
Rethinking programming

Are envisaging a conception of programming that embraces such issues as

learning

design

reinterpretation

accident

discovery

...

Discuss heapsort with reference to this theme ...

A new perspective on programming ...

Will begin by demonstrating a simple animation of heapsort on 7 nodes ...

What is remarkable or interesting about the heapsort animation model?

for the computer scientist, the visualisation is of trivial size whilst heapsort is "only" interesting for 

large datasets

for the educational psychologist, the limitations of such animations are recognised

Relevant questions are:

What is involved in conceiving an algorithm such as heapsort?

What does a human agent need to appreciate in order to perform heapsort?

How is it that heapsort is a process that is amenable to efficient execution by a computer?

What assumptions about agency and context surround the process of heapsorting?

In what way can one model that animates heapsort give more insight to the learner than another?

To appreciate the unusual nature of the model, will look more closely at its construction ... 

About the model

The model takes the form of

a definitive script that includes 'all' the observables associated with human interpretation and 

machine implementation of heapsort

together with

an open input window through which definitions can be added to the script, and any definition in the

script can be revised

automated actions that can be primed to respond conditionally to changes to specific observables

The script, the input window and the actions are respectively associated with the context for agent 

interaction, a/the human agent and programmed/automated agents

Interaction with the model

Pieces of the script can be freely extracted, definitions and automated actions introduced, revised and 

removed at will, and are appropriate subject to whether they admit interpretation by the modeller (or other 

human agent)



There is a useful analogy to be made between being introduced to a model and being taken on a guided 

walk. The model presents itself in a state, but it can be entered in the neighbourhood of many different 

states. In any of these states, there may be many alternative local variants, but there are also many 

interactions that do not form part of the walk. The model-building activity, inspection and exploration 

resembles 'walking around the neighbourhood of heapsort'.

Interaction 1

Loading part of the script makes it possible to examine the relationship between the array and the tree 

representation. Interaction with the model reveals:

the analogue nature of the model of the data structure - cf. the script that defines how changes to the

key observables are linked in change with a declarative or procedural specification of the updating 

mechanism

that the focus is on 'what dependency is latent?' not on 'the algorithm/mechanism that maintains 

dependency'

the relationships that are latent in interaction, such as expose the correspondence between the array 

locations and the tree nodes, and that between segments of the array and subsets of the tree.

These are of course examples of "meaningful interaction". Harder to interpret is a redefinition such as 

defines the value of the last element of the array to be the square of the first.

What connects the model with the vicinity of heapsort?

Primarily, those observables that we need in order to describe heapsort. These include:

the values in the array

the locations of the nodes in the tree

the notion of a node being in the active segment of the array

the notion of the heap condition being satisfied at a node

the order relationship between the value at a node and the value at its parent node

what we are deeming to be the segment of current interest in the array

All these observables have explicit counterparts in the model that can be inspected at all times. The 

dependencies perceived to interrelate these observables are expressed by definitions.

It is also significant that e.g. order relationships between nodes that are unremarked in heapsort are not

represented in the script

A useful impression of the range of observables introduced in the heapsort model is gained by looking at 

the observables and dependencies associated with a typical node - use the Dependency Modelling Tool for

this.

The model development

To develop a guided walk is simply to undertake the walk yourself as if in the role of the guide.The walk 

is established in the mind of the guide, and realised at the guide's discretion. In the initial engagement with 

a walk, less subtle observation is involved; richer more sophisticated observations evolve later, as more 

experience of the walk is acquired.

The development of the heapsort model is analogous to developing a guided walk.



It is sometimes appropriate to return to previously visited states and gain familiarity with a particular 

pattern of transitions, or venture alternative approaches. Can illustrate this by resetting the array to 

specified values, for instance.

It is also possible to revert to previous versions of the script by over-writing current definitions with 

previous definitions.

To illustrate this, can introduce a file that restores more primitive definitions for the heap conditions (hc1, 

hc2 etc) and the index of the greater child at a node (ixgtch1 - 'the IndeX of the GreaTer CHild at node 1').

Specifically, these conditions are considered with reference to the entire array rather than a proper 

segment.

Significant experimental contexts

An important feature of model development (cf. walk development) is experimenting in specific contexts 

with a view to better understanding. One of the basic experiments underlying the heapsort method 

involves finding a systematic way of building a heap by exchanging parent-child elements. This is best 

explored initially in the context of the entire array.

Associating atomicity to agent action is a crucial feature of observation-oriented modelling. 

(Re)definitions are associated with atomic actions. In heapsort, exchanging a pair of elements can be 

deemed to be atomic (cf. rotating an edge of the tree through 180 degrees). Dependency mediates its 

impact indivisibly to all contingent observables, such as the ixgtch*, hc* etc.

What agency characterises 'understanding heapsort'?

There is a distinction between being able to type the appropriate definition into the input window, and 

(e.g.) being able to identify the most appropriate node at which to apply an exchange operation. This can 

be explored by introducing automated actions ("agents") that respond to mouse clicks in the vicinity of a 

node.

The relationship between the precise form that agency takes and domain understanding is further 

illustrated by:

removing the colour coding of the nodes that satisfy the heap condition

changing the nearness criterion for selecting a specific node

Such experiments illustrate the complexity of the interaction between the heapsort model and the human 

agent interacting with it, and the relevance of both human skill and the qualities of the technology. The 

model can be seen in this way as resembling an instrument rather than a tool.

Certain observables, such as 'being halfway around the walk' or 'being on the way to the summit', are only 

meaningful on the understanding that we are taking the walk, not merely rambling at random.

Any constraint on interaction with the heapsort model is at the discretion of the human agent interacting 

with it. Manual and automatic interaction can be contrived to follow a standard reliable pattern.

Can demonstrate this by introducing more automated actions to follow the standard progression of actions

involved in heapsort. In order to discriminate between the 'making the heap' and 'outputing the source' 

phases, the observational criterion for changing from one phase to the other must be recognised.

In this context, highly abstract observables such as 'the current phase' impact on the notion of when the 

array should be deemed to be sorted.



It is of interest that, even when the standard procedures of heapsort are being respected, the heapsort 

model exhibits characteristics unlike a traditional heapsort program.

How can such a model be interpreted ... ?

Visualisation to illustrate the heapsorting process

Model to expose the concepts and perceptions that are involved in understanding heapsort

As a bridge between an experiential and a formal account of the heapsort algorithm ...

Possible ways to exploit EM for programming

EM as a means to requirements specification in conventional programming (cf. heapsort)

EM as a way to produce models from which conventional programs can be derived (cf. JaM and 

Richard Cartwright's experience at BBC)

EM as a means to generate programs with special characteristics (e.g. where experiential elements 

are prominent, adaptability is essential, where emphasis is educational purpose etc)

Concluding thoughts

As an approach to programming:

observation-oriented modelling can be viewed as revisiting the original aspiration of 

object-orientation - to realise "programming as modelling"

it offers an alternative framework for integrating procedural and declarative ways of thinking but 

only in direct relation to modelling not programming

The engineer's assurances about artefacts are rooted in

reasoning based on established theory

empirical evidence and ad hoc observation particular to the context

From an observation-oriented perspective, computer programming has to be seen in the same light.

the emphasis on program as mathematical object is a legacy of history

the range of modern computing obliges us to give more emphasis to understanding that is particular 

to the program context


