Programming from an
Empirical Modelling
perspective 2

From modelling with definitive scripts to programming:

- representing state in programming
- behaviour of programs
- the semantics of programs

State

States relevant to programming ...

« state within the executing program

+ external state: what is visible?

« state in respect of interaction

« state in program development

« state significant in the external world

Diverse representations are required:
state within the executing program

- Program variables, machine locations

- external state: what is visible?

- Graphical techniques

- state in respect of interaction

- Statechart, message sequence diagram

- Diverse representations required ...
- state in program development
UML diagrams, prototypes

- state significant in the external world
apprehended by the human interpreter

cf. Brian Cantwell-Smith on semantics ...

States within oxoGardner1999

Definitive scripts express ...

- internal state — contents of squares

- visible state — appearance of the board

- interaction state: whose turn is it?

- state of development

- state of mind of the player: which square?
(demo)




Modelling with definitive scripts:

... a holistic view of state that integrates
and conflates all the different perspectives

in contrast to

Programming-in-the-wild:

... an eclectic model of state in which many
different strategies for representation and
interpretation are jumbled up together

Two emphases

» Empirical Modelling encourages us to
consider programming in a holistic way,
using similar principles to deal with the
entire process of development from
conception to customisation and use

* It can also has a means to represent the

specific activity that is captured by a
traditional program

Traditional programming
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Empirical Modelling

Requirements
capture and
specification

develop scripts
in isolation
as “furry blobs”
that represent
the observables
and dependencies
associated with
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machine-like
components
and
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and interpretations

Program design
implementation
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identify and document
reliably
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sequences of
redefinition /
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that correspond to
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and ritualisable
human behaviours
and interfaces
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sequences of redefinition
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to reflect emerging
and evolving patterns

of interaction and
interpretation;

extend and augment
observables to support
additional functionalities

combining scripts




Objects and dependencies

* An object corresponds to a particular way
of associating observables: grouping
together observables according to whether
they exist concurrently

» A dependency links observables
according to how they are linked in
change: whether making a change to the
value of one observable necessarily
entails changing others

dmi_screen (tkeden 1.66)

Object model vs.
account of observation

An account of observation is a more
primitive concept than an object model: it
entails fewer preconceptions about what
might be observed ...

“Definitive scripts are neutral
wrt agent's views & privileges”

Object model vs.
account of observation 2

Definitive script expresses different agent
views and privileges to transform

(cf. subject-oriented programming)

“What architect can do vs what user can do”

... highlights how the script affords views of

and access to possible transformations
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... Behaviour as programmed state change
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Static and dynamic elements of state

Definitive scripts as “furry blobs” . - = a definitive script
RN : \ = initi
- = a definitive script . . = a nonsense redefinition
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\ | //
° / =za plausible redefinition

/" = a plausible redefinition

COMPUTER

\ = a ritualised definition

\ = a ritualised definition

Plausible : could open the desk drawer
— note continuous spectrum of redefinitions

Ritualised : door automatically closes after being opened
Nonsense : opening the drawer makes the room smaller | |

Semantic Relations (I)
Semantic Relations (Il)

program

Artefact =
seript +

The semantics of a definitive program

The semantics of a traditional program




Classical programming ...1

Behaviour is derived from a pre-specified
conception of function and purpose ...

... based on interactions whose outcomes
are reliable and for which the mode of
interpretation is determined in advance

...motivates declarative approaches

Classical programming ...2

... motivates declarative approaches:
output=F (input)

... problematic to deal with a dynamic input, as

in playing a game

... hence add “lazy evaluation” to model as
stream_of_output=F (stream_of_input)

Significance of interpretation ...

Miranda can be viewed as a definitive
notation over an underlying algebra of
functions and constructors

BUT this interpretation emphasises
program design as a state-based activity
NOT

declarative techniques for program
specification

lllustrative example

... aversion of 3D OXO written in the
functional programming language Miranda

... o be compared with oxoJoy1994 which
was in some respects ‘derived’ from it

Two experimental systems!

A definitive Miranda (“admira”): definitive
notation with general functional programs
and types as operators & data structures

The Kent Recursive Calculator (KRC):
developing functional programs by framing
definitive scripts




Objects vs observations 1
A definitive script

represents the atomic transformations of a
geometric symbol

DoNaLD room can be transformed through
redefinition in ways that correspond ‘exactly’ to
the observed patterns of change associated with
opening a door, or moving a table

Objects vs observations 2

Thesis:

« set of atomic transformations of a symbol
captures its semantics [cf. Klein's view of a
geometry as “the study of properties invariant
under a family of transformations”]

« lllustration via a geometric pun (demo)

Is the DoNaLD room an object in
the class-based OOP sense? 1

Can view each room transformation as a method
for the object

BUT
definitive script is an object specification

only if
set_of_transformations_performed_on_room is
circumscribed

Is the DoNaLD room an object in
the class-based OOP sense? 2

Circumscription creates objects
BUT

a definitive script merely reflects observed latent
transformations

Comprehending / designing an object = knowing /
determining everything we can do with it

BUT
definitive script doesn't circumscribe the family
of transformations that we can apply

From logic to experience

+ the computer enables us to use logical
constructs to specify relationships that
admit reliable interpretations and support
robust physical realisations

» human skill and discretion plays a crucial
role in crafting ritualisable experiences

» NB classical computer science doesn’t

take explicit account of robust physical
realisations or ritualisable experience




From experience to logic?

+ open-ended interaction with what is
experienced is a means to representing
with a high degree of realism and subtlety

€ screen (tkeden 1.46)
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2 minimal triangular regions

(cf. the strained representation of linesBeynon1991 L cormamsycarms =
observables in the Miranda 3D OXO) U
» mathematical concepts such as abstract
lines as “realised” in this fashion
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Interesting comparisons

+ the lines script as not object-oriented —
most of its core observables are
associated with relationships that cannot
be identified with any single object

+ the lines script as resembling a functional
programming script in its homogeneity (“all
definitions”), but associated with directly
accessible external observables




Features of the lines model ...

« directly accessible external observables:
z123 = 1 means that line 1 crosses line 2
before line 3 crosses line 2 in L-to-R order

+ the ideal geometry as associated with a
mode of interaction with the model (subject
to being able to enhance the accuracy of
arithmetic indefinitely on-the-fly)

Programming from two perspectives

+ a program is conceived with reference to
how its behaviour participates in a wider
process with functional objectives: states
emerge as the side-effects of behaviours

» a computer artefact is developed so as to

reflect the agency within an environment:
the artefact and environment evolve until
(possibly) program-like processes emerge

PROCESS

COMPUTER

Conventional programs as embedded in
processes of interaction with the world

Programs are understood in relation to
processes in their surrounding environment

CONTEXT

X, A% ol

w -

REFERENT

Artefacts and their referents as sculpted out
of open interaction with the world

States of the referent and the artefact are
connected through experience of
interacting with the referent and the artefact




An EM perspective on programming ...
... some problematic issues

In focusing on current state-as-experienced,
we have some problems to resolve:

» Behaviour raises questions about agency:
what is the status of a “computer” action?

» How do we deal with state-as-experienced
in semantic terms?

* How do we make science of activities in
which human interpretation is so critical?

... but this presents some philosophical challenges ...




