
1

Programming from an
Empirical Modelling

perspective 2

From modelling with definitive scripts to programming:

- representing state in programming

- behaviour of programs

- the semantics of programs

State

States relevant to programming ...

• state within the executing program

• external state: what is visible?

• state in respect of interaction

• state in program development

• state significant in the external world

- Diverse representations are required:

- state within the executing program

- Program variables, machine locations

• - external state: what is visible?

- Graphical techniques

• - state in respect of interaction

- Statechart, message sequence diagram

- Diverse representations required …

- state in program development

UML diagrams, prototypes

- state significant in the external world

apprehended by the human interpreter

cf. Brian Cantwell-Smith on semantics …

States within oxoGardner1999

Definitive scripts express …

- internal state – contents of squares

- visible state – appearance of the board 

- interaction state: whose turn is it?

- state of development

- state of mind of the player: which square?

(demo)



2

Modelling with definitive scripts:

… a holistic view of state that integrates  
and conflates all the different perspectives

in contrast to

Programming-in-the-wild:

… an eclectic model of state in which many 
different strategies for representation and 
interpretation are jumbled up together

Two emphases

• Empirical Modelling encourages us to 
consider programming in a holistic way, 

using similar principles to deal with the 

entire process of development from 

conception to customisation and use

• It can also has a means to represent the 

specific activity that is captured by a 
traditional program

Traditional programming 

Requirements 

capture and 
specification

Program design 

implementation
maintenance

Use
affordances 

interface 
culture

Identifying agency
in the machine-like

components
and in the human

context for use

Framing goals
for the design

protocols for
interaction and

interpretation

e.g. devise UML

constructing
and programming

the machine-like
components

designing program
by identfying

objects and functions

technical interface

development

e.g. writing Java code

human factors
study

interface design

empirical studies
of use

prototyping

e.g. goals, operators,
methods (GOMS)

evaluation

s
p
e
cifica

tio
n

u
s
e
r in

te
rfa

c
e

Empirical Modelling

Requirements 
capture and 

specification

Program design 
implementation

maintenance

Use
affordances 

interface 

culture

develop scripts
in isolation

as “furry blobs”
that represent

the observables

and dependencies
associated with

putative
machine-like
components

and
human interactions
and interpretations

identify and document 
reliably

reproducible

sequences of
redefinition / 

chains of “furry blobs”

that correspond to
programmable

automatable
machine behaviours

and ritualisable

human behaviours
and interfaces

exercise, explore,
customise, revise

and adapt

sequences of redefinition
and interpretation
to reflect emerging

and evolving patterns
of interaction and

interpretation;
extend and augment

observables to support

additional functionalities
combining scripts



3

Objects and dependencies

• An object corresponds to a particular way 
of associating observables: grouping 

together observables according to whether 

they exist concurrently

• A dependency links observables 

according to how they are linked in 

change: whether making a change to the 
value of one observable necessarily 

entails changing others

Object model vs.
account of observation

An account of observation is a more 
primitive concept than an object model:  it 

entails fewer preconceptions about what 

might be observed …

“Definitive scripts are neutral

wrt agent's views & privileges”

Object model vs.
account of observation 2

Definitive script expresses different agent 
views and privileges to transform

(cf. subject-oriented programming)

“What architect can do vs what user can do”

… highlights how the script affords views of

and access to possible transformations

DESIGNER

PROGRAM

COMPUTER

PERIPHERALS

PROGRAMMER

USER

GAME DESIGNER

OXO GAME

INTERNAL STATE

VISUALISATION

PROGRAMMER

PLAYER

… compare this with the OXO laboratory



4

GAME DESIGNER

OXO GAME

INTERNAL STATE

VISUALISATION

PROGRAMMER

PLAYER

… Behaviour as programmed state change 

Static and dynamic elements of state

Definitive scripts as “furry blobs”

≡ a definitive script

≡ a nonsense redefinition

≡ a plausible redefinition

≡ a ritualised definition

Plausible : could open the desk drawer

– note continuous spectrum of redefinitions
Ritualised : door automatically closes after being opened
Nonsense : opening the drawer makes the room smaller

≡ a definitive script

≡ a nonsense redefinition

≡ a plausible redefinition

≡ a ritualised definition

USER

COMPUTER

The semantics of a traditional program The semantics of a definitive program



5

Classical programming …1

Behaviour is derived from a pre-specified 
conception of function and purpose …

… based on interactions whose outcomes 

are reliable and for which the mode of 

interpretation is determined in advance

…motivates declarative approaches

Classical programming …2

… motivates declarative approaches:

output=F(input)

… problematic to deal with a dynamic input, as 
in playing a game

… hence add “lazy evaluation” to model as

stream_of_output=F(stream_of_input)

Significance of interpretation …
Miranda can be viewed as a definitive 
notation over an underlying algebra of 

functions and constructors 

BUT this interpretation emphasises

program design as a state-based activity 

NOT

declarative techniques for program 

specification

Illustrative example

… a version of 3D OXO written in the 

functional programming language Miranda

… to be compared with oxoJoy1994 which 

was in some respects ‘derived’ from it

Two experimental systems!

