STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH "1

STRATEGIC DECISION SUPPORT SYSTEMS:
AN EXPERIENCE-BASED APPROACH

SUWANNA RASMEQUAN CHRIS ROE STEVE RUSS

{suwanna,croe,sbr}@dcs.warwick.ac.uk

Department of Computer Science, University of Warwick, Coventry CV4 74AL, UK

Abstract

The paper describes the application of a novel, experi-
ence-based approach to modelling, known as Empirical
Modelling (EM), to the challenging task of building effec-
tive strategic decision support systems (SDSS). As a case
study a restaurant management model is described which
illustrates how EM can be applied to issues which are
characteristic of SDSS such as imprecise problems, the
need for end-user development and ‘negotiation model-
ling’. The three concepts of observable, dependency and
agency are fundamental to EM. They lead to a distinctive
approach to computers as instruments capable of embody-
ing our knowledge of a domain and giving us experiential
feedback from models which can be directly compared
with the results of interaction with the world. This is the
basis for claiming that EM offers a new quality of human-
computer interaction which in turn allows for a much
enhanced openness and flexibility in systems such as
SDSS where the collaboration of human and computer-
based processes is crucial.

Keywords: Decision support systems, human-computer
interaction, modelling, experience

1.0 INTRODUCTION

Computer-based systems to support decision making
abound in elaborate functionality but they are often diffi-
cult to use effectively, and are therefore often not used. In
this paper we address this problem indirectly by first
describing an unconventional approach to modelling being
developed with some success at the University of War-
wick. Previous work has often focussed on areas rich in
interaction (design, games, graphics etc). But it is becom-
ing clear that it is the quality of interaction itself, that is
promoted by our approach, that is very significant and ren-
ders our approach promising for applications which
depend on the close integration of human and computer
processes. We introduce here briefly the methods to be
used and the target application.

What is Empirical Modelling about ?
All programming is, in some sense, modelling. The

data and algorithms of a program represent entities of
some kind, whether abstract or concrete, and ways of
processing those entities. But the converse is not true.
Much modelling — for example, mathematical or physical
modelling — does not amount to programming in any con-
ventional sense. When an engineer uses a wind tunnel, or a
motorist consults a road map, they are appealing to the
reliability of the model to inform their expectations about
future interactions with the world. Such expectations
point to the familiar mental, or cognitive, modelling that is
characteristic of human consciousness and again this inter-
nal, personal model-making seems far removed from pro-
gramming. The approach to modelling described in this
paper is unusual in being close to human, mental model-
ling and yet being computer-based. It is more primitive
than conventional programming but in principle can be
used to extract conventional ‘programmed’ systems from
our models once they are validated from our experience as
reliable and satisfying some requirement. The approach is
based on the concepts of observable, dependency and
agency, but instead of referring by these terms to public,
objective entities these notions are regarded initially from
the modeller's own perspective and interpretation. The
view of the domain being modelled is therefore personal,
subjective and provisional. The process of model develop-
ment depends upon comparison of the model observables
with the real-world observables, through extensive interac-
tions with the model and with the world. It is this emphasis
on observation and experiment that gave rise to the name
‘Empirical Modelling’ (EM) for this style of using the
computer. It has broadened into a wider understanding of
computation. A ‘computer’ in EM's sense refers to any
reliable, interpretable, state-changing device. With this
meaning in mind, EM takes the context in which a compu-
ter is operating to have an equal significance to the compu-
ter itself. ‘Programming’ in EM's sense is broadened to
include not only algorithms and data but also the configu-
ration of the system of users, devices and processors. EM
is a novel approach to computation that has been devel-
oped by Dr Meurig Beynon and his collaborators at the
University of Warwick, UK [1] since 1983. The principles
of EM have philosophical roots that have much in com-
mon with the work of William James [2].

