
1 of 2

From Fred Brooks's The Mythical Man-Month:

Conceptual Integrity

"... Conceptual integrity is the most important consideration in system design. ... The dilemma is a cruel one. For 

efficiency and conceptual integrity, one prefers a few good minds doing design and construction. Yet for large 

systems one wants a way to bring considerable manpower to bear, so that the product can make a timely 

appearance. How can these two needs be reconciled?"

... and as paraphrased by Wikipedia:

To make a user-friendly system, the system must have conceptual integrity, which can only be achieved by 

separating architecture from implementation. A single chief architect (or a small number of architects), acting on 

the user's behalf, decides what goes in the system and what stays out. A "super cool" idea by someone may not be 

included if it does not fit seamlessly with the overall system design. In fact, to ensure a user-friendly system, a 

system may deliberately provide fewer features than it is capable of. The point is that if a system is too complicated 

to use, then many of its features will go unused because no one has the time to learn how to use them.

An extract from Fred Brooks's No Silver Bullet 

... with a reference to conceptual integrity in relation to the complexity of software systems:

Let us consider the inherent properties of this irreducible essence of modern software systems: complexity,

conformity, changeability, and invisibility.

Complexity. Software entities are more complex for their size than perhaps any other human construct because no

two parts are alike (at least above the statement level). If they are, we make the two similar parts into a

subroutine--open or closed. In this respect, software systems differ profoundly from computers, buildings, or

automobiles, where repeated elements abound.

Digital computers are themselves more complex than most things people build: They have very large numbers of

states. This makes conceiving, describing, and testing them hard. Software systems have orders-of-magnitude more

states than computers do.

Likewise, a scaling-up of a software entity is not merely a repetition of the same elements in larger sizes, it is

necessarily an increase in the number of different elements. In most cases, the elements interact with each other in

some nonlinear fashion, and the complexity of the whole increases much more than linearly.

The complexity of software is an essential property, not an accidental one. Hence, descriptions of a software entity

that abstract away its complexity often abstract away its essence. For three centuries, mathematics and the physical

sciences made great strides by constructing simplified models of complex phenomena, deriving properties from the

models, and verifying those properties by experiment. This paradigm worked because the complexities ignored in

the models were not the essential properties of the phenomena. It does not work when the complexities are the

essence.

Many of the classic problems of developing software products derive from this essential complexity and its

nonlinear increases with size. From the complexity comes the difficulty of communication among team members,

which leads to product flaws, cost overruns, schedule delays. From the complexity comes the difficulty of

enumerating, much less understanding, all the possible states of the program, and from that comes the unreliability.

From complexity of function comes the difficulty of invoking function, which makes programs hard to use. From

complexity of structure comes the difficulty of extending programs to new functions without creating side effects.

From complexity of structure come the unvisualized states that constitute security trapdoors.

Not only technical problems, but management problems as well come from the complexity. It makes overview hard,

thus impeding conceptual integrity. It makes it hard to find and control all the loose ends. It creates the tremendous

learning and understanding burden that makes personnel turnover a disaster.

Conformity. Software people are not alone in facing complexity. Physics deals with terribly complex objects even

at the "fundamental" particle level. The physicist labors on, however, in a firm faith that there are unifying



2 of 2

principles to be found, whether in quarks or in unifiedfield theories. Einstein argued that there must be simplified

explanations of nature, because God is not capricious or arbitrary.

No such faith comforts the software engineer. Much of the complexity that he must master is arbitrary complexity,

forced without rhyme or reason by the many human institutions and systems to which his interfaces must conform.

These differ from interface to interface, and from time to time, not because of necessity but only because they were

designed by different people, rather than by God.

In many cases, the software must conform because it is the most recent arrival on the scene. In others, it must

conform because it is perceived as the most conformable. But in all cases, much complexity comes from

conformation to other interfaces; this complexity cannot be simplified out by any redesign of the software alone.

Changeability. The software entity is constantly subject to pressures for change. Of course, so are buildings, cars,

computers. But manufactured things are infrequently changed after manufacture; they are superseded by later

models, or essential changes are incorporated into later-serial-number copies of the same basic design. Call-backs of

automobiles are really quite infrequent; field changes of computers somewhat less so. Both are much less frequent

than modifications to fielded software.

In part, this is so because the software of a system embodies its function, and the function is the part that most feels

the pressures of change. In part it is because software can be changed more easily--it is pure thought-stuff, infinitely

malleable. Buildings do in fact get changed, but the high costs of change, understood by all, serve to dampen the

whims of the changers.

All successful software gets changed. Two processes are at work. First, as a software product is found to be useful,

people try it in new cases at the edge of or beyond the original domain. The pressures for extended function come

chiefly from users who like the basic function and invent new uses for it.

Second, successful software survives beyond the normal life of the machine vehicle for which it is first written. If

not new computers, then at least new disks, new displays, new printers come along; and the software must be

conformed to its new vehicles of opportunity.

In short, the software product is embedded in a cultural matrix of applications, users, laws, and machine vehicles.

These all change continually, and their changes inexorably force change upon the software product.

Invisibility. Software is invisible and unvisualizable. Geometric abstractions are powerful tools. The floor plan of a

building helps both architect and client evaluate spaces, traffic flows, views. Contradictions and omissions become

obvious. Scale drawings of mechanical parts and stick-figure models of molecules, although abstractions, serve the

same purpose. A geometric reality is captured in a geometric abstraction.

The reality of software is not inherently embedded in space. Hence, it has no ready geometric representation in the

way that land has maps, silicon chips have diagrams, computers have connectivity schematics. As soon as we

attempt to diagram software structure, we find it to constitute not one, but several, general directed graphs

superimposed one upon another. The several graphs may represent the flow of control, the flow of data, patterns of

dependency, time sequence, name-space relationships. These graphs are usually not even planar, much less

hierarchical. Indeed, one of the ways of establishing conceptual control over such structure is to enforce link cutting

until one or more of the graphs becomes hierarchical. [1]

In spite of progress in restricting and simplifying the structures of software, they remain inherently unvisualizable,

and thus do not permit the mind to use some of its most powerful conceptual tools. This lack not only impedes the

process of design within one mind, it severely hinders communication among minds.