A definitive Miranda (“admira”): definitive 
notation with general functional programs 

and types as operators & data structures

The Kent Recursive Calculator (KRC): 

developing functional programs by framing 

definitive scripts



6

Objects vs observations 1

A definitive script

represents the atomic transformations of a 
geometric symbol

DoNaLD room can be transformed through 
redefinition in ways that correspond ‘exactly’ to 
the observed patterns of change associated with 
opening a door, or moving a table

Objects vs observations 2

Thesis:

• set of atomic transformations of a symbol 
captures its semantics [cf. Klein's view of a 
geometry as “the study of properties invariant 
under a family of transformations”]

• Illustration via a geometric pun (demo)

Is the DoNaLD room an object in 
the class-based OOP sense? 1

Can view each room transformation as a method 

for the object

BUT

definitive script is an object specification

only if

set_of_transformations_performed_on_room is 

circumscribed

Is the DoNaLD room an object in 
the class-based OOP sense? 2

Circumscription creates objects 

BUT 

a definitive script merely reflects observed latent 

transformations 

Comprehending / designing an object = knowing / 

determining everything we can do with it 

BUT 

definitive script doesn't circumscribe the family 

of transformations that we can apply

From logic to experience

• the computer enables us to use logical 

constructs to specify relationships that 

admit reliable interpretations and support 

robust physical realisations

• human skill and discretion plays a crucial 
role in crafting ritualisable experiences

• NB classical computer science doesn’t 

take explicit account of robust physical 

realisations or ritualisable experience



7

From experience to logic?

• open-ended interaction with what is 
experienced is a means to representing 

with a high degree of realism and subtlety 

(cf. the strained representation of 

observables in the Miranda 3D OXO)

• mathematical concepts such as abstract 

lines as “realised” in this fashion

linesBeynon1991

The linesBeynon1991 script …
real sc,size

point O,Oa,Ob
O,Oa,Ob={500,500},O-{size,size},O+{size,size}

size,sc = 380.0,2*size
real a12,a23,a34,b12,b23,b34

point A1,A2,A3,A4,B1,B2,B3,B4
line l1,l2,l3,l4

# a12 and b12 determine the distances between the L and R ends of lines 1 and 2
a12=1.0

a23=5.0

a34=2.0
b12=2.0

b23=5.0
b34=1.0

# A1 and B1 are the left and right endpoints of line 1
A1=Oa

A2=Oa+{0, a12 div (a12+a23+a34)}*sc
A3=Oa+{0,(a12+a23) div (a12+a23+a34)}*sc

A4=Oa+{0,(a12+a23+a34) div (a12+a23+a34)}*sc
B1=Ob

B2=Ob-{0,(b12) div (b12+b23+b34)}*sc
B3=Ob-{0,(b12+b23) div (b12+b23+b34)}*sc

B4=Ob-{0,(b12+b23+b34) div (b12+b23+b34)}*sc
l1=[A1,B1]

l2=[A2,B2]
l3=[A3,B3]

l4=[A4,B4]

label j1,j2,j3,j4,k1,k2,k3,k4

j1 = label("1",A1)
j2 = label("2",A2)

j3 = label("3",A3)
j4 = label("4",A4)

k1 = label("1",B1)
k2 = label("2",B2)

k3 = label("3",B3)
k4 = label("4",B4)

# this is the DoNaLD script that defines Figure 1(b) in the viewport "POSET"
viewport POSET

# r12 determines the LR position of the line 1,2 intersection

# x12 is to be the crossing index of the line 1,2 intersection
#     eg this is 1 if lines 1 and 2 are the top pair at their pt of Xn

real r12,r23,r34,r13,r24,r14
int x12,x23,x34,x13,x24,x14

r12,r23,r34 = a12 div b12 , a23 div b23, a34 div b34
r13 = (a12+a23) div (b12+b23)

r24 = (a23+a34) div (b23+b34)
r14 = (a12+a23+a34) div (b12+b23+b34)