The EM approach offers a distinct concept in model-
ling. With a traditional approach, the modeller has to pre-
conceive what are going to be the inputs and outputs
before starting the construction of the model in order to




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH -2

prescribe the processes or behaviour required. That is, the
boundary of the proposed system must be determined in
advance. If there is a need for a new input or output, e.g.
an additional system feature is required, then the whole
system may have to be revised and re-designed at substan-
tial cost. With the use of EM, any new observable or prop-
erty of the model can be added in at any point during the
modelling process through re-definition without the need
to revise, or even re-start, the whole process. Part of the
reason for this flexibility is that in EM we are focussing
initially on the state of a model or domain, rather than on
the behaviours we wish to produce. Changes of state are
regarded as resulting either from ‘law-like’ causes integral
to the domain (e.g. ‘whenever I move my shadow moves’;
‘I*ve won the game because I have three X’s in a row’), or
from the actions of some agent (e.g. ‘I decide to move
now’; ‘she puts an X in that square’). In the former case,
the relationship is described as a dependency and is
expressed in a definition which, like a spreadsheet for-
mula, is updated automatically by the modelling tools that
we have developed. In the latter case we must identify an
agent with associated observables (state) and privileges
for actions to change state by re-definitions.

During the course of model development it is likely
that new observables, dependencies and agents will arise
apart from those initially expected. These new percep-
tions are the product of experimentation with the model
and give insights to the user, or they may introduce the
user to a new view or idea of the situation or problem
being considered. In this way the process of model build-
ing proceeds in tandem with the enrichment of the user’s
own conceptual model of the domain. The scripts we build
may contain explicit propositional knowledge but the rich
interaction possible with the artefact represented by such a
script offers the engaged user experiential and tacit knowl-
edge of the domain.

We have envisaged the potential need for ‘negotiation
modelling’ where many people may interact with a model
and with each other. There is now a distributed version of
our main modelling tool that allows for various modes of
communication between users. Using this tool we have
successfully modelled the collaboration between train
drivers and signalmen in the context of an historic railway
accident [3]. This could support the widespread practice
these days of the collaboration of different staff in an
organisation from different parts of the world; this is con-
sidered to give a major competitive advantage to the firm.
The combination of conceptual and computer-based mod-
elling that our methods offer would make such collabora-
tions even more advantageous.

What are Decision Support Systems about ?

Decision making is a central part of business practice
at every level of management. In a classic text by Simon
[4] the three phases of decision making are identified as
intelligence, design and choice. He points out that these
are closely related to the phases of problem solving
described by the philosopher John Dewey: What is the

problem? What are the alternatives? Which is best? In nei-
ther case are the phases necessarily distinct, and a decision
support system (DSS), from the earliest work on such sys-
tems in the late 1960s, sought to address all three phases.
The very term decision support system emphasises the col-
laboration expected between human and computer pro-
cesses. An early pioneer of DSS, Scott-Morton, writes that
the DSS approach calls for a strategy ‘for meshing the
analytic power and data processing capabilities of the
computer with the manager's problem-solving processes
and needs’ [5]. A more recent definition of DSS has a
similarly wide scope and assumes human involvement and
integration:

‘Decision Support Systems are computer-based sys-
tems that bring together information from a variety of
sources, assist in the organisation and analysis of informa-
tion, and facilitate the evaluation of assumptions underly-
ing the use of specific models.” [6]

A DSS is thus a system in which the human user plays
an essential, interactive role.

Sutherland [7] classifies three levels of decision mak-
ing: strategic, tactical and operational. The strategic level
has to do with formulating and choosing among alterna-
tives that are different in kind (‘qualitatively disparate’).
This makes the integration of the human and computer-
based processes, and the qualitative nature, of an EM
approach particularly suited to a strategic decision support
system.

Strategic decision support systems (SDSS) present
three additional challenges of their own:

(i) strategic problems are typically imprecisely described
and qualitative;

(i) strategic decisions are likely to be taken by the most
senior managers and so ease of use, or the possibility of
end-user development, is highly desirable;

(iii) strategic decisions are likely to be shared among man-
agers and so require a distributed system (i.e. a group
DSS).

In addition, according to [5], ‘A DSS is more a serv-
ice than a product. Since the problem can only partially be
structured and since managers grow in their understanding
and needs over time, a DSS must constantly grow and
evolve as the user adapts and learns.” Models built in an
EM environment are well-suited to having this quality of
continuous adaptation. The remaining sections give further
details to support our proposal that the EM approach offers
a promising new direction for the development of SDSS.




