Programming from an
Empirical Modelling
perspective 2

From modelling with definitive scripts to programming:

- representing state in programming
- behaviour of programs
- the semantics of programs

State

States relevant to programming ...

« state within the executing program

+ external state: what is visible?

« state in respect of interaction

« state in program development

« state significant in the external world

Diverse representations are required:
state within the executing program

- Program variables, machine locations

- external state: what is visible?

- Graphical techniques

- state in respect of interaction

- Statechart, message sequence diagram

- Diverse representations required ...
- state in program development
UML diagrams, prototypes

- state significant in the external world
apprehended by the human interpreter

cf. Brian Cantwell-Smith on semantics ...

States within oxoGardner1999

Definitive scripts express ...

- internal state — contents of squares

- visible state — appearance of the board

- interaction state: whose turn is it?

- state of development

- state of mind of the player: which square?
(demo)

Modelling with definitive scripts:

... a holistic view of state that integrates
and conflates all the different perspectives

in contrast to

Programming-in-the-wild:

... an eclectic model of state in which many
different strategies for representation and
interpretation are jumbled up together

Two emphases

» Empirical Modelling encourages us to
consider programming in a holistic way,
using similar principles to deal with the
entire process of development from
conception to customisation and use

* It can also has a means to represent the

specific activity that is captured by a
traditional program

Traditional programming

® c
Requirements | & | Program design | & Use
capture and =| implementation | = affordances
specification Z| maintenance S interface
E o culture
[}
Identifying agency constructing human factors
in the machine-like and programming study
components the machine-like
and in the human components interface design
context for use
designing program empirical studies
Framing goals by identfying of use
for the design objects and functions
protocols for prototyping

interaction and
interpretation

e.g. devise UML

technical interface
development

e.g. writing Java code

e.g. goals, operators,
methods (GOMS)
evaluation

Empirical Modelling

Requirements
capture and
specification

develop scripts
in isolation
as “furry blobs”
that represent
the observables
and dependencies
associated with
putative
machine-like
components
and
human interactions
and interpretations

Program design
implementation
maintenance

identify and document
reliably
reproducible
sequences of
redefinition /
chains of “furry blobs”
that correspond to
programmable
automatable
machine behaviours
and ritualisable
human behaviours
and interfaces

Use
affordances
interface
culture

exercise, explore,
customise, revise
and adapt

sequences of redefinition

and interpretation

to reflect emerging
and evolving patterns

of interaction and
interpretation;

extend and augment
observables to support
additional functionalities

combining scripts

Objects and dependencies

* An object corresponds to a particular way
of associating observables: grouping
together observables according to whether
they exist concurrently

» A dependency links observables
according to how they are linked in
change: whether making a change to the
value of one observable necessarily
entails changing others

dmi_screen (tkeden 1.66)

Object model vs.
account of observation

An account of observation is a more
primitive concept than an object model: it
entails fewer preconceptions about what
might be observed ...

“Definitive scripts are neutral
wrt agent's views & privileges”

Object model vs.
account of observation 2

Definitive script expresses different agent
views and privileges to transform

(cf. subject-oriented programming)

“What architect can do vs what user can do”

... highlights how the script affords views of

and access to possible transformations

DESIGNER
COMREIf? ////
- PROGRAM — USER

PERIPHERALS \

PROGRAMMER

... compare this with the OXO laboratory

GAME DESIGNER

INTERNA&fIfTE ////
o)
////

XO GAME— PLAYER

VISUALISATION \\\\

PROGRAMMER

... Behaviour as programmed state change

GAME DESIGNER

INTERNA@TE /
10).4
/

O GAME— PLAYER

VISUALISATION \

PROGRAMMER

Static and dynamic elements of state

Definitive scripts as “furry blobs” . - = a definitive script
RN : \ = initi
- = a definitive script . . = a nonsense redefinition

.
|1
RN J - .
~ 2 | o \ = a nonsense redefinition
\ | //
° / =za plausible redefinition

/" = a plausible redefinition

COMPUTER

\ = a ritualised definition

\ = a ritualised definition

Plausible : could open the desk drawer
— note continuous spectrum of redefinitions

Ritualised : door automatically closes after being opened
Nonsense : opening the drawer makes the room smaller | |

Semantic Relations (I)
Semantic Relations (Il)

program

Artefact =
seript +

The semantics of a definitive program

The semantics of a traditional program

Classical programming ...1

Behaviour is derived from a pre-specified
conception of function and purpose ...

... based on interactions whose outcomes
are reliable and for which the mode of
interpretation is determined in advance

...motivates declarative approaches

Classical programming ...2

... motivates declarative approaches:
output=F (input)

... problematic to deal with a dynamic input, as

in playing a game

... hence add “lazy evaluation” to model as
stream_of_output=F (stream_of_input)

Significance of interpretation ...

