
1

Introduction to EDEN

Background

EDEN interpreter due to Y W (Edward) Yung (1987)

Designed for UNIX/C environment

EDEN = evaluator for definitive notations

"hybrid" tool = definitive + procedural paradigms

… essential to drive UNIX utilities and hw devices

Extensions by Y P (Simon) Yung, Pi-Hwa Sun,
Ashley Ward, Eric Chan and Ant Harfield

The use of the word “definitive”

definitive = definition-based

a definitive notation = a notation within which
definitions of variables can be made

a definitive script = a set of definitions

expressed in one or more definitive notations

eden

scoutdonald

SCRIPT

INTERNAL AND EXTERNAL STATE

The basic architecture of the EDEN interpreter

Interpreting the eden notation

The input window

%eden, %donald, %scout radio buttons

The “feedback” window

Basic EDEN interaction

Use the File option to include scripts and to save

the history of interaction

Use the View option to inspect the current contents

of the script and the command history

Use the Help option to get quick reference

information for eden, donald and scout

Use the Accept button (or alt-A) to process script

in the input window

Use keyboard shortcuts to recall previous input

2

Basic characteristics of EDEN 1

The eden notation uses C-like

• syntactic conventions and data types

• basic programming constructs:

for, while, if and switch

Types: float, integer, string, list.

Lists can be recursive and need not be
homogeneous in type. Comments are

prefaced by ## or enclosed in /* */.

Basic characteristics of EDEN 2

Two sorts of variables in eden:

formula and value variables.

Formula variables are definitive variables.

Value variables are procedural variables.

The type of an eden variable is determined

dynamically and can be changed by

assignment or redefinition.

Programming / modelling in EDEN

The three primary concepts in EDEN are:

� definition

� function

� action

Informally

definition ~ spreadsheet definition

function ~ operator on values

action ~ triggered procedure

Definitions in eden

A formula variable v can be defined via

v is f(a,b,c);

EDEN maintains the values of definitive
variables automatically and records all the

dependency information in a definitive script.

Yellow text indicates eden keywords

Functions in eden

Functions can be defined via

func F

/* function to compute result = F(a,b,...,c) */

{

para a, b, ..., c /* pars for the function */

auto result, x, y, …, z /* local variables */

<sequence of assignments and constructs>

return result

}

Actions in eden

Actions can be defined via

proc P : r, s, …, t

/* proc triggered by variables r, s, …, t */

{

auto x, y, …, z /* local variables */

<sequence of assignments and definitions>

}

Action P is triggered whenever one of its triggering
variables r, s, … , t is updated / touched

3

Basic concepts of EDEN 1

Definitions are used to develop a definitive
script to describe the current state: change of

state is by adding a definition or redefining.

Functions are introduced to extend the range

of operators used in definitions.

Actions are introduced to automate patterns

of redefinition where this is appropriate.

Basic concepts of EDEN 2

In model-building using EDEN, the key idea is
to first build up definitive scripts to represent
the current ‘state-as-experienced’.

You then refine the script through observation
and experiment, and rehearse meaningful
patterns of redefinition you can perform.

Automating patterns of redefinition creates
‘programs’ within the modelling environment

Standard techniques in EDEN

Interrogating values and current definitions
of variables in eden. To display:

• the current value of an eden variable v,

invoke the procedure call

writeln(v)

• the defining formulae & dependency

status of v, invoke the query

?v;

Typical EDEN model development

Edit a model in one window (e.g. using Textpad)
and simultaneously execute EDEN in another

Cut-and-paste from editor window into

interpreter window.

In development process, useful to be able to

undo design actions: restore scripts of

definitions by re-entering the original definitions.

To record the development history comment out

old fragments of scripts in the edited file.

Managing EDEN files

Useful to build up a model in stages using

different files.

Can include files using

include("filename.e");

or via the menu options in the input window.

Can consult / save entire history of interaction.

System also saves recent interaction histories.

4

About Definitive Scripts

Modelling with Definitive Scripts

About Definitive Scripts

Definitive scripts

Use scripts of definitions to represent state

Use redefinition to specify change of state

Scripts make use of definitive notations:

• DoNaLD - line drawing

• SCOUT - window layout

• ARCA - combinatorial graphs

Each notation is oriented towards a different metaphor

About Definitive Scripts

Definitive notations

Definitive notations are simple languages within which

it is possible to formulate definitions for variables

(“observables”) of a particular type.

A definitive notation is defined by

• an underlying set of data types and operators

• a syntax for defining observables of these types.

Review/illustrate key features of DoNaLD and SCOUT

About Definitive Scripts

DoNaLD data types

Donald is a definitive notation for 2-d line-drawing

Its underlying algebra has 6 primary data types:

integer, real, boolean, point, line, and shape

A shape = a set of points and lines

A point is represented by a pair of scalar values {x,y}.

Points can be treated as position vectors: they can be

added (p+q) and multiplied by a scalar factor (p*k)

A line [p,q] is a line segment joining points p and q

About Definitive Scripts

DoNaLD operators

The DoNaLD operators include:

arithmetic operators:

+ * div float() trunc() if ... then ... else ...

basic geometric operators:

.1 .2 .x .y {,} [,] + *

dist() intersects() intersect()

translate() rot() scale()

label() circle() ellipse()

A DoNaLD file should begin with a "%donald"

About Definitive Scripts

declaring (NB) and defining points and lines

point o, p, q, m
line l

l = [p,q]

m = (p+q) div 2

line om

new declarations can be introduced at any stage

o = {0,0}

om = [o,m]

.....