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH 3

2.0 A RESTAURANT MANAGEMENT
MODEL

Empirical Modelling is a collection of principles,
tools and techniques for an alternative approach to system
development. EM offers an unusual environment where
the way in which a system is developed begins with a very
open-ended analysis of a domain. This involves building
an artefact that enables a high degree of interaction and the
visualisation of many features of the domain thought
likely to be of interest to the modeller or a potential user.
During extensive experimentation the artefact may be
refined, and certain behaviours circumscribed and auto-
mated, to optimise the usefulness of the resulting ‘system’.
Typically, there will be many ways in which human users
may continue to intervene and modify the system to adapt
to unforeseen, changing requirements. The way in which
the initial artefact is developed follows closely the way in
which people naturally make sense of their surroundings
and applications. We suggest that the ideas of observable,
dependency and agency are, in some form, fundamental to
all such ‘sense making’ activities.

By way of illustration we sketch here the development
and features of a model relating to restaurant management.
The example was prompted by the first-hand experience of
the first author in a particular restaurant. It is not intended
to support full strategic decision making for restaurant
managers (whether to open new branches, change cuisine
offered, etc). The purpose here is only to indicate briefly
how EM methods support the properties required of a
SDSS, namely the capacity to cope with imprecise, quali-
tative problems, to be amenable to end-user development
and to offer distributed access to several users.

An important daily decision making activity for the
restaurant manager, which we focus upon here, is the pre-

liminary allocation of bookings to tables, followed by the
real-time adaptation of this allocation in response to cus-
tomer preferences, telephoned booking requests and can-
cellations, and walk-in arrivals. Relevant observables
clearly include the number of bookings for a particular
evening, number of people for the booking, time of book-
ing, customer preferences for seating (window seat, pri-
vacy alcove etc), profile of occupancy, experience of
previous similar evenings. There is a dynamic timetabling
problem here in which both the requirements and the
resources are changing over time. There are numerous
dependencies involved which become even more compli-
cated if tables may be joined together in some circum-
stances to accommodate larger groups. Customers (and
staff) will be acting as agents in unpredictable and unfore-
seeable ways.

There is a decision making model in the manager’s
mind which more or less consciously determines the deci-
sions on table allocation. This model has four main com-
ponents: the level of income (correlating approximately
with maximising occupancy over an evening), the level of
customer satisfaction, depending on such factors as quality
of food, service and atmosphere, in relation to cost, the
level of staff morale and performance, and the past experi-
ence of the manager in successfully balancing the optimis-
ation of these levels. The aim of the EM model described
here is to complement and support the manager’s own con-
ceptual modelling.

The model developed shows a simple visualisation of
the layout of the restaurant with a number of different-
sized tables (see Figure 1). Below the table layout is a
schedule showing the booking information for the restau-
rant for a particular evening. Each slot is labelled with a
customer name. To the right are forms that can be edited to
simulate customers booking or cancelling a table. These

FIGURE 1. Interface to the Restaurant Management Model




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH -4

can be entered manually and the resultant changes will be
effected on the schedule. In the top right-hand comer is a
clock so that the simulation can be animated. When it is
turned on the events of the evening progress with a bar
moving across the schedule to show the current time. Each
time a customer enters the restaurant their slot highlights
on the schedule and their group is highlighted arriving at
their table. When they leave the restaurant, their slot
returns to normal and the highlight dims from their table.
The data from their visit, including arrival time, length of
stay and amount of money spent can be recorded for later
use. At random times in the simulation customers may
enter the restaurant, or telephone for a booking or cancel-
lation. The frequencies of such events can be altered to
create busy or quiet evenings as required. When an
enquiry is received the user can allocate a table for the cus-
tomer, reject them, or let the computer choose an appropri-
ate table, using a re-definable algorithm.

We now consider in the following paragraphs the
extent to which the model displays the desirable properties
for SDSS of dealing with imprecise, qualitative problems,
being suitable for end-user development and supporting
several users as stakeholders in decision making.

The raw data for an evening’s bookings are quantita-
tive. But the manager is likely to use the data to imagine
some scenarios when there are quiet times, and times
when there is likely to be congestion. The visualisation
offered, though crude, supports such an overview of the
occupancy pattern since the changes over (say) five hours
can be surveyed in animated fashion over (say) twenty sec-
onds. While each booking has only numerical data the
overall profile of occupancy and movement takes on a
qualitative aspect which is reliably maintained in such a
computer model and supports human imagination. In par-
ticular, the flexibility of the visualisation allows for rapid
interaction and experimentation with different allocations
of tables. (Many parameters are defined by dependencies,
so if major features are altered, such as the length of the
working evening, length of booking slot etc, the integrity
of the display is maintained.) It may be necessary to make
many allocations, and booking decisions, ‘on the fly’.
Where there are larger groups concerned and a variety of
ways tables may be joined to accommodate them, the
model may give the manager support in exploring the
combinatorial possibilities and in reducing ‘wasted time’
between bookings at a particular table, while optimising
occupancy by maintaining flexible availability for differ-
ent group sizes.

