Project Title: Constructive Al with EM

Student ID: 0609155

Abstract

The motivation of this project comes from the
idea of using computer to mimic human
thoughts and behaviors. That is based on a set
of predefined rules and observable
environment and experience the computer is
able to ‘reason’ build their own ‘knowledge’
and make a decision. This project focuses on
how the of modeling human knowledge and
learning behavior, thus creating a learning
machine, can become a very profound
approach to Artificial Intelligence. With the help
of EM, | use the Noughts and Crosses game as
the base study and my approach in studying
and derive a strategy for the game, build a
model that can, based on its experience,
generating its own logic tree and play the game.

Introduction

How does we human observe, perceive the
environment, process information, make logical
reasoning and memorize them? | believe the
process of human learning is the constant
exchange of information between our pool of
knowledge and the outside observable worlds.
The only way for human to interact with the
environment is through our senses. Logic is also
introduced via senses. At the moment, there is
no consensus on how the brain should be
stimulated. Computers lack the ability to
observe, to make sense of the observable.
However, in reasoning over the same set of
objects, rules and dependencies the computers

have many advantages. These advantages can
be used to create a new Al model.

The formal study of Al is to build intelligent
agents which can and make decision based on
its perceived environment and produce the
best outcomes. One of the most common
approaches to Al is to create a full decision tree
for all the states the machine can be in
throughout its life time and the optimal actions
to take in it states. Every possibility for the
machine states is coded in the machine
memory by human developer and thus the
machine does exactly as it is told to do. This
approach can be use very effectively in a small
and perfectly observable environment. For a
small game like Noughts and Crosses, the
decision tree can be generated very quickly and
thoroughly. Any game between a human and a
decent Al for the game would likely to result in
a draw.

The approach | would like to present here take
a step back from the conventional way of
developing an Al, instead of telling the
computer what to ‘do’ in every given situations,
the computer is told how to ‘reason’ in each
situation. So the computer will complete the
developer’s work of generating such decision
trees based on how the developer wants it to
‘learn’. Essentially, this new approach would
eventually provide the same result as the
conventional way for deterministic, finite, fully
observable game like Noughts and Crosses.
However, this approach to Al is powerful in
cases where human can not anticipate all the

outcomes of the situation. For example, in the
game of Go which play in a 36*36 board with
very simple rules, however because of the large
board the complexity becomes very difficult.
Currently the best Al for the game can only
achieve lower-intermediate level. If this
approach to Al is applied for the game of Go,
and after lets the machine ‘learn’ the game by
playing with other human or replaying old
games, the result can be proved to be very
promising.

The concepts of EM revolve around objects,
dependencies and agents. Many successful
models have been built based on EM concepts;
| believe these concepts are essential and can
be used to represent human knowledge. This
project makes an attempt of using EM to model
human learning process. Based on the previous
idea, | used the Noughts and Crosses game as
the environment to build a learning machine
and achieved very interesting result.

The constructive Al model design

Objective of my model is that the computer
can, with a given set of pre-defined rules,
objects and their dependencies can create its
own decision trees, define and query states of
the game, modify the actions in between states
based on the outcomes of the game.

Preliminary knowledge

The computer understands the layout of the
board, can read in all relevant information of
the board, observe all the moves made in
game, knows how to place a piece and knows
the winning, losing and drawing conditions.

Decision tree creation

The computer only create and store a new state
in the decision tree if the state has never been

created before and it only create a state when
it is the computer turn to make a move. For
example, if the game ends in 5 moves made by
both players, the human wins using 3 moves,
and the computer lost after 2 moves, only 2
states is stored and created by the computer
that is before it made its move. Only 2 new
states is created because it is necessary to keep
track of all the changes in the board using the
move list made by both players and only the
states before Al make a move is critical in
changing the game’s outcome.

X x X X
O &) QO OO0 OO0
X X

i) i

Stored state 1 Stored state 2

Each state in the decision tree is identify by the
order of the pieces, a indicates available slots, x
indicates slots with x pieces and o indicates
slots with o pieces, in the order shown below,
e.g. axooaxxao shows

3 /6|9 OX|O
X

1| 4|7 X

Board order ID: axooaxxao

The maximum number of states the game can
contain is (9*8*7*6*5*4*3*2*1)/2 because
only half the states are stored.

The key idea to this approach is the machine
capability to create, query and modify states of
the system which is very well support by
Empirical Modeling tools by using execute(cmd)
command. By concatenate the state ID with the

variable names in cmd new objects can be
created and query directly.

