
Modeling of a Front-engine, Rear-wheel Drive Automobile Drivetrain

1058385

Abstract

In automotive design, drivetrain of an automobile refers to the elements of the automobile that are responsible for
producing power and transmitting the torque to the driving wheels. These elements include the engine, the gearbox and
the driveshaft. The place and role of a drivetrain is determined by the automobile layout. With respect to the driving
wheels and the location of the engine, there are a few distinct categories. Some of these categories are front-engine,
front-wheel drive (FF); mid-engine, front-wheel drive (MF); front-engine, rear-wheel drive (FR); rear-engine, rear-
wheel drive (RR); rear-engine, front-wheel drive (RF) and four wheel drive (4WD). In modern automobiles, the engine
is an internal combustion engine. Internal combustion engine means that the gas-air mixture is ignited inside the engine
to produce power. There are variants of this type of engine, however the most widely used ones have cylindrical vessels
and pistons. The fuel is ignited in these vessels called cylinders and force the pistons to move up and down. This
vertical (or in some designs, horizontal) motion of the pistons are then converted to a circular motion which is
transmitted to the wheels. If the engine is close to the driving wheels such as in front-wheel drive (FF) layouts, this
transmission is relatively simple. However, if the driving wheels are far from the engine such as in front-engine, rear-
wheel drive (FR) layout, a component called “driveshaft” is needed. The driveshaft is a rotating rod that transmits the
motion to the parts that are connected to the wheels. In this project, some components of a front-engine, rear-wheel
drive automobile are modeled and the dependencies within the system are studied.

1 Introduction
“Empirical modeling refers to any kind of (computer)
modelling based on empirical observations rather than on
mathematically describable relationships of the system
modelled.”[1] The main programming language and
environment for empirical modeling is Eden, whereas the
main implementation of the Eden language is tkeden.

Programming for empirical modeling is somewhat
different than other programming paradigms like
procedural programming and object-oriented
programming. Although the use of procedural statements
is allowed in Eden, the power of Eden comes from the
ability to establish dependencies between observables.
Most real world phenomena have many inner
dependencies. So by developing a model for a real world
system with underlying dependencies preserved, it is
possible to study these phenomena by manipulating data
and observing the effects. A classical, procedural
approach to model a real world system is impractical, if
not impossible; because it would be the programmer's
responsibility to propagate the effects of any kind of input
to the system such as modifying a parameter or
inserting/removing data. Empirical modeling, on the other
hand, provides powerful tools to interact with the system
and make observations. The implementation details of
how the internal dependencies are preserved are hidden
from the programmer and the user.

2 Model
The model in this project consists of an upper view of the
drivetrain of a front-engine, rear-wheel drive automobile.
The visible parts of the system include the engine,

gearbox, driveshaft, differential, rods and wheels. The
actual model with its elements is illustrated in Figure 1.

2.1 Dependencies

Empirical modeling makes heavy use of and takes
advantage of dependencies. Dependencies in this model
can be classified into two groups: positional dependencies
and functional dependencies.

2.1.1 Positional Dependencies

Positional dependencies determine the positions
(coordinates) of the elements in the system. In a real
automobile, some parts are adjacent to others and their
relative positions are fixed, i.e. as the engine goes forward
(relative to the ground), so does the gearbox. In the
model, the coordinates of each element depends on
another element, rather than having a fixed value1.

2.1.2 Functional Dependencies

Functional dependencies determine how individual
elements interact with each other. For example, the
wheels are functionally dependent on the axles. They can
only turn when the axles turn. Similarly, the driveshaft is
functionally dependent on the gearbox, because when the
clutch (not shown in the model) disengages, the torque of
the engine cannot be transmitted to the driveshaft.
Ultimately, every item depends on the engine
functionally, because when the engine is off, no matter

1 The only exception to this is the engine, whose
coordinates are hard-coded.

1

Figure 1. Illustration of the model and its elements.

what state the other elements are in, there is no motion.
The states of the elements and the overall result (turning
of the wheels) are tabulated in Table 1.

Engine Clutch Gear Pos. Wheels

On Engaged Forward Forward

On Engaged Reverse Reverse

On Disengaged Forward No Motion

On Disengaged Reverse No Motion

Off Engaged Forward No Motion

Off Engaged Reverse No Motion

Off Disengaged Forward No Motion

Off Disengaged Reverse No Motion

Table 1. Functional dependencies among elements.

2.2 Implementation

Technologies used in the development of the project are
Eden, DoNaLD and SCOUT. Eden is the main
development tool. It is used for handling user input and
timing. DoNaLD is used for drawing the 2D objects
(automobile parts in our model) on the screen. Finally,
SCOUT is used for creating multiple views, displaying
messages on the screen and drawing buttons which can be
used to interact with the system. Of course, empirical

modeling, per se, does not rely on a graphical user
interface to realize interaction between the user and the
model. This is true for this model as well. It is always
possible (and recommended) to interact with the model by
changing the definitions (either by changing the source
code or using the command-line interface). However, the
use of a simple user interface consisting of buttons makes
interaction simpler (especially for those who are not
familiar with tkeden, Eden or empirical modeling in
general).

2.3 Evaluation

The model is based on a system of dependencies depicted
in Table 1. This means that, when the value of an
observable changes, other observables will be affected
accordingly. Thus, the model is successful in modeling (a
small subset of) a real world phenomenon, an automobile
to be precise, preserving dependencies of the working
mechanism. To make this clearer, some visual aid is used
in the model. For example, in order to make it easier to
see the functional dependency between the gearbox and
the driveshaft visually, the driveshaft is drawn
disconnected from the gearbox when the clutch is
disengaged. This state is illustrated in Figure 2. In this
state, the driveshaft is disconnected from the gearbox, so
the torque cannot be transmitted to the wheels. When the
clutch is engaged, it is drawn connected to the gearbox,
linking wheels to the engine. This state is illustrated in
Figure 3. The movement of the wheels are also depicted
by the movement of some small lines that represent tire

2

Figure 2. Driveshaft shown disconnected from the gearbox when clutch is disengaged.

Figure 3. Driveshaft shown connected to the gearbox when clutch is engaged.

treads. These small visual aids are not very sophisticated,
but they serve the purpose of making the interconnections
easier to grasp and visualize. There are two reasons for
them being simple. Firstly, they are intended to highlight
dependencies between data, so a simple depiction is
better. Secondly, drawing capacities of DoNaLD are
limited.

2.4 Release Notes

This model was developed and tested on tkeden v.1-75.
There might be backward and/or forward compatibility
issues when executed using a different version of tkeden.

3 Conclusion
This paper is intended to be a complementary resource to
the actual model described. It gives insights into the
model which was built to form an association between a
real world object and a computer model. Some
characteristics of the real world object have been reflected
onto the model and an empirical study of the model has
been presented.

References
[1] http://en.wikipedia.org/wiki/Empirical_modelling

3

	1 Introduction
	2 Model
	2.1 Dependencies
	2.1.1 Positional Dependencies
	2.1.2 Functional Dependencies

	2.2 Implementation
	2.3 Evaluation
	2.4 Release Notes

	3 Conclusion
	References