Our modelling tools are still basically research tools —
they illustrate our principles but do not have the robustness
and consistency required for a commercial product. None-
theless the potential for end-user development is sug-
gested, (a) by the fact that this model was constructed (by
the second author) in only a matter of days, (b) by its unu-
sual open-endedness, and (c) the close engagement
required from the user in development, and the principles
themselves, make for a high degree of comprehensibility.
We have developed here only the dynamic timetabling
aspect of managing bookings. Even in this area, we would

expect to be able to deal with unforeseen issues ~ such as
addition of new tables, some tables going out of use, areas
of the restaurant being unusable due to re-decoration,
introducing e-mail bookings, etc — by relatively simple re-
definitions. There are many additional aspects of restau-
rant management — management of staffing rotas and pay-
roll, menus, suppliers, marketing etc — that we believe
could be developed with EM tools, in principle though not
yet in practice, by a manager.

The problems for end-users of integrating programs
which perform specific functions (e.g. a statistical package
and word-processor) are well known. Our experience so
far suggests it is relatively easy in our framework to inte-
grate models built for quite different purposes as and when
the need arises. A few weeks prior to building the restau-
rant model a tool for the dynamic visualisation of data
sets in very flexible ways was built by the second author.
(See Figure 2. The tool is modelled on Attribute Explorer
developed by IBM UK after an idea due to Prof. Bob
Spence of Imperial College, London.) It allows a user to
enter a data set (say, restaurant customers in the last six
months) and display different fields (say, amount spent,
length of stay, arrival time and number in group) in sepa-
rate windows. The distribution of each field is represented
as a bar graph composed of blocks each corresponding to a
data item. The tool allows the user to set constraints on
one or more fields and those items satisfying all the con-
straints are highlighted. We can interactively edit the con-
straints through the use of scrollbars. The speed of
feedback during interaction offers a qualitative sense of
the (possible) relationships between the quantitative data.
The manager could explore whether a group twice the size
of another usually spends twice as much. Do groups arriv-
ing earlier in the evening stay longer, and spend more?
Does this depend on the group size? Such issues may be
part of the folklore of experienced managers. Using relia-
ble data with these rapid visualisation techniques may give
rise to suggested correlations that could then be checked
using statistical packages. There are innumerable possibil-
ities for exploring data in this way. The point here is that
we cannot foresee the tools a manager might find helpful.
EM offers an environment where it is reasonable to expect
that any useful components from one model can be inte-
grated with another model. That is a major benefit for end-
user development.

The first requirement for any corporate strategic deci-
sion making is a thorough understanding of the present
performance and the strengths and weaknesses of the cur-
rent business processes. We believe a good way of achiev-
ing that, and allowing discrepancies and conflicts in
viewpoint to emerge, is to build as faithful a model of cur-
rent practice as possible. In such a model the different
human agents should retain their identity and partake in
their normal human role as an agent within a distributed
computing environment. This way we preserve their
insight into what actions and judgements they make, while
avoiding the immense difficulties of 'automating' people.
We have had some experience of modelling co-operative
work in the context of developing requirements for a ware-
house management system [8], where most of the human




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH 5

agents retained their human role in the model. We have
also experimented with a classroom model [9] where the
user was a teacher exploring effective scenarios for prais-
ing and punishing (automated) pupils with certain crudely
modelled characteristics. We have not extended the restau-
rant model in this way yet but can envisage doing so witha
view to better mutual understanding of current processes.
Among the uses of such a model might be exploration of
different protocols for the allocation of waiting staff to
tables, for the taking of orders and making of bills etc, and
the training of staff and managers.

FIGURE 2. EM version of Attribute Explorer

We have outlined here the development of part of a
simulation model for restaurant management, namely that
part concerned with bookings and their allocation to
tables. We emphasise it is the nature of the development
process that matters, not any details of functionality in the
product so far. This process is fundamentally different
from the process of writing a conventional piece of soft-
ware, due to the quality and role of interaction with the
model and the cumulative accrual of experience gained
through refinement of it.

