
A Study of Empirical Modelling with Application to Historical
Information Processing Methods, Using an Example of Punch

Cards in Cadence.

0820850

January 31, 2012

Abstract

This paper will investigate how Empirical Modelling could be used as a way of teaching how information was
processed in previous generations, using historical methods and devices. Computer programming has changed
over time with the evolution of computers, and to this day, many of the old programming methods are still in
use — directly and indirectly. However, the very first mechanical and electronic computers used a very different,
hands-on approach to programming, involving much interaction with the hardware itself. Programs would be
fed into the computer using punch cards — physical cards that contained encoded information in the form of
holes. Later computers would use similar mechanisms such as punched tape, or physical manipulation of the
machine’s own switches and cables. These machines are no longer readily produced or available, and as such it
is not easy to have a practical investigation or experimentation of the methods that were used to program the very
first computers. The paper will explore the feasibility of using Empirical Modelling to provide representations
of punch cards, to teach users the basis of historical programming methods and to allow them to experiment and
learn from these models, without needing access to the hardware itself.

1 Introduction

The origin of modern-day computers may be traced
back to 1837, when Charles Babbage described a de-
sign for what became known as the Analytical En-
gine. It was intended as a successor to his Dif-
ference Engine, of which an Empirical Modelling
study was previously published [2006]. Babbage was
never able to complete construction of his Analyt-
ical Machine [Weber, 2000]. The Analytical Ma-
chine was designed such that the input would be in
the form of punch cards [Kopplin, 2002], and the
proposed method of using punch cards as input is
something that was utilised by early digital com-
puters in the twentieth century. The punch cards
were constructed such that a combination of holes
punched in pre-defined positions of the card could
be decoded by the computer and interpreted as infor-
mation [Fisk, 2005]. It was possible for machines
to mechanically produce punch cards, but this was
not always the method put into practice, often being

carried out by humans — some of the earliest pro-
grammers. Punch cards were programmed using key-
punches, which over time evolved from being a man-
ual hand-operated device, to having a typewriter-like
keyboard used to semi-automate the process [Trued-
sell, 1965]. Programming with punch cards was of-
ten comprised of two phases — the initial patterns for
the punch cards would be designed by programmers,
who would pass these patterns to the keypunch op-
erators for mass production. Punch cards defined a
programming language or structure that is very simi-
lar to today’s assembly language.

1.1 Hollerith Card

There have been various different implementations of
punch cards since their inception. One of the earli-
est formats, and the format from which subsequent
generations of cards are based, is the Hollerith card,
named after its developer Herman Hollerith. The
original Hollerith card was used for data collection

1



and processing for the 1890 US Census.

Figure 1: Original Hollerith card from 1890. (Image:
public domain.)

Later generations of punch cards were adapted for
generic processing and used a system of twelve rows
— from top to bottom: rows 12, 11, 0, 1 through 9.
For each of the columns of the punch card, punches
in the zone portion of the card (rows 12, 11, and 0)
combined with punches in the numeric portion of the
card (rows 1 through 9) would represent either an al-
phanumeric or special character [Jones].

Figure 2: Left portion of an 80-column punch card,
using the zone/numeric row system, and showing
punch codes for characters 0-9 and A-R. Rows 12
and 11 are shown but not identified. The 80-column
punch card left behind a legacy in that most character
terminals display 80 characters in one line. (Image:
public domain.)

Alpha characters from A to I are represented by
punching row 12 and one numeric row, e.g. A
is represented by punching rows 12 and 1.

Alpha characters from J to R are represented by
punching row 11 and one numeric row, e.g. J is
represented by punching rows 11 and 1.

Alpha characters from S to Z are represented by
punching row 0 and one numeric row from 2
to 9, e.g. S is represented by punching rows 0
and 2.

Numerals from 0 to 9 are represented by punching
the corresponding numeric row only, e.g. 1 is
represented by punching row 1. Note that 0 is
a special case, and is represented by punching
row 0 only.

Special characters are represented by punching
zero or one zone row and two numeric rows.
Note that the forward slash character is a spe-
cial case, and is represented by punching rows
0 and 1.

For the purposes of this study, the format of the orig-
inal 1890 Hollerith card — with 3 zone rows, 9 nu-
meric rows, and 24 columns — will be used. The
README document within the model’s files lists
how each alphanumeric or special character can be
represented on a Hollerith card.

1.2 Empirical Modelling
Empirical Modelling (EM) concentrates on the key
concepts of observation, dependency, and agency.
Russ [1997] compared these three concepts to fea-
tures of a spreadsheet — the observables being the
cells in the spreadsheet, which will be observed by
the user; the dependencies being the formulae con-
tained within the spreadsheet; and the agents being
devices that somehow initiate a change of state, for
example the user who is interacting with the spread-
sheet. These concepts come together to form the em-
pirical aspect — modelling through experimentation.