DoNaLD syntax – points and lines

p

q

o = {0,0}

l = [p,q]

om = [o,m]
m

5

About Definitive Scripts

openshape S

within S {
int m # this is equivalent to declaring int S/m outside S

point p, q

openshape T

p = {m, 2*m}

within T {

point p, q # this point has the identifier S/T/p

p, q = ~/q, ~/p

a multiple definition: p = ~/q and q=~/p

~/... refers to the enclosing context for T

viz. S, so that ~/p refers to the variable S/p
.....

}

...

}

DoNaLD syntax – shapes

About Definitive Scripts

Can define shapes in another way also: e.g.

shape rotsquare = rotate(SQ,….)

where SQ is defined to be a square

The “within X { …” context is reflected in the input
window in EDEN

A syntax error in a ‘within’ context resets to the root
context …

… there are NO SEMI-COLONS (;) in DoNaLD !!!

DoNaLD extras

About Definitive Scripts

SCOUT types

SCOUT is a definitive notation for screen layout

Its primary data type is the window

Other types include: display (collection of
windows, ordered according top to bottom);

integer, point and string.

Windows are generally used to display text or
DoNaLD pictures.

About Definitive Scripts

SCOUT screen definition

Overall concept

a SCOUT script defines the current computer screen state

screen is a special variable of type display

the display is made up out of windows

Simplest definition of screen has the form

screen = < win1 / win2 / win3 / win4 / win5 / >

where ordering of windows determines how they overlay

Alternatively can define screen as union of displays

screen = disp1 & disp2 & disp3 & disp4 &

About Definitive Scripts

SCOUT window definitions

A SCOUT window definition takes the form

window X = {

fieldname1: …

fieldname2: …

…

}

where the choice of fieldnames depends on the

nature of the window content.

About Definitive Scripts

Defining a

window to

hold a

DoNaLD

picture

6

About Definitive Scripts

point p1 = {25, 100};

point q1 = {225, 300};

window don1 = {

box: [p1, q1],

pict: "view",

type: DONALD,

border: 1

bgcolor: “green”

sensitive: ON

};

locations of points are in pixels from top left of screen

coordinates of DONALD picture {0,0} to {1000, 1000}

A simple SCOUT DONALD-window

p1 = {25,100}

q1 = {225, 300}

Window is sensitive to clicks
It is 200 pixels by 200 pixels

Picture as

defined in
DoNaLD

viewport view

About Definitive Scripts

window don2 = {

box: [p1, q1],

pict: "view",

type: DONALD,

xmin: zoomPos.1 - zoomSize/2,

ymin: zoomPos.2 - zoomSize/2,

xmax: zoomPos.1 + zoomSize/2,

ymax: zoomPos.2 + zoomSize/2,

border: 1

sensitive: ON

}

Another SCOUT DONALD-window

p1 = {25,100}

q1 = {225, 300}

Picture as

defined in
DoNaLD

viewport view

p1 = {25,100}

q1 = {225, 300}

Picture as

defined in
DoNaLD

viewport view

Display picture in the region

{xmin, ymin} to {xmax, ymax}

About Definitive Scripts

Defining a

window to

hold text

About Definitive Scripts

A simple SCOUT TEXT-window

window doorButton = {

frame: ([doorButtonPos, 1, strlen(doorMenu)]),

string: doorMenu,

border: 1

sensitive: ON

};

string doorMenu = if _door_open then "Close

Door" else "Open Door" endif;

About Definitive Scripts

SCOUT extras

When aspects of the screen are undefined by
the SCOUT script, it will not be drawn / redrawn

Sensitive SCOUT windows generate definitions
of associated mouseButton variables: they
supply information about the mouse state and
location & can be used to trigger EDEN actions

Mouse clicks show up in the command history

About Definitive Scripts

SCOUT & DoNaLD extras

By default, a DoNaLD picture is displayed in a
system generated SCOUT window, and has
coordinates between {0,0} and {1000,1000}

SCOUT observables can be accessed in EDEN
by the same names

A DoNaLD observable X/t can be accessed in
EDEN and SCOUT by _X_t etc.

7

About Definitive Scripts

eden

scoutdonald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating donald to eden

point SW

SW = {100,100}

NE = SW + {width, length}

_SW is cart(100,100)

… = [‘C’,100,100]

proc P_SW : _SW {

redraw point SW

}

A_SW is “attributes”;

About Definitive Scripts

eden

scoutdonald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating donald to eden

point SW

SW = {100,100}

NE = SW + {width, length}

_SW is cart(100,100)

_NE is vector_add (

_SW, cart(width, length)

);

About Definitive Scripts

eden

scoutdonald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating donald to eden

within table {

point SW

SW = {10,10}

_table_SW is cart(10,10)

proc P_table_SW: … {…};

A_table_SW is “…”;

About Definitive Scripts

eden

scoutdonald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating scout to eden

display basicScreen =
<tblHeader / tblUp / …>;

window tblUp;

basicScreen

is [tblHeader, tblUp, …];

tblUp is […];

About Definitive Scripts

Examples of definitive notations

Notation

eden

donald

scout

arca

sasami

eddi

Basis for underlying algebra

scalars, recursive lists, strings

points, lines, shapes

windows, displays

(window = template + content)

diagrams, vertices, incidences

polygonal meshes, renderings

relational database tables and views

Each notation is adapted to the metaphorical
representation of different kinds of observable

About Definitive Scripts

