

features which I would have found extremely useful
when making this model. Firstly, as has been men-
tioned previously, data types would have been much
easier to work with. Data types help the programmer
to more easily understand what they’re writing by
actually using names for the data types elements, not
just list indices. In the same way, they help ensure
semantic correctness of programs – getting 2 list
indices mixed up (e.g. data[1][2]) would not throw a
‘compile time’ error (or ‘interpret-time’ error in
Eden’s case) and would not necessarily cause a ‘run
time’ error. Whereas, getting 2 elements of different
data types would probably throw an error (e.g.
data.input.connection).

Another feature that would be very useful is classes.
This would simplify several of the processes in-
volved in the circuit model – most importantly, the
process of defining types of components. Since all
the components share the same types of data and use
the same types of functions, it would be appropriate
to use classes for representing the components (as is
done in OLS).

4 Comparison With OLS

One of the aims of the project was to compare OLS
to ELS. The comparison follows.

4.1 Comparison As a Programmer

As a programmer, OLS is much easier to program.
This is due to two factors – the author’s familiarity
(lack of) with the Java (Eden) programming lan-
guage and the suitability of modelling a digital cir-
cuit simulator in Eden. In a digital circuit there are
many components – almost all having the same in-
formation and needing the same functions. This
means the components are well placed for using
classes – firstly so all the components can be inter-
faced with in the same way and secondly so many
instances of a component can be easily created.
Whilst this can be done in Eden (using the macro
function as discussed previously) it is difficult to
write and to comprehend.

4.2 Comparison As a User

I will try to evaluate the experience of a user com-
paring the 2 programs. However, I have a unique
point of view having done a lot of work with both of
them.

The first difference a user would see is that OLS has
a much more ‘polished’ interface. The example fig-
ures below demonstrate how different the interface

are but, at the same time, how they can both be used
to display a similar visual representation of a circuit.

Figure 1: A not-SR latch implemented in ELS.

Figure 2: A not-SR latch implemented in OLS. The
light blue box around the components is the edge of

the (expandable) circuit.

The ELS interface could be improved (probably to a
similar standard of OLS) given time and effort.

More importantly (depending on the users point of
view), a comparison must be made between speeds
of execution. Eden is slow compared to Java. There
is no way to avoid this fact – probably because Eden
is an interpreted language and Eden has to maintain
dependencies. These issues are exacerbated by the
fact that many ‘built in’ functions are themselves
written in Eden (see ‘lib-tkeden*.eden’ in the
TkEden release, especially eden.eden) when it
would almost certainly be faster to run these in

whatever language TkEden is written in (the lan-
guage is irrelevant – it would remove a layer of in-
terpretation whatever the language was).

Another point is memory usage. Since TkEden is
not typed, I would assume it dynamically allocates
memory depending on what type it believes observ-
ables to be. Strong typing should help to reduce
memory usage since only the necessary amount of
memory would need to be allocated. This is also
applicable to lists – if a data structure (like the com-
ponent data structure) is implemented as a list, the
interpreter has no concept of what should be in the
data structure, how big it should be etc. leading to
degradation of memory performance (and probably
increasing the time of execution).

However, TkEden (and Empirical Modelling in gen-
eral) does have 1 major advantage – its adaptability.
The ease with which one can redefine anything at
will is amazingly useful – in the appropriate context.
If a function is not doing what it is supposed, it can
be changed anywhere, anytime. This has been very
useful for debugging purposes and whilst writing the
model but would not be so useful once the model
was finished. However, is a model ever finished?
This is one of the fundamental points of Empirical
Modelling – each individual user must decide if the
model is finished for their purposes. There may be
bugs in it but if a user never encounters that bug, is
the program finished? Since I am (and will remain)
firmly rooted in classical computer programming, I
would say no! However, in Empirical Modelling,
since the decision is left open to the user and the
user does not encounter the bug then (I believe) to
them that aspect of the model would be finished.

5 Future Directions

There are many directions this model could be taken
in the future depending on what the modeller was
developing the model for. If it were for the same
purpose as OLS (part of teaching a course) then it
would probably help if the user interface were im-
proved – if one is trying to learn about digital logic
circuits, one should spend as little time as possible
learning about the program used for teaching.

For lower levels of education, the model could be
developed (as had been hoped for at the start) to
have a way for 2 (or more) students to interact with
the same model using DTkEden. Firstly, this would
facilitate groups to work together on building one
circuit but not have to be fighting over one keyboard
and mouse (they could just fight virtually through
DTkEden). It could then be further extended to al-
low two or more students to create circuits, swap

them with each other so that another student can
‘break’ some of the components of the circuit, and
then give it back to the creator so they can find out
what is broken in the circuit. This would require
quite a lot of work on the model – for instance being
able to set different modes for how a component
breaks would be quite a challenge.

A less important extension is simply to add more
components – ELS currently has 10 components,
OLS has 47. However, problems would arise adding
components with lots of inputs/outputs due to the
way the script has been written. Currently, all inputs
are on the left edge of the components and outputs
on the right edge. They are all evenly spaced along
their edge. Also, currently all the components have
to be the same width and height. Whilst these fea-
tures could be modified, the lack of classes makes
this more difficult than it should be.

6 Conclusion

This model was a very interesting challenge to pro-
gram. However, the OLS implementation of a digi-
tal logic circuit simulator is much better (in my view
of the purpose of OLS/ELS) than the ELS solution.
Since my approach to ELS was very much based on
what I learnt from programming OLS, there may
have been a better way to implement ELS that I
didn’t see because I was blinkered by classical pro-
gramming methods. I suspect, however, it is merely
that Eden is not suited to this type of
model/program.

From my brief foray into the world of Empirical
Modelling it seems this way of thinking and pro-
gramming has few useful applications. Though I
have not seen that many models, I believe I have yet
to find a situation where writing an Eden model is
more ‘beneficial’ (however that is measured) than
writing a classical program.

Acknowledgements

The model was adapted from the Eden version of
the DMT graph, given to us in lab 5 (I could not find
a projects directory for the model).

References

None

