
1 of 4

Some notes on the Tamworth 1870 accident scenario

To appreciate the attached fragments of an LSD account, you need to have the picture of the accident scenario with

signalmen E and H and points labelled A and B in mind. The 'driver' agent here is the driver of the Irish Mail train.

(This is the artefact that, in conjunction with the referent - in your imagination! - informs the LSD account.) Note that

there are many physical factors, relating to lengths of trains, location and distances between points, feasibility of

observation of various kinds etc, about which the artefact gives useful insight but that are not in the LSD account.

Some of this information is so obvious that we wouldn't dream of identifying it explicitly when we develop the

account. For instance, the Irish mail train encounters the points at A before it reaches the points at B (isn't that

obvious?) - and trains don't come up the river either (but even that could be different in some surreal computer game).

Standard protocols ("from training manual")

agent driver {

 oracle distantsignal

 handle speed_of_train

 protocol

 distant_signal==CAUTION --> speed_of_train = SLOW

}

.. this is OK if you don't consider brake failure or icy etc - otherwise:

agent driver {

 oracle distantsignal

 handle brakePos

 derivate speed_of_train = f(brakePos, ...)

 ## '...' on RHS for environmental factors

 protocol

 distant_signal==CAUTION --> brakePos = ON

}

A first approximation to the North signalman agent account is:

agent signalmanE {

 oracle next_train, homeUPsignal_status, homeMsignal_status, pointA_status

 derivate

 next_kind_of_train is typeof(next_train)

 status_or_next_train is

 f(next_kind_of_train, schedule) // status is STOPPING or THROUGH

 handle homeMsignal_status, pointsA_status

 derivate homeUPsignal_status = if (homeMsignal_status = CLEAR) then DANGER else CLEAR;

 protocol

 (next_kind_of_train == STOPPING)

 --> pointsA_status = TO_PLATFORM; homeMsignal_status = DANGER;

 (next_kind_of_train == THROUGH)

 --> pointsA_status = TO_MAIN; homeMsignal_status = CLEAR;

}

Note that this doesn't permit both home signals to be set at DANGER. This is a serious flaw, not only because this is an

essential state from the point of view of safety (imagine e.g. if the whole station were to be on fire), but also since both

home signals at DANGER is a precondition for it to be possible to switch the points at A. This means that the derivate

is really an unsatisfactory simplification: indeed, the positions of the home signals can at any time be set at DANGER.

A better account captures the idea that the signalman follows two different protocols to set up the points and signals for

the arrival of stopping and through trains. Note that there is an invariant relationship (guaranteed by the interlocking

mechanism) whereby homeMsignal_status == CLEAR => pointsA_status == TO_MAIN. (It is not mechanically

possible to set the home mainline signal to clear unless the points at A are correctly set, and once the signal has been

lowered, it is mechanically impossible to change the points at A.) On that basis, the privilege

(pointsA_status == TO_MAIN) and (homeMsignal_status = CLEAR) --> homeMsignal_status = DANGER

can be 'equivalently' expressed as:

(homeMsignal_status = CLEAR) --> homeMsignal_status = DANGER.

2 of 4

A similar observation applies to setting the home platform signal to danger ("the signalman can change a signal at

CLEAR to DANGER at any time"). Notice here that in accepting that such relationships cannot be otherwise we are

taking steps towards a view of the mechanical technology as 'completely reliable' that is part of the much larger move

towards "taking mechanisms for granted" that is characteristic of classical computing. There is probably some

justification for this, when we consider that, once the technology was mature, mechanical failure of interlocking

mechanisms was much less likely than human error to be at the root of railway accidents.

agent signalmanE {

 oracle next_train, homeUPsignal_status, homeMsignal_status, pointA_status

 derivate

 next_kind_of_train is typeof(next_train)

 status_or_next_train is

 f(next_kind_of_train, schedule) // status is STOPPING or THROUGH

 handle homeMsignal_status, pointsA_status

 protocol

 (next_kind_of_train == STOPPING) --> setUPsignalclear(),

 (next_kind_of_train == THROUGH) --> setMsignalclear();

}

agent setUPsignalclear {

 handle homeMsignal_status, pointA_status, homeUPsignal_status

 protocol

 (pointsA_status == TO_MAIN) and (homeMsignal_status = CLEAR)

 --> homeMsignal_status = DANGER;

 (pointsA_status == TO_MAIN) and (homeMsignal_status = DANGER)

 --> pointsA_status = TO_PLATFORM;

 (pointsA_status == TO_PLATFORM) and (homeMsignal_status = DANGER)

 --> homeUPsignal_status = CLEAR

}

agent setMsignalclear {

 handle homeMsignal_status, pointA_status, homeUPsignal_status

 protocol

 (pointsA_status == TO_PLATFORM) and (homeUPsignal_status = CLEAR)

 --> homeUPsignal_status = DANGER;

 (pointA_status == TO_PLATFORM) and (homeUPsignal_status = DANGER)

 --> pointsA_status = TO_MAIN;

 (pointsA_status == TO_MAIN) and (homeUPsignal_status = DANGER)

 --> homeMsignal_status = CLEAR

}

It's possible to regard the setUPsignalclear and setMsignalclear agents as roles for the signalman. This would be

most plausible if achieving the "neutral" / "safe" state of readiness, when both home signals are set to danger, was

acknowledged as a separate role (introducing a "setupsignalssafe" agent). Note further that the notion that the next

train to arrive is a stopping train is merely a motivation for the intelligent and conscientious signalman to prepare the

station for its arrival. As the circumstances of the accident show, there is nothing to oblige the signalman to adopt what

is necessarily the most appropriate role (in principle, the signalman could decide to set both signals to DANGER and

take the day off). Neither can the timing of the signalman's actions be considered in isolation from the real situation: as

the accident revealed, in some circumstances, setting the home signals to DANGER was not an adequate precaution

against disaster, as there was insufficient time to bring the train safely to a stop. And quite obviously, the changing of

the status of signals and points is not something that could be synchronised arbitrarily with the passing of a train etc.