In the context of this study, an observable may be
the state of the punch card, such as whether a hole
has been punched in a certain position or not. The
dependencies decide how the various punches com-
bine together to produce an output, i.e. the charac-
ter encoded by each column of the card. In learn-
ing how punch cards operate, and how to create the
correct combinations of punches to generate the de-
sired output, the instructional approach may prove to



be slow and inefficient. Through experiential learn-
ing, the user makes interactions between their ideas
and their experiences with the model. From this ex-
perimentation, they gain a better working knowledge
of the technology.

1.3 Motivation
Although a number of punch cards and punch card
readers still exist today — and indeed are still used
by some voting machines — they are no longer in
mass production and prove difficult to obtain. As is
especially the case when the user wants to “practise”
programming punch cards, usage of existing punch
cards may be seen as a waste of a rather valuable re-
source. Educational technology is one of the prin-
ciple areas of application for Empirical Modelling
[Beynon, 1997], and so Empirical Modelling hereby
presents itself as a tool for providing the opportunity
to learn about this largely-historical technology.

1.4 Existing Tools
There exist a small number of (mainly Internet-based)
punch card tools, however it appears that the focus on
such tools is in ease-of-programming rather than user
experimentation. For example, Kloth [2003] offers
a web-based applet where users can type in the text
they wish to encode on a punch card, and the result-
ing punch card will be presented to the user in image
form. Few (if any) tools exist that allow the user to
experiment with punch cards by manually selecting
which holes should be punched to reach their desired
encoding.

1.5 Related Work
There have been several previous Empirical Mod-
elling studies relating to historical computing, includ-
ing Modelling Babbage’s Difference Engine [2006]
and An Investigation Into the Empirical Modelling of
Physical Devices, in an Educational Context, Illus-
trated with the Enigma Machine Example [2006].

The former stated that the Difference Engine is
“commonly considered to be the world’s first com-
puter”, and thus it is important for computer scientists
(and members of similar fields) to recognise and un-
derstand the basis of how it works. The study found
that whilst the model created does mimic the func-
tions of the Difference Engine, its inner operations
(what’s “inside the box”) are vastly different from the

design of the Difference Engine itself. Although this
does not pose a problem if the aim of the model is
simply to demonstrate the Difference Engine in ac-
tion, it is not ideal from an educational point of view
where the user may want to understand the mechanics
behind the engine.

The latter focussed somewhat on the construc-
tionist approach to learning — the act of learning
by making things — and how the reverse process of
disassembling the objects can also contribute to con-
structionism. The study developed a prototype of the
Enigma Machine which allowed the user to interact
with the model from a number of different perspec-
tives and to set environment variables themselves,
lending itself to the constructionist and experiential
approaches of learning.

2 Modelling

Figure 3: Overview of the model.

2.1 Cadence
This study uses Cadence, a prototype tool for Empir-
ical Modelling. DOSTE (Cadence’s interpreter) con-
trasts with EDEN in that it aims to take a snapshot of
the current environment state as a graph of intercon-
nected nodes.

During implementation and testing, it became ap-
parent that Cadence would crash and quit under cer-
tain conditions. Specifically, it appears that when
browsing the node tree within the Cadence interface,
attempting to expand a node which was subject to a
high number of if ... else ... statements, the program



would quit with a segmentation fault or runtime er-
ror, usually relating to memory. This can probably be
attributed to the fact that Cadence is still a prototype
in development, and thus is not yet fully stable. The
code for the model contains workarounds that try to
minimise the number of else statements within one
conditional, in an attempt to minimise these crashes
whilst using the node tree browser.

2.2 Aims and Assumptions
The aim was to create a realistic punch card model
that mirrors real-world behaviour as best as possi-
ble. It was therefore not in our interests to moder-
ate the user’s choice of holes to punch, for example
by “disabling” incorrect combinations in some way.
Rather, the user should have full control over what
they choose to do within realistic bounds of real life
punch cards. For instance, if the user wants to punch
a hole in every possible slot on the card then they
should be able to do this, regardless of the fact that
the user will not get any meaningful encoding out of
it. It should also be noted that in real life, users are
not constrained to punching holes in pre-defined po-
sitions, and can in fact punch holes in any location
and in any orientation. For simplicity and due to vari-
ous limitations of Cadence, it will be assumed for the
model that users can only choose to punch holes in
288 pre-defined positions.