Decision tree modification

Each state stored in the decision tree has a
matching values array for each possible moves
ranging from 0-10 and -1 for occupied slots. The
higher the number the more preferable the
outcomes will be. So each time the computer
reach a state that it has encounter before in its
lifetime, the computer would choose the
highest possible value slot to make a move for
the best outcome.

Based on Donald Michie’s ideas on the machine
learning Noughts and Crosses and his model
using the matchboxes and the glass beads [3],
where the matchboxes are the states stored by
the computer and the glass beads is used in the
same way as the value table in this case, |
implement a different point rewarding system
that involve more states than Donald Michie’s
that can relatively make the computer ‘learn’
the game faster. Donald Michie’s model
involves changes to the 300 states that are
strictly 4 moves into the game, in this model |
implement so far 5 rules that make changes to
2 last states the computer encounter (can be
extended easily) thus can cover more than 300
states mention in Michie’s model, however, not
all states in Michie’s model are covered. The
first 3 rules are similar to Michie’s model which
is: reward when the computer wins or draw and
set penalty when the computer loses. 2
additional rules | introduced are that if the
move put the computer in a bad position i.e.
the state could lead to a lost next move, the
value for that move is decremented. And to
avoid dual winning move by opponent, the
computer would try to block the move earlier.

The computer can also mimic the opponent
moves thus reducing their advantages.

An example of a state and its value indicates
blocking opponent’s move and minimize

mistakes
X 0 0| -1
OO 10 |-1 | -1
0 0 0

The image show the board position and what
the values table would be after the human win
by a move to slot 2, the value of that slot ,
increase to 10 in the trees, and the value of
computer’s last (wrong) move is reset to 0.

The Model Implementation

This model | implemented using Donald to
define the layout of the board, Scout to control
screen output and Eden to create all objects
dependencies and the Al learning algorithms

Donald model

The model contains 3 viewports, 1 main
viewport define the layout drawing and pieces
of the board and 2 viewports to define layout of
the 2 states of computer behavior in creating its
decision map. The first viewport contain 8
points to draw 4 lines of the board, 9 centre
points where the pieces should be drawn and
two X and O shapes. Initially, the shapes are
drawn out side of the board then are moved to
appropriate positions when necessary. The 2
viewports for computer status only contain 8
points to draw the board layout. The number

represent in each square is controlled using
Eden.

Scout model

This model controls the information display on
screen. Display 3 viewports of the Donald
model on screen and defining 18 values to be
display on 2 computer status viewports. These
18 values are managed in the Eden model.

Eden model

This model is the main control of the game.
Create all the dependencies of the Donald and
Scout model with the actual data of the game.
The main control function is when the user
clicked on the game board, it will perform the
win/lose/draw checks as well as make
appropriate calls to function generate Al move
and human move.

Function Al() generate a move for Al consist of
3 main steps. First is to create a new state for
the decision map if is not existed
generateStatelD() the query the current state in
the decision tree and make a move decision. A
random move is made if it is a new states or no
best move is found. When the a game is
finished,
necessary update to the existing decision tree

function updateMap() makes

using 5 rules define above.

Note on “Al.e”. | defined the values for newly
defined states not evenly to observe the
computer behavior easier. The available square
values of all squares in a new state should be 0.
However, | set it up based on the number of
connections each squares has.

2 0| 4
0 5 0
1|0 3

The computer can learn the game faster this
way. However, not all possible states are
covered. These values can be changed back
using vil to vi9 define in the beginning of “Al.e”

Result and possible extensions
Model result

Using the optimized value tables, the model
play quite decently after about 15 games, it
managed to get 4-5 draws with me. Using
normal value, it takes longer for the model to
learn the game but all states are considered.

Possible Extension

e Currently, | manage to develop two
links that is the computer can look back
up to two previous steps and adjust the
value based on the outcomes. In this
model every state can be traced and
re-defined however, | have not defined
the rule for the computer to do so.

e New function can be introduced to let
the Al play against each other and
therefore, self learnt the game.

e Using more flexible ID for states the
computer can create a full decision tree
of the game, and from there it can not
only take actions in regarding to its own
move, but can also mimic human action
if the action has positive outcome

Conclusion

The model is able to achieve interest result
based on the learning algorithm. The computer
was able to ‘study’ and derive logic for the
game. And the concepts of EM can be used very
successfully in modeling the continuous process
of human learning.

Reference

[1] OXO model - Garner 1999

[2] Al with EM, OXO case study — EM-04
[3] Donald Michie’s MENACE

http://www.adit.co.uk/html/noughts and
crosses.html

http://www.adit.co.uk/html/noughts_and_crosses.html
http://www.adit.co.uk/html/noughts_and_crosses.html

