

Analysis of Bret Victor’s principle
and its application for Empirical Modelling

1264707

Abstract

Bret Victor, who gave a presentation at CUSEC 2012, described his brilliant principle of program-
ming interface. This shares a lot of similarities with current Empirical Modelling processes and he
described a lot of features that would be very useful for Empirical Modelling to have. Motivated by
this fact, this paper analyses his presentation, and suggest ways of implementing these features to
extend current Empirical Modelling tools in order to accommodate more interesting ideas.

1 Introduction

Bret Victor, an ex-Apple employee who special-
izes in designing interfaces, gave an inspirational
speech at CUSEC (The Canadian University Soft-
ware Engineering Conference) 2012 about his prin-
ciple of design in January 20121. His view on de-
signing stage shares a lot of similarities with the
modelling stage of Empirical Modelling. In particu-
lar, one of the most important similarities that they
share is the fact that changes made are reflected
immediately on the model (or the design, in Bret
Victor’s case). In this presentation, he described a
lot of techniques he implemented on the coding in-
terface he wrote. They are not only relevant, but also
very useful to accommodate this idea of immediate-
ly seeing changes in the design. This brings up a
new idea, which is to analyse his techniques and
attempt to apply them to Empirical Modelling.

Naturally there are differences between the pro-
gramming process described in Bret Victor’s
presentation and Empirical Modelling. The differ-
ences will result in a lot of the features that perhaps
cannot be done with current Empirical Modelling
tools, or may require a lot of efforts in redesigning
the tools, or simply are not relevant.

Both the differences and similarities will be ana-
lysed to give an insight of how Bret Victor’s ideas
may fit into Empirical Modelling. This will in turn
help providing insight of a possible way to improve
current Empirical Modelling tools.

2 Similarities and Differences

1 The full presentation can be accessed online on his website
http://worrydream.com/

Firstly, it is worth comparing what Bret Victor
described in his presentation with the current Empir-
ical Modelling tools, and also the philosophy of
Empirical Modelling. This will give a clearer picture
of the direction we will be heading when imple-
menting the features Bret Victor described.

2.1 Differences
In the first part of Bret Victor’s presentation, he

described the application of his techniques on a
piece of JavaScript codes. He used his tools to go
back and forth and change different parameters on
the code and saw immediate changes of the design
(Victor, 2012). This is different from the way we
change observables in current Empirical Modelling
tools. In Empirical Modelling tools like TKEDEN
or JSEDEN, an observable is changed using the
interpreter window. A line of script is added into the
window that redefines the observable giving it a
new value. This is why Empirical Modelling is said
to be using definitive scripts. This is one of the
problems we have to keep in mind, as we will see
later, when we want to implement some features that
Bret Victor described.

Another thing to keep in mind is the fact that he
described his techniques applied on a piece of pro-
cedural programming code (using JavaScript). This
is different from Empirical Modelling, which relies
on ODA (Observable, Dependency and Agent) to
construct models2. It also means that there is unpre-
dictability in models behaviours instead of being
predictable like in the design. This is largely due to

2 According to Warwick DCS website which can be accessed
online on:
http://www2.warwick.ac.uk/fac/sci/dcs/research/em/intro/principl
es/

the dependency and agent components in Empirical
Modelling: They act differently with each different
setting of the model. This affects the way we adjust
the implementation.

2.2 Similarities
First of all, programmers can already see imme-

diate changes in Empirical Modelling models after
inputting a new script to the interpreter window.
This is not something usual in procedural program-
ming, and this is something that Bret Victor actually
seeks for procedural programming design (Victor,
2012). However, as he successfully devised a meth-
od to achieve that, he also elaborated his techniques
to include many different exciting features. This is
the main motivation for analysing his work, to try to
implement new exciting features to our current Em-
pirical Modelling tools.

Secondly, his approach to design, which he de-
scribed as “nothing is hidden from the designer” is
similar to that of Empirical Modelling models mak-
ing process (Victor, 2012). In Empirical Modelling,
programmers have to be able to see the result of
each input script, in order to build up a full model. It
is reassuring that his ideas and his work are very
relevant to what we have in Empirical Modelling.