A good analogy might be to compare the EM
approach to modelling to that of a crafts-person working
with a physical medium. The work is very open-ended,
engaging and enjoyable, guided by the medium itself, the
worker's own vision and the application in mind. Many
conventional approaches have more of the pre-conceived
quality of a production line item in a factory. The produc-
tion process is tightly regulated and human involvement is
limited. Unexpected behaviour is likely to cause expensive

crashes and there is no scope to take advantage of unfore-
seen opportunities.

3.0 THE EM APPROACH IN PRACTICE

The way in which a model is constructed in the EM
approach depends on construing a phenomenon through
three basic perceptions: observables, dependencies and
agents. These perceptions are based upon the modeller's
observation and interpretation of the domain or, in other
words, the modeller's personal experience of the domain.
The initial account of a domain identifying what seem to
be the relevant agents and observations is organised and
expressed in a systematic but informal notation called
LSD. This LSD account represents an initial analysis and
understanding of the domain, it is revised and elaborated
during the model development but it remains a textual
record and guide to aid comprehension and construction.

It is not essential to give an LSD account of the
domain to be modelled (it was not given explicitly in the
restaurant model) but the observables and dependencies
that belong to such an account are basic ingredients in the
scripts of definitions that are interpreted by our main mod-
elling tool. Each definition is either a value definition or a
formula definition and these work as they do in a spread-
sheet. So

x is y-2z; y=12; z=5,

is a fragment of a definitive script in which the definition
for x represents a dependency automatically maintained by
the interpreter. At present x will have value 2, but this will
change as y or z change. We think of the values of y and z,
and the dependency of x on them, as the observed state
from the point of view of the modeller, not simply as a set
of three abstract values. Thus the ‘observable’ that Jason is
a potential_project_leader may depend on all, or many, of
a number of criteria being satisfied in the opinion of his
manager. Such a dependency could become part of a defin-
itive script concerning Jason. Changes of state occur in the
model only through re-definitions or the addition of new
definitions. Of course, a single re-definition may trigger
the automatic updating of many other variables in a large
script. Groups of re-definitions may be bundled together as
an action of an agent, usually with some real-world
semantics (such as the re-drawing and re-printing of the
organisation charts after Jason is made project leader). The
representation of the dependencies (on the right hand sides
of definitions) is handled in our work by user-defined
functions using a C-like language. These three language
features — definitions with dependency maintenance, user-
defined functions, and actions — are provided in a notation
Eden and its associated interpreter together with a Tcl
interface. Other definitive notations, for example, Donald
for line drawing and Scout for window management, have
been developed on top of Eden. There are some newer
notations being developed based on Java but all these are
purely research tools, sufficient to explore the principles of
EM but far from having the robustness and efficiency
required for large-scale applications.




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH 6

Thus a typical step in model construction is compos-
ing a user-defined function f and introducing a definition
of the form x = f{a,b,c) into an existing script of defini-
tions. From the modeller’s point of view this is recording a
dependency between the observables x, a, b and ¢. From
our computing point of view it is like adding a new defini-
tion into a spreadsheet which has a visualisation attached
to its cells. Because of the ease of revision of scripts and
interaction with our models it is appropriate to be more
relaxed about the planning and development of a script
compared with the writing of a conventional program. In
general, the order of definitions does not matter (though
the order of re-definitions will usually matter a great deal).
Throughout the construction the effects of certain interac-
tions will show the need for new observables and reveal
the need for, or refinement of, dependencies. This experi-
mental, interactive development is depicted in Figure 3.

domain

Knowledge
t leunix:\
& .
%expenence

amlisis new
% knowledge

design

. . leaming &
interaction A
& } experience

automated or computerised system

FIGURE 3. EM as a platform for developing DSS
prototype

The Eden tool now has a distributed version that
allows several participants in a development to interact
with each other. Using a network the interaction of one
participant can be sent to other participants’ models and
consequently affect their individual insights. All the mod-
els of participants can be connected together in such an
environment (in a variety of controlled communication
modes) thus making a powerful collaborative forum for
the sharing of understanding and gaining of consensus.