To make the model as true to real life as possi-
ble, we need to consider that a single hole of a punch
card cannot be “unpunched” — that is to say, once a
hole has been punched, it will remain punched for-
ever. This means if a mistake is made, the only way
to rectify the error is to start again with a new card.
Thus, although it may seem inconvenient or “harsh”,
the model should have no “undo” button, or facility
to reset a single column individually.

It is assumed that the card is “read” from left-to-
right, as in real life. It is also assumed that a blank
column can be interpreted as a space, and all other
valid punch combinations make up the EBCDIC char-
acter set.

2.3 Implementation
The main item of the model is the card, represented as
a yellow box with 288 possible positions for holes to
be placed (12 rows ⇥ 24 columns). Punched holes
are shown as black boxes, and unpunched slots as
“transparent” boxes with a black border. Each of the

288 slots are clickable, but only once — as mentioned
earlier, this is a one-way process and “unpunching” a
hole is not possible without resetting the entire card.
Each of the 24 columns of the card are all treated in-
dependently, and the state of one does not affect the
state of another in any way.

As stated previously, the rows are split into two
sections — the zone portion (rows 12, 11, and 0),
and the numeric portion (rows 1 through 9). Each of
these twelve rows are given a unique weight such that,
when adding together the weights of all the punched
rows in a valid combination, a unique final weight-
ing will be generated. It is this weighting that is held
in a lookup table against all the possible characters,
to determine which character the column in question
represents. As way of an example, see the figure be-
low:

Figure 4: A punch card displaying punch combina-
tions for the string “HELLO WORLD! (20/01/12)”.

Looking at the encoding for the character “H”,
we can see that it is generated from a punch in rows
12 and 8. The weight assigned to row 12 is 13, and
the weight assigned to row 8 is 8. The unique final
weighting generated from adding the weights of these
rows together is therefore 13+8 = 21, which corre-
sponds to the character “H” in the lookup table.

An interesting special case is what occurs when
there are punches in two rows of the numeric portion
of the card, as is usually the case for special charac-
ters. Assuming that the weights assigned to rows 1
through 9 are 1 to 9, we can see that there are mul-
tiple punch combinations that may add together to
give the same final weighting. For example, a punch
in row 1 and row 8 would give a total weighting of
9, as would a punch in row 9 alone. It is clear that
this poses a problem for the lookup table of values
and characters, as different punch combinations no



longer generate unique lookup weightings. To com-
bat this, the weight we assign to an individual row
actually depends on whether there are punches in any
of the other rows. We therefore say, for example, that
the weight of row 8 is 8 if and only if none of the
other numeric rows are punched. If (say) row 2 is also
punched, then rows 2 and 8 gain a “combined” arbi-
trary weight of 280. This new weight for the numeric
portion is added to the weight for the zone portion, to
produce the final, unique weighting used to look up
the character required. The final lookup weightings
are in the range of 0 to 998, though not all weightings
within this range are assigned to a character. This
does not matter, however, as we maintain a one-to-
one weighting-to-character relationship, rather than a
many-to-one or one-to-many relationship.

It is also worth noting that incorrect punch com-
binations are assigned a weight of 999. For exam-
ple, punching row 3 and row 4 together is an invalid
combination and as such will create a numeric total
weight of 999, which will be added to the weight of
the zone portion of the card. Any final weighting of
999 or above generates an error, displayed as “Err.”
on the interface, meaning that the user has made an
incorrect punch combination for a specified column.

2.4 Limitations and Extendability
One limitation of the model in its current form is the
inability to model a sequence of punch cards to create
a continuous stream of character encodings. We can
accurately model a single punch card, but when the
card is reset to allow the user to work with a second
card, the first is lost forever. As a card in this model
can only encode 24 characters, any string longer than
24 characters cannot be represented by a single card
and thus cannot be represented by the model. This
limitation could be tackled in one of several ways.
Perhaps most simply, we can extend the length of
the card so that it contains 80 columns instead of
24 (as was the case for many later-generation punch
cards, such as the IBM card format [Pugh, 1995]),
but clearly this solution would face the same limi-
tation for strings of over 80 characters. It should
also be noted that in its current implementation, the
time the model takes to initiate does increase linearly,
dependent on the number of slots there are on the
card. A more robust solution would be the ability to
export used punch cards before starting on another,
and import them back in at a later stage where they
could be re-read with other cards to form a complete

string. This functionality is limited by Cadence’s ca-
pabilities. A viable alternative to this solution would
involve storing the 24-character string generated by
each card, which can later be read back into the model
and combined with all other strings to form a com-
plete string. Whilst the card itself would be lost, the
characters would not be, and indeed it would even
be possible to reconstruct the punch card from each
string of characters — almost the reverse process of
what this model is trying to achieve.