3 Features

In Bret Victor’s presentation, he described many
different features implemented to accommodate his
idea. We can break down the features one by one to
find suitable features for Empirical Modelling.

3.1 Immediate Change
The highlight of Bret Victor’s presentation is his

talk about immediate changes of the designs reflect-
ed whenever a parameter is changed. According to
him, this is very important in the creative process, as
the creators need to see the changes they made im-
mediately instead of keeping track in their heads
(Victor, 2012). This supports his principle of having
“nothing hidden” in the creative process. Using cur-
rent Empirical Modelling tools such as JSEDEN or
TKEDEN, we can already achieve this. Whenever a
script is added, whether to redefine a dependency,
modify an observable or to create new ones, the
model changes accordingly and immediately.

Bret Victor enhanced this feature further by add-
ing sliders to his design interface. The sliders allow
creators to change the parameters very quickly. The
main advantage of this method is it speeds up the
creative process tremendously. Instead of having to
guess what the value of the parameter, creators can
move the slider up or down to continuously see the

changes, then decide on what they want their de-
signs to look like. Another advantage of this en-
hancement is that it sometimes may have a second-
ary effect. As demonstrated in his presentation, Bret
Victor pointed out that creators might come across
more ideas when using such convenient tools in
their creative process, like how he came across the
idea of animation when using the slider to change
the value on his demo design. While this may not
happen every time, this is certainly a useful aspect
of this enhancement.

In Bret Victor’s tools, creators could modify the
codes directly from the source. However in Empiri-
cal Modelling Tools, there is no “source” per se, but
instead the scripts are added dynamically via the
interpreter window. Even if the script is meant to
load out a file, i.e. a “source”, the file is actually a
lot of saved scripts. One of the solutions is to rede-
sign the current tools to incorporate the display of
each parameter (Observable, Dependency, Agency)
and then make the slider work from there. In JS-
EDEN, the parameters are already displayed so the
tools can be extended from there. Another solution,
which is less invasive, may be creating an Empirical
Modelling tool to solve this problem. This tool con-
sists of multiple sliders and users can assign each
slider with each parameter by defining a dependency
between them. One problem with this approach is
that after the design of the model is finished, the
sliders will still be there unless there is some other
methods to remove them. It can be an advantage, as
it can be thought of as another approach to Empiri-
cal Modelling, but it can also be a disadvantage as it
takes up space on the display canvas. Either way it
is a much simpler way of implementing this feature
than redesigning the tools, and it will still work
across different tools as well as time change, as it is
an EM tool not as part of any particular environment
tool.

It should be noted that this feature works mostly
on redefining Observables. For Dependencies and
Agencies, they may not be numerical values. How-
ever, we can be creative about how to apply this
immediate changes, for example we may have auto-
completion for different values for users to scroll
through them instead. It may be difficult to imple-
ment but can be useful and can be considered in the
future when the development of EM tools are more
complete.

3.2 Code Mapping
Another important feature that Bret Victor im-

plemented in his interface is the ability to map code
and design directly. Creators can find out which line
of code draw the design or what the code does by

hovering on either the design or the line of code.
This helps the creators navigate through their de-
signs easily. Not only that, if a design is transferred
to another person, then this person may be able to
navigate through the design easily without having to
take much time to learn about it. According to Bret
Victor, this is a further solution to the creators not
having to keep things in their heads.

This feature is certainly very useful for Empiri-
cal Modelling tools to have. If we look at JSEDEN,
then we may be able to exploit browser’s developer
tools such as Google Chrome Developer Tools to
map lines of JavaScript code to the model. Howev-
er, there are a few problems with this. One is that
the creators will probably have to be adept at JavaS-
cript to understand how to modify it. It can be ar-
gued that because of JSEDEN hybrid approach na-
ture, the creators should have some knowledge
about JavaScript to make full use of the tool. While
this may be true, there might be some problems with
understanding the JavaScript due to most of the de-
sign is usually made up using EDEN scripts, and
some symbols may be translated differently. We
also have a problem with translating between EDEN
scripts and JavaScript to make full use of this fea-
ture. Therefore it is useful to create a tool to match
the EDEN scripts with the model instead.