The above discussion is relevant to one aspect of the accident scenario, though it doesn't take account of the role of the

gong and disc protocol within the operational framework (a rather controversial issue in the BoT report, since E and H

gave conflicting evidence about the communication procedures followed). To account for another very significant

aspect of the situation: the failure of E's watch, we also need to refine the idea of next_train as a function of the time

(timenow) and the schedule:

agent signalmanE {

 oracle

 timenow

 next_train, home1signal_status, home2signal_status, pointB_status

 derivate

 next_train is f(timenow, schedule)

 next_kind_of_train is typeof(next_train)

 status_or_next_train is

 f(next_kind_of_train, schedule) // status is STOPPING or THROUGH

 handle homeMsignal_status, pointsA_status

 protocol

 (next_kind_of_train == STOPPING) --> setUPsignalclear(),

 (next_kind_of_train == THROUGH) --> setMsignalclear();

3 of 4

}

... where we ideally expect the signalman to know the current time:

agent watchH{

 state timenow

 derivate timenow is actualtime

}

Some fairly complex derivate or maybe procedural component is needed to determine whether next_train is

STOPPING or not (probably routinely defined by a dependency if the schedule is being followed in normal operation).

(The BoT report refers to the fact that "Notice by telegraph was, indeed, received at the Tamworth station of the

approach of the Irish mail train in advance of the goods train; but this notice was not communicated to the signalman

...".)

Anomalous situations

The above discussion raises the issue of non-standard contexts. Already have such an issue to consider in connection

with the unreliable watch. Deal with this by attributing different roles to the watch - the classification of observables

becomes dependent on context.

For a watch, have two contexts - watch can be going or stopped.

agent watchH {

 state timenow, status (= GOING, STOPPED)

 agent watchHgoing {

 state error (= +/- n seconds)

 derivate timenow is time + error

 ## watch could be slow or fast

 LIVE is (status == GOING)

 }

 agent watchHstopped {

 state timenow = time0

 derivate LIVE is (status == STOPPED)

 }

}

agent watchHmech {

 handle status

 oracle powersourceOK

 derivate status is if (powersourceOK) then GOING else STOPPED

}

With a clockwork clock, might want to take into account the responsibility for winding it - and so invoke agency of

signalmanH again here.

Actually (of course!) the roles of the signalmen are affected by whether there is or isn't a train present at the station. As

in the case of the Railway Arrival-Departure Animation, it is necessary to instantiate some observables that are only

meaningful if and when there is a train in the station.

agent train_at_station {

 state position

 speed

 platform

 derivate

 LIVE is f(position, ...)

 ## "at station" might mean between points A and B, or perhaps

 ## should mean between points A and the distant signal

 ## cf observable 'engaging' that features in the Railway Station Animation

}

Can now frame roles for the signalmen according to whether trains are present or not etc., bearing in mind that there

may be more than one train present at the station at any one time. Something more complex but along the lines of the

account of watch roles is what's needed here.

4 of 4

There are aspects of the analysis of the accident scenario that provoke reflections about possible actions that might not

be part of the training manual. Perhaps signalman H could have diverted the express back on to the main track for

instance, by shifting the points at B. (As the BoT report suggests, such a diversion might have worked in principle

since the train successfully negotiated the points at A at a speed estimated at 45 mph, and was eventually travelling at

about 15 mph. Even at that speed the momentum of a train was quite sufficient to cause catastrophe given the strength

of the buffers and the proximity to the river bank etc.)

How could we model such an interventionary action on the part of H?

agent signalmanH {

 oracle is_train_at_station

 train_at_station

 pos_train_at_station

 speed_train_at_station

 kind_train_at_station

 ## could make into state observables of "train_at_station" agent

 ## or better "train" agent "at station" here

 handle pointsB_status

 privilege

 (kind_train_at_station==THROUGH) && (pos_train_at_station==PLATFORM_LINE)

 --> pointsB_status = ...

}

Note the issues here about what signalmanH can observe. Does he know that the train on the PLATFORM_LINE is a

THROUGH train: from the schedule? because it's going unusually fast? because he recognises that it is the Irish Mail?

etc.

Might also ask - is he supposed to be able to observe such things? - i.e. is it part of his job description? If it were, then

this would be a flaw in the railway system conception, since a train going the other way could interrupt his observation.

A related question is: in what ways was the telegraph expected to enhance the communication between the two

signalmen and improve upon the pre-existing gong and disc mechanisms?

The above discussion indicates how developing an LSD account can serve a purpose that is primarily provocative

rather than functional, stimulating us to ask questions that might otherwise not occur to us. In general, the development

of an account and an EM artefact may usefully proceed together. Such an exercise could be particularly useful if carried

out in conjunction with a close reading of the BoT accident report at

http://www.railwaysarchive.co.uk/documents/BoT_Tamworth1870.pdf, which includes additional detail about the

precise distances between key points, the weather conditions, the gradients and slipperiness of the track, the

composition of the train, including weights of the component vehicles, condition of the brakes, and the eye-witness

reports from railway personnel both on and off the train.