As an emulation of real life punch cards, the
model is realistic in that you cannot “undo” mis-
takes made in punching the card, as mentioned above.
However, as a learning tool (which is one of the main
areas of application for Empirical Modelling), it may
be useful to have such functions available to the user,
as re-punching an entire card due to one small mis-
take may be a tedious and unrewarding process. The
user’s time, for instance, may be more wisely spent
by continuing to practice on various different strings
rather than having to re-punch the same card multiple
times. A possible extension of the model may be to
implement an undo function that the user can choose
to enable only if they wish to do so.

3 Evaluation
3.1 Of Empirical Modelling
The main principles of Empirical Modelling allow
for the creation of high-level models that sufficiently
mimic real life tools and their operations. As has been
shown to be the case in this and previous studies, the
“inner workings” of the models are not always true
to the objects they are modelling. For instance, the
system of assigning weights to the zone and numeric
portions of the punch card, adding them, and finding
the corresponding character in a lookup table, is not
the method that would have been employed by punch
card readers of previous generations.

In this sense, Empirical Modelling provides a
“black box” environment, where focus to the user is
on the end product rather than the inner workings of
the model or mechanism. In the context of educa-
tional technology, such models create a very realistic
and adaptable front-end environment for the user to
interact with, but may fall down if the focus changes
to describing how things work rather than just exper-
imentation. This is not to say that designing a model
with a realistic back-end using Empirical Modelling
is impossible — in fact it is quite the opposite — but



this is restricted by the specific model in question, and
the Empirical Modelling tools used to construct it.

3.2 Of Cadence
Cadence offers an interface that allows users from
a wide range of backgrounds to create and develop
an almost infinite range of potential models. Users
of Cadence need not a detailed initial knowledge of
modelling to get started. One of the main benefits
that presented itself whilst developing in Cadence is
the ability to start with a very basic model, and itera-
tively build upon it to create the final, more complex
model. A similar benefit of the tool is how it presents
an opportunity to extend and adapt models in ways
that may be impossible, infeasible, or expensive to do
in real life. This is much in line with the experimental
aspect of Empirical Modelling.

4 Conclusions
The study has found that from a general perspective,
Empirical Modelling can thoroughly and accurately
represent dependencies between observables. In the
field of educational technology, specifically in mod-
elling mechanical devices such as the punch card,
Empirical Modelling shows itself to be an adaptable
and promising approach to computer-based mod-
elling. A small number of weaknesses with regards to
the approach have made themselves apparent during
the study, namely the potential difficulty in creating a
realistic model who’s back-end remains true to the in-
ner workings of the real life mechanism. This, how-
ever, is largely a limitation of the tools used within
Empirical Modelling, rather than a fault with the con-
cept itself. Empirical Modelling looks likely to con-
tinue to expand and gain recognition with the contin-
ued development of existing — and new — Empirical
Modelling tools.

5 Acknowledgements
The author would like to thank Meurig Beynon, for
providing what has proved to be an invaluable intro-

duction to Empirical Modelling, and to Nick Pope,
for development of the Cadence tool used in the
study.

References
W M Beynon. Empirical Modelling for Educational

Technology. Cognitive Technology. ’Humanizing
the Information Age’., pages 54–68, August 1997.

D Fisk. Programming with
Punched Cards, 2005. URL
http://www.columbia.edu/cu/computinghistory/fisk.pdf.

D W Jones. Punched Card Codes. URL
http://www.divms.uiowa.edu/ jones/cards/codes.html.

R D Kloth. Card Punch Emulator, May 2003. URL
http://www.kloth.net/services/cardpunch.php.

J Kopplin. An Illustrated History of
Computers, Part 2, 2002. URL
http://www.computersciencelab.com/ComputerHistory/HistoryPt2.htm.

E W Pugh. Building IBM: Shaping an Industry and
Its Technology. The MIT Press, March 1995.

S Russ. Empirical Modelling: The Computer as a
Modelling Medium. Computer Bulletin, pages 20–
22, April 1997.

Student No. 0200114. An Investigation Into the Em-
pirical Modelling of Physical Devices, in an Edu-
cational Context, Illustrated with the Enigma Ma-
chine Example. Technical report, University of
Warwick, 2006.

Student No. 0215594. Modelling Babbage’s Differ-
ence Engine. Technical report, University of War-
wick, 2006.

L E Truedsell. The Development of Punch Card Tab-
ulation in the Bureau of the Census 1890-1940,
page 44. US GPO, 1965.

A S Weber. Nineteeth Century Science: An Anthol-
ogy, chapter 9, page 84. Broadview Press, 2000.