However, this brings up another problem. With
current JSEDEN, the only place where EDEN
scripts are displayed is the History Window. It dis-
plays every inputs of the current model, which
means it contains redundancies, i.e. the old defini-
tions that may be overwritten by new scripts. So if
we want to somehow display the scripts to match
with the model, we have to somehow get rid of the
redundancies. On the other hand, with the current
JSEDEN implementation, we can view the current
definitions from the ODA frame. It may be more
viable to implement the mapping from this ODA
frame to the model instead, because what is really
significant in this feature is the ability to identify the
functionalities of the definitions. Therefore we can
just map the definitions to the model instead of try-
ing to extract the scripts.

There is currently no known tool for Empirical
Modelling to map the model to its definitions. This
feature is definitely useful as in larger models; it is
often difficult to match the model with its own defi-
nitions. There may be many observables with simi-
lar names, or the names may not be that obvious for
whoever is looking at the model. Having this feature
will save a lot of time in the creative process espe-
cially for larger models.

Implementation of mapping features is not an
easy task. It may require recoding the whole Empir-

ical Modelling tool to accommodate such feature. It
is a very good idea for future projects.

3.3 Other features
There are other features mentioned in the presen-

tation. Some of which may be useful for our tools,
but some might not be. To be thorough with the
analysis, they will be discussed here.

One of the major features that Bret Victor de-
scribed in his presentation was the ability to manage
time. In his presentation, he demonstrated a tool
with an example of a platform game design. The
tool helps the creators tell the “future” of the game
state by recording a number of inputs, then pause
the game and rewind. His tool then trails the chang-
es across the screen and creators can modify param-
eters and the trail will change accordingly. This fea-
ture is especially useful when designing something
that is constantly changing with time and cannot be
easily seen.

There are a few problems with incorporating this
feature into Empirical Modelling. The main goal of
the design process is to create behaviours of the
objects that the creators wanted. If this were also the
goal of Empirical Modelling, then this would be a
great addition to the current features. However, in
Empirical Modelling, the goal is not to design be-
haviours, but to understand the behaviours of the
models with given criteria (i.e. given Observables,
Dependencies and Agents). Therefore it may not
always be appropriate for such tools to be in Empir-
ical Modelling. Another problem with Empirical
Modelling is that a lot of the models also have dif-
ferent input options, to accommodate the goal of
understanding the situation that it modelled after as
well. Therefore it may not be appropriate to design
behaviours with constant inputs like we see in his
demonstration. On the other hand, it may be a useful
tool to use here and there, but with the complexity
of the tool, versus its low relevance, it may not be
worth the effort to implement such thing.

Another small feature that Bret Victor mentioned
was the ability to auto-complete the definitions. In
his presentation, he demonstrated the ability to auto-
complete a line of code, then scroll through it to see
what it does. Although this is not a major feature, it
may be a nice addition to our current tools. As men-
tioned above, it can be applied to other aspects such
as auto-completion of dependencies as well. How-
ever, it may be complex and with the current devel-
opment stage of our Empirical Modelling tools, it is
best to devote our efforts to other major features
first.

4 Conclusion

After analysing Bret Victor’s work, we can see

many features that can be applied to our current
Empirical Modelling tools. This paper has brought
up some insight of such features and ideas of possi-
ble ways to implement them. This may be an im-
portant step of extending Empirical Modelling tools,
and it may change the directions that Empirical
Modelling tools are heading.

5 Future Work
In the future, the feasibility and small details

should be considered. The implementation can be
carried out in JS-EDEN, as its hybrid approach re-
sults in a lot of flexibilities. However, it is appropri-
ate that in the future if there are other EM tools de-
veloped and written in other languages, these fea-
tures should be kept in mind to enrich their inter-
face.

Acknowledgements
Acknowledgement should go to Bret Victor himself,
for providing us with such an inspirational presenta-
tion that can be seen on video on his website. I
would also like to thank professor Meurig Beynon
for providing me with directions for this paper.

References
Victor, B. 2012. The Canadian University Software

Engineering Conference. Inventing on Princi-
ples. January 20. [keynote]