# z123 = 1 if line 1 crosses line 2 before line 3 crosses line 2 in LR order

int z123,z124,z134,z234
int Z123,Z124,Z134,Z234

z123 = if r12<r23 then 1 else 0

z124 = if r12<r24 then 1 else 0
z134 = if r13<r34 then 1 else 0

z234 = if r23<r34 then 1 else 0
Z123 = if r13<r12 then 1 else 0

Z124 = if r14<r12 then 1 else 0
Z134 = if r14<r13 then 1 else 0

Z234 = if r24<r23 then 1 else 0

# x12 calcs the crossing index for lines 1 and 2
# "by default" this is 1 but is incremented if line 3 or 4 crosses line 1

# before line 2 crosses line 1 in LR order
x12 = 1+Z123+Z124

x13 = 1+(1-Z123)+Z134
x14 = 1+(1-Z124)+(1-Z134)

x23 = 2-z123+Z234
x24 = 2-z124+(1-Z234)

x34 = 3-z134-z234

# these are the points of the poset of intersections
# v is a vertical, m a global magnification factor

int v,m
v,m=8,50

point orig,p12,p23,p34,p13,p24,p14
p12 = orig+{x12,r12*v}*m

p23 = orig+{x23,r23*v}*m

p24 = orig+{x24,r24*v}*m
p34 = orig+{x34,r34*v}*m

p14 = orig+{x14,r14*v}*m
p13 = orig+{x13,r13*v}*m

orig = {400,400}

# Line l1213 occurs in the poset if the intersection of lines 1 and 2
# and the intersection of lines 1 and 3 corresponds to a covering edge

# Line l1213 is present if the parameter d1213 evaluates to 1
# it otherwise contracts to the origin

line l1213,l1214,l1314,l2324,l1223,l1224,l1334,l2334,l1323,l1424,l2434,l1434
int d1213,d1214,d1314,d2324,d1223,d1224,d1334,d2334,d1323,d1424,d2434,d1434

l1214 = [p12*d1214,p14*d1214]
l1323 = [p13*d1323,p23*d1323]

l1224 = [p12*d1224,p24*d1224]
l1424 = [p14*d1424,p24*d1424]

l2324 = [p23*d2324,p24*d2324]
l1334 = [p13*d1334,p34*d1334]

l1213 = [p12*d1213,p13*d1213]

l1434 = [p14*d1434,p34*d1434]
l1314 = [p13*d1314,p14*d1314]

l1223 = [p12*d1223,p23*d1223]
l2434 = [p24*d2434,p34*d2434]

l2334 = [p23*d2334,p34*d2334]

# d1213 is 1 if the crossing index of lines 1 and 2 differs from that of
# lines 1 and 3  and line 4 doesn't cross line 1 between its points

# of intersection with lines 2 and 3
d1334 = if !(x13==x34) && ((r23-r13)*(r23-r34)>0) then 1 else 0

d2334 = if !(x23==x34) && ((r13-r23)*(r13-r34)>0) then 1 else 0
d1224 = if !(x12==x24) && ((r23-r12)*(r23-r24)>0) then 1 else 0

d1223 = if !(x12==x23) && ((r24-r12)*(r24-r23)>0) then 1 else 0
d1323 = if !(x13==x23) && ((r34-r13)*(r34-r23)>0) then 1 else 0

d1424 = if !(x14==x24) && ((r34-r14)*(r34-r24)>0) then 1 else 0
d2434 = if !(x24==x34) && ((r14-r24)*(r14-r34)>0) then 1 else 0

d1434 = if !(x14==x34) && ((r24-r14)*(r24-r34)>0) then 1 else 0

d1213 = if !(x12==x13) && ((r14-r12)*(r14-r13)>0) then 1 else 0
d1214 = if !(x12==x14) && ((r13-r12)*(r13-r14)>0) then 1 else 0

d1314 = if !(x13==x14) && ((r12-r13)*(r12-r14)>0) then 1 else 0
d2324 = if !(x23==x24) && ((r12-r23)*(r12-r24)>0) then 1 else 0

int numcovedge

numcovedge = d1213+d1223+d1224+d1214+d1314+d1334+d1323+d2324+d2334+d2434+d1434+d1424

int g1213,g1214,g1314,g2324,g1223,g1224,g1334,g2334,g1323,g1424,g2434,g1434
g1213 = if (((p12.1-p13.1)*(p12.2-p13.2)) < 0) then 0 else 1