Miranda can be viewed as a definitive
notation over an underlying algebra of
functions and constructors

BUT this interpretation emphasises
program design as a state-based activity
NOT

declarative techniques for program
specification

lllustrative example

... aversion of 3D OXO written in the
functional programming language Miranda

... o be compared with oxoJoy1994 which
was in some respects ‘derived’ from it

Two experimental systems!

A definitive Miranda (“admira”): definitive
notation with general functional programs
and types as operators & data structures

The Kent Recursive Calculator (KRC):
developing functional programs by framing
definitive scripts

Objects vs observations 1
A definitive script

represents the atomic transformations of a
geometric symbol

DoNaLD room can be transformed through
redefinition in ways that correspond ‘exactly’ to
the observed patterns of change associated with
opening a door, or moving a table

Objects vs observations 2

Thesis:

« set of atomic transformations of a symbol
captures its semantics [cf. Klein's view of a
geometry as “the study of properties invariant
under a family of transformations”]

« lllustration via a geometric pun (demo)

Is the DoNaLD room an object in
the class-based OOP sense? 1

Can view each room transformation as a method
for the object

BUT
definitive script is an object specification

only if
set_of_transformations_performed_on_room is
circumscribed

Is the DoNaLD room an object in
the class-based OOP sense? 2

Circumscription creates objects
BUT

a definitive script merely reflects observed latent
transformations

Comprehending / designing an object = knowing /
determining everything we can do with it

BUT
definitive script doesn't circumscribe the family
of transformations that we can apply

From logic to experience

+ the computer enables us to use logical
constructs to specify relationships that
admit reliable interpretations and support
robust physical realisations

» human skill and discretion plays a crucial
role in crafting ritualisable experiences

» NB classical computer science doesn’t

take explicit account of robust physical
realisations or ritualisable experience

From experience to logic?

+ open-ended interaction with what is
experienced is a means to representing
with a high degree of realism and subtlety

€ screen (tkeden 1.46)

Arrangenenc i Posec Pt

2 minimal triangular regions

(cf. the strained representation of linesBeynon1991 L cormamsycarms =
observables in the Miranda 3D OXO) U
» mathematical concepts such as abstract
lines as “realised” in this fashion
Th e ||n e S B eyn On 1 991 S Crlpt ;ﬂ:i}iiCL‘RLTL“:‘Q'S‘SL‘,‘”“M‘;ZT::’JJZ‘SIii?;L""S mLnumeoredoe g

B oaomion: 500,020 Ovfizn iz}
reda12a20, ot mz 02334
int A1.A2.A5, A4 B1 52,8384
e
212 and b12 determine the distances between the L and R ands of nes 1 and 2
0

b34-10
A1 a1 aro oot and it encois of e 1

0a+(0, a12 dv (a12+a23+a34)'sc

R Gmro at20a28 i tarrasSnasas

om0 a1200251034) G (a12,028 03450
o

B2-0n 0,612 dv (12182306901
552000012529 dv (0121608169456
B4-05-0,(b124b234b34) div (612+5234b34)'sc
i

{282
B-(A383)
(a4 84

ké = labol('4"B4)

s 1o DL s ht defos Fig 1) o viewpon POSET
Viewport POSE
112 dotormines the LR positon o the o 1.2 inersoction
#1215 10 bo th crossing indox o the lno 1.2 infrsaction
gt nes 1 a1 ar h op i t it of X

T b st

1 e 1 crosses fine 2 before e 3 crosses fne 2 n LR order
int 2129,2124,2134,234
int 2123 21242134 2234

2234 - if 2423 hen 1 oo 0

#x12 calos the crossing index for lines 1 and 2
#y defaul” this s 1 butis ncremented f ne 3 o 4 crosses i 1
et ine 2 crosses ko 1 in L orer

zizsziad

2134
RN
123 - 2212812234

04 = 2.71244(1.2234)

ol o 1223404010924 514 p1z<pu\][mizp1]zy<nylm"na\sa1

o

ER oo 1S £ st <0 bondlo 1
e i o S T rota o £ pos) <0 bend o 1
st 210 i st o o s e a2 o <0 menoass
el s A B o £ 24 <0 renon 1
et e e e e fretontisttiirtor bbbt

#it otherwise contracts 1o he orign
lino 1213.12141314,2324.11223,11224,1334 233413231424 2434, 11434
e 2334 N F1213,11214,1131412924,11228,11224 1334 12334,11323,11424,1243
[p12°1214 p14"d1214 2 (12113) < 0) then 0 lse 1

(12414) < 0) then 0 else 1
(113 1

1434

1201224 p24 1224
1424 - [p14°01424 p24"d1424]
12524 - [523" 02324 p24"c2324)
1134~ o1 aranA 22