While most of our research effort has gone into devel-
oping models in a very open-ended and exploratory fash-
ion we recognise the need, in order to derive useful
systems, for appropriate circumscription of our models
once a desired functionality can be relied upon. We regard
such systems as being derivable from our models in many
ways. What is common to such derivations is that the
boundary of the eventual system is not pre-conceived, but
rather grows with the developing understanding of the
modeller — both understanding of the domain and the
requirements for the system. In a conventional system

development the boundary must be planned in advance of
development work, and the influence between developer
and system is largely one-way: the functionality is planned
and imposed on the artefact produced. In EM the influ-
ences between modeller and artefact are two-way, the
modeller expects to gain new insights from the developing
model and these will affect future development. The dia-
grams in Figures 4 and 5 illustrate this idea.

There are many technical resources (such as the Eden
Handbook) and further details of the notations and numer-
ous models available from our website. [1]

FIGURE §. Conventional System Development

4.0 THE EM APPROACH FOR BUSINESS
MODELLING

In section 2.0 above we have described a simple
model which shows the potential of our tools for applica-
tion to business modelling. Here we emphasise that the
methods of EM arise from a real shift in perspective on the
computer, not simply from additional ingenious tech-
niques to add new functionality. We describe how EM
generalises the spreadsheet principle and how this general-
isation points to a view of the computer as an instrument
or artefact by which we can render our understanding of a
domain in an experiential fashion. We argue that this leads
to an unusual quality of interaction that is well suited to
business modelling and DSS.

The spreadsheet has been one of the primary business
tools for decision support. EM generalises spreadsheets in
a way that has significant practical implications. Spread-




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH 7

sheets have typically been applied to structured problems
where experimental interaction is constrained to ‘what if?’
scenarios whose nature is largely pre-conceived. The
development of EM artefacts is, in contrast, a more open-
ended exploratory activity. This section explains how this
generalisation can address the ill-structured problems that
arise in business. It can also be interpreted as a paradigm
shift from a mode of closed-world modelling in the scien-
tific tradition, to a style of modelling better suited to the
demand of soft computing and social science.

An EM model is more general than a spreadsheet in
the following three major respects: presentation, underly-
ing algebra and agency.

The presentation of an EM model is more elaborate in
that the model can be presented using pictures, graphs and
sound in whatever way best suits the application. For
example, in the Vehicle Cruise Control Simulation
(VCCS) depicted in [10], simple line drawings are used to
represent how the positions of the accelerator and brake
affect the speed of the vehicle. The core dependencies
amongst the key observables (such as determine the rela-
tionship between the acceleration, speed and position of
the vehicle) could easily be maintained in a spreadsheet.
But, whereas the data presentation in a spreadsheet is con-
fined to values, labels and formulae in the grid cells in the
tabular interface, the drawing of the speedometer within
the VCCS illustrates a more general kind of representa-
tion. Such pictorial presentation may be found more
understandable by the user. For example, the state of the
economy might be better represented to a child by a sad, or
smiling, face than by a balance of payments chart.

The data types and operators that underlie the spread-
sheet (its ‘underlying algebra’) are typically very simple in
character. The underlying algebras of EM extend simple
scalars and character strings by including recursive lists,
and representations for 2-d and 3-d geometry and screen
layout. This gives scope for much richer forms of depend-
ency to suit the modeller’s applications. For instance, the
attributes of a window such as size, location and colour
can be dependent on their content, and this content can be
dynamically linked to geometric and textual data that is
turn determined by other dependency relations.

The concept of agency in EM enables dependency
relationships to be manipulated concurrently by several
agents, both human and automated. In contrast, the user of
a spreadsheet is typically the only agent that can change
the data or formulae. Several existing EM models resem-
ble distributed spreadsheets where different people work-
ing on different workstations can activate and change the
components of the model. This could supply a suitable
platform for Group Decision Support Systems.

Commercial software applications include substantial
extensions to the simple spreadsheet concept. Such addi-
tional functionality as sophisticated graphical output, sta-
tistical tools, optimising tools and ‘live feeds’ to cells in
the spreadsheet are now customary. But such extensions
do not affect the underlying outlook of ‘batch processing’,

i.e. pre-conceived input/output patterns. The key signifi-
cant idea in spreadsheets — state change through depend-
ency and agency — has not really been taken up seriously
in conventional software, although there are signs that is
affecting interface design. The EM approach does aspire to
make this view of state change central and one conse-
quence is to take the physicality of computers seriously.
The computer is both a powerful mathematical machine
and at the same time it is able, through its various periph-
eral devices, to embody and give experiential form to our
models. A visual and auditory representation of flowing
lava, for example, will make more immediate sense to a
user trying to understand the behaviour of a volcano than
will the numerical data generated from a set of mathemati-
cal equations, essential of these are for other purposes.
While giving this sort of experience of the real-world is a
feature of the physicality of the computer it is easily mis-
understood. Its value in the modelling context is not so
much for the entertainment, as for the engagement, of the
user: it is to prompt the user into systematic, purposeful
interactions with the model to compare the behaviour with
the real-world domain and further their understanding and
the faithfulness of the model.