g1214 = if (((p12.1-p14.1)*(p12.2-p14.2)) < 0) then 0 else 1
g1314 = if (((p13.1-p14.1)*(p13.2-p14.2)) < 0) then 0 else 1

g2324 = if (((p23.1-p24.1)*(p23.2-p24.2)) < 0) then 0 else 1
g1223 = if (((p12.1-p23.1)*(p12.2-p23.2)) < 0) then 0 else 1

g1224 = if (((p12.1-p24.1)*(p12.2-p24.2)) < 0) then 0 else 1
g1334 = if (((p13.1-p34.1)*(p13.2-p34.2)) < 0) then 0 else 1

g2334 = if (((p23.1-p34.1)*(p23.2-p34.2)) < 0) then 0 else 1
g1323 = if (((p13.1-p23.1)*(p13.2-p23.2)) < 0) then 0 else 1

g1424 = if (((p14.1-p24.1)*(p14.2-p24.2)) < 0) then 0 else 1
g2434 = if (((p24.1-p34.1)*(p24.2-p34.2)) < 0) then 0 else 1

g1434 = if (((p14.1-p34.1)*(p14.2-p34.2)) < 0) then 0 else 1

int r1213,r1214,r1314,r2324,r1223,r1224,r1334,r2334,r1323,r1424,r2434,r1434
r1213 = if ((r12-r13) < 0) then 0 else 1

r1214 = if ((r12-r14) < 0) then 0 else 1
r1314 = if ((r13-r14) < 0) then 0 else 1

r2324 = if ((r23-r24) < 0) then 0 else 1
r1223 = if ((r12-r23) < 0) then 0 else 1

r1224 = if ((r12-r24) < 0) then 0 else 1
r1334 = if ((r13-r34) < 0) then 0 else 1

r2334 = if ((r23-r34) < 0) then 0 else 1
r1323 = if ((r13-r23) < 0) then 0 else 1

r1424 = if ((r14-r24) < 0) then 0 else 1
r2434 = if ((r24-r34) < 0) then 0 else 1

r1434 = if ((r14-r34) < 0) then 0 else 1

int U1213,U1214,U1314,U2324,U1223,U1224,U1334,U2334,U1323,U1424,U2434,U1434
U1213 = g1213 * r1213 * d1213

U1214 = g1214 * r1214 * d1214
U1314 = g1314 * r1314 * d1314

U2324 = g2324 * r2324 * d2324
U1223 = g1223 * r1223 * d1223

U1224 = g1224 * r1224 * d1224
U1334 = g1334 * r1334 * d1334

U2334 = g2334 * r2334 * d2334
U1323 = g1323 * r1323 * d1323

U1424 = g1424 * r1424 * d1424
U1434 = g1434 * r1434 * d1434

U2434 = g2434 * r2434 * d2434

int u1213,u1214,u1314,u2324,u1223,u1224,u1334,u2334,u1323,u1424,u2434,u1434

u1213 = g1213 * (1-r1213) * d1213
u1214 = g1214 * (1-r1214) * d1214

u1314 = g1314 * (1-r1314) * d1314
u2324 = g2324 * (1-r2324) * d2324

u1223 = g1223 * (1-r1223) * d1223
u1224 = g1224 * (1-r1224) * d1224

u1334 = g1334 * (1-r1334) * d1334
u2334 = g2334 * (1-r2334) * d2334

u1323 = g1323 * (1-r1323) * d1323
u1424 = g1424 * (1-r1424) * d1424

u1434 = g1434 * (1-r1434) * d1434
u2434 = g2434 * (1-r2434) * d2434

int v1213,v1214,v1314,v2324,v1223,v1224,v1334,v2334,v1323,v1424,v2434,v1434

v1213 = (1-g1213) * (1-r1213) * d1213

v1214 = (1-g1214) * (1-r1214) * d1214
v1314 = (1-g1314) * (1-r1314) * d1314

v2324 = (1-g2324) * (1-r2324) * d2324
v1223 = (1-g1223) * (1-r1223) * d1223

v1224 = (1-g1224) * (1-r1224) * d1224
v1334 = (1-g1334) * (1-r1334) * d1334

v2334 = (1-g2334) * (1-r2334) * d2334
v1323 = (1-g1323) * (1-r1323) * d1323

v1424 = (1-g1424) * (1-r1424) * d1424
v1434 = (1-g1434) * (1-r1434) * d1434

v2434 = (1-g2434) * (1-r2434) * d2434

int V1213,V1214,V1314,V2324,V1223,V1224,V1334,V2334,V1323,V1424,V2434,V1434
V1213 = (1-g1213) * r1213 * d1213