3 1
(12423) < 0) then 0 else 1
(12124) < 0) then 0 else 1
(1312 1

04 424
s ety
1223 = [p12'01223 p231223)
3 34 p34" 2434
2334

i (232 1
(13123) < 0) then 0 else 1
(14124) < 0) then 0 else 1

i (242 1

1

2912131 1 hocrossingndoxof s | 4102 iflrs ot of
#ines 12193 an o ¢ oo cros o 1 boweens pons
¥of morsecon i s 2

a5 38 88 (155013 (2313470) ran 1 000

X14) 88 ((112-13)(r12-114)50) then 1 olse 0
23)"(12.24)20) then 1 oo 0

12181214 U114 UES24 012201224 V13342554 V13281424 12004 U1esh
215 711213 d121

“hata- gt
4711314 * 41314
124 * 2324 * 42324
11223 1223
*r1224 - 1224

2 0

U2334 = 92334 * 1233 '
U123 - 91523 " 1523 * 323
Uté2a - gtaza " rlaza " diazs

11434 - 41434
Upe3s = g2434 " 12434 02434

int U1213,01214,01314.12324,01223,01224,1334.42334,01325,U1424,12434,u1434
vl - aizia” (1r1219)” 121
Sz gr2is
1r1314) " d1314
12324 - G324 * (1-2324) * Q2324
wez - gz {12z avzzo
24)

4 (171204 1234
12554 - gpa - (172034 2334
1023 - 120 (11320 01023

1.r1424) " dhazd
Uisa e (111490 - 1434
U434 - G434 * (1-2434) * Q2434

1.01213)* (111213) * 41213

= (1-91334)* (1-1334) - 1334
= (1-92334) " (1-2334) * 2334

V2434 = (1-52434) " (1-12634) * 02434

I V1215,V1214.1914.V2524,V12201224 VIS34,V2334V1529 V1 424,V2434 V1454
oty ezt
(ra - r1z1a - drzre
Vi {1 1510 131e - arans
Vo412 e o
2290 1223 1229
) r1224 " 01224

V2434 = (1-2434) " 2434 " 2434

intin12, 1023, 024, nd4, in14, in13
n13 = U13144U1334 U13230 0121412131 V13344V 1323 V1314
1123 - 23241 U2S4ru1220101525 w1528,v12291 V2524 V2334
in 124411224 142442434 V2324011224 01424

034 2 Uy DA AN AT

iN14 = U14240U14340012141013140V14241 V143400121 8001314
IN12 = U12130U12140U12230U1224.V1224,V1223.V12134V1214

| V2334,V1323,V1424,V2434,1434

viz1a 412528 V1225, V1224.1
Vi1 - (11213 181 - o121
vizid = (11210 izie: aizre

91314) (1314 * 61314

V1424 = (1.91424) " 1424 ° da2a
V1434 - (1-1434) " 1434 " d434
V2434 (1.2434) " 2634 " 2434

ntin12, 1023, n24, n4, in14, it
013 = U134+ U1 3344 U1 3235012131213 V1334V1323V1314
23 US4 LRS34rul 22013201923, 225, V2024, V2334
in24 = Upé34.2324 11424.1V2834 2324 112241420
oSBT DS A
1014~ U14240 U1 4340112140131 4+ V1424V 1434v121 011314
012 2 U12130U1214 U1223:U1224:V12242V1223:V12134V1214

Interesting comparisons

+ the lines script as not object-oriented —
most of its core observables are
associated with relationships that cannot
be identified with any single object

+ the lines script as resembling a functional
programming script in its homogeneity (“all
definitions”), but associated with directly
accessible external observables

Features of the lines model ...

« directly accessible external observables:
z123 = 1 means that line 1 crosses line 2
before line 3 crosses line 2 in L-to-R order

+ the ideal geometry as associated with a
mode of interaction with the model (subject
to being able to enhance the accuracy of
arithmetic indefinitely on-the-fly)

Programming from two perspectives

+ a program is conceived with reference to
how its behaviour participates in a wider
process with functional objectives: states
emerge as the side-effects of behaviours

» a computer artefact is developed so as to

reflect the agency within an environment:
the artefact and environment evolve until
(possibly) program-like processes emerge

PROCESS

COMPUTER

Conventional programs as embedded in
processes of interaction with the world

Programs are understood in relation to
processes in their surrounding environment

CONTEXT

X, A% ol

w -

REFERENT

Artefacts and their referents as sculpted out
of open interaction with the world

States of the referent and the artefact are
connected through experience of
interacting with the referent and the artefact

An EM perspective on programming ...
... some problematic issues

In focusing on current state-as-experienced,
we have some problems to resolve:

» Behaviour raises questions about agency:
what is the status of a “computer” action?

» How do we deal with state-as-experienced
in semantic terms?

* How do we make science of activities in
which human interpretation is so critical?

... but this presents some philosophical challenges ...