The physicality and performance of modemn comput-
ers, coupled with this sense of engagement by the user,
allows for a quite new quality of interaction between user
and computer. It is open-ended in the sense that the expe-
rience of the model may agree with, or contradict, the
user’s expectations in very detailed and subtle ways. It is
like a learning process or a conversation, calling for con-
tinuous engagement, rather than the detachment with
intermittent attention of conventional computer interac-
tion. It is holistic in supporting and requiring a combina-
tion of graphics, visual effects, text, mathematical
abstractions and dynamic interaction and in this way it
matches human cognitive processes closely.

This quality of interaction, which is promoted and
supported in the EM approach we have been describing, is
particularly significant for dealing with areas, such as
business modelling, where there is little known theory and
where human agency plays a major role. What we said
above about the enhanced functionality of spreadsheets
also applies to DSS. As described in [11] a2 modern DSS
comprises numerous components and elaborate function-
ality. But while the architecture for interaction is domi-
nated by the batch-mode mentality the real difficulties in
interaction cannot be addressed. The quotations in section
1.0 on DSS point to the fundamental need for better inte-
gration of human and computer processes. It is because we
believe that EM represents an approach to computing that
makes for a new kind of human-computer integration that
we suggest it here as a promising framework for a new
approach to DSS development. The conversational and
cognitive qualities of interaction in EM make it particu-
larly appropriate for addressing the properties detailed in
section 1.0 concerning SDSS.




STRATEGIC DECISION SUPPORT SYSTEMS: AN EXPERIENCE-BASED APPROACH '8

5.0 CONCLUSION

The EM approach which we bave described here is
broad and far-reaching in its scope. It seems to have con-
siderable potential in the area of business applications,
particularly for ill-structured problems where human inter-
vention and opportunism will clearly add value compared
with any conceivable fully automated system. Other active
areas of application and research showing encouraging
results are business process re-engineering, requirements
engineering, financial modelling, timetabling, and various
topics in the field of education. The potential for use of our
tools and methods in distributed mode is huge, but the
major limitation at present lies in the tools themselves.
They are in need of overhaul and development in many
ways but we have very limited resources for this work.

Acknowledgement : The authors are pleased to acknowl-
edge the inspiration, insight, encouragement and wise
advice received from Meurig Beynon at all stages of prep-
aration of this paper.

6.0 REFERENCES
[1] http://www.dcs.warwick.ac.uk/modelling

(2] W. James, Essays in Radical Empiricism (London:
Longmans, Green & Co, 1912)

(3] PH. Sun, Distributed Empirical Modelling and its
Application to Software System Development, Ph. D. The-
sis, Department of Computer Science, University of War-
wick, UK, 1999

[4] H.A. Simon, The New Science of Management Deci-
sion (NewYork: Harper & Row, 1960)

[5] P.G.W. Keen and M.S.S. Morton, Decision Support
Systems: An Organizational Perspective (Reading: Addi-
son-Wesley, 1978)

[6] V. L. Sauter, Decision Support Systems: An Applied
Managerial Approach (NewYork: John Wiley & Sons,
1997)

(7] J.W. Sutherland, Towards a Strategic Management and
Decision Technology (Dordrecht: Kluwer, 1989)

[8] PH. Sun, Y.C. Chen, S.B. Russ, W.M. Beynon, Culti-
vating Requirements in a Situated Requirements Engineer-
ing Process, Research Report 357, Department of
Computer Science, University of Warwick, UK, 1999

[9] E.L. Davis, Modelling Human Interaction, Project
Report, May 1996, Department of Computer Science, Uni-
versity of Warwick, UK

[10] W.M. Beynon, S.B. Russ, Empirical Modelling for
Requirements, Research Report 277, Department of Com-
puter Science, University of Warwick, UK, 1995

[11] M.R. Klein, L.B. Methlie, Knowledge-based Deci-
sion Support Systems (2nd edition) (Chichester: John
Wiley & Sons, 1995)