V1214 = (1-g1214) * r1214 * d1214
V1314 = (1-g1314) * r1314 * d1314

V2324 = (1-g2324) * r2324 * d2324
V1223 = (1-g1223) * r1223 * d1223

V1224 = (1-g1224) * r1224 * d1224
V1334 = (1-g1334) * r1334 * d1334

V2334 = (1-g2334) * r2334 * d2334
V1323 = (1-g1323) * r1323 * d1323

V1424 = (1-g1424) * r1424 * d1424

V1434 = (1-g1434) * r1434 * d1434
V2434 = (1-g2434) * r2434 * d2434

%donald

int in12, in23, in24, in34, in14, in13
in13 = U1314+U1334+U1323+u1213+v1213+V1334+V1323+V1314

in23 = U2324+U2334+u1223+u1323+v1323+v1223+V2324+V2334
in24 = U2434+u2324+u1224+u1424+V2434+v2324+v1224+v1424

in34 = u1334+u2334+u1434+u2434+v1334+v2334+v1434+v2434
in14 = U1424+U1434+u1214+u1314+V1424+V1434+v1214+v1314

in12 = U1213+U1214+U1223+U1224+V1224+V1223+V1213+V1214

int V1213,V1214,V1314,V2324,V1223,V1224,V1334,V2334,V1323,V1424,V2434,V1434
V1213 = (1-g1213) * r1213 * d1213

V1214 = (1-g1214) * r1214 * d1214
V1314 = (1-g1314) * r1314 * d1314

V2324 = (1-g2324) * r2324 * d2324

V1223 = (1-g1223) * r1223 * d1223
V1224 = (1-g1224) * r1224 * d1224

V1334 = (1-g1334) * r1334 * d1334
V2334 = (1-g2334) * r2334 * d2334

V1323 = (1-g1323) * r1323 * d1323
V1424 = (1-g1424) * r1424 * d1424

V1434 = (1-g1434) * r1434 * d1434
V2434 = (1-g2434) * r2434 * d2434

%donald
int in12, in23, in24, in34, in14, in13

in13 = U1314+U1334+U1323+u1213+v1213+V1334+V1323+V1314
in23 = U2324+U2334+u1223+u1323+v1323+v1223+V2324+V2334

in24 = U2434+u2324+u1224+u1424+V2434+v2324+v1224+v1424
in34 = u1334+u2334+u1434+u2434+v1334+v2334+v1434+v2434

in14 = U1424+U1434+u1214+u1314+V1424+V1434+v1214+v1314

in12 = U1213+U1214+U1223+U1224+V1224+V1223+V1213+V1214

Interesting comparisons …

• the lines script as not object-oriented –
most of its core observables are 

associated with relationships that cannot 

be identified with any single object

• the lines script as resembling a functional 

programming script in its homogeneity (“all 

definitions”), but associated with directly 
accessible external observables …



8

Features of the lines model …

• directly accessible external observables:

z123 = 1 means that line 1 crosses line 2

before line 3 crosses line 2 in L-to-R order

• the ideal geometry as associated with a 

mode of interaction with the model (subject 

to being able to enhance the accuracy of 

arithmetic indefinitely on-the-fly)

Programming from two perspectives

• a program is conceived with reference to 
how its behaviour participates in a wider 
process with functional objectives: states 
emerge as the side-effects of behaviours

• a computer artefact is developed so as to 
reflect the agency within an environment: 
the artefact and environment evolve until 
(possibly) program-like processes emerge

COMPUTERUSER

PROCESS

Conventional programs as embedded in 

processes of interaction with the world

Programs are understood in relation to 

processes in their surrounding environment 

ARTEFACTMODELLER

CONTEXT

Artefacts and their referents as sculpted out 

of open interaction with the world

States of the referent and the artefact are 

connected through experience of 

interacting with the referent and the artefact

REFERENT



9

… but this presents some philosophical challenges …

An EM perspective on programming  …

… some problematic issues

In focusing on current state-as-experienced, 
we have some problems to resolve:

• Behaviour raises questions about agency: 

what is the status of a “computer” action?

• How do we deal with state-as-experienced 

in semantic terms?

• How do we make science of activities in 

which human interpretation is so critical?


