
A functional program to play 3-D Noughts-and-Crosses

Functional programming (FP)

Miranda is a functional programming language that was developed by David Turner in 1985

• Program transforms input to output via a (typically complex) function: O = F(I)

"complex" means "specified using a sophisticated logical formalism"

• Conceiving a program as a function offers a succint mathematical abstract view

• The Miranda interpreter is an ingenious evaluator of functions

Literate programming: human readability as a primary goal

Input, output and interaction in FP

A standard function takes an input and returns an output without intervention

To capture interaction, as in playing "3D OXO", need to elaborate notion of function and

evaluation:

• Think of an entire game as converting "a stream of inputs" to a "stream of outputs"

• View as functional program (F) mapping stream of inputs (I) to stream of outputs (O)

Need to consider that

• the stream of inputs is not given in advance - is decided as game is played

• the stream of outputs has to be computed incrementally, so the player gets feedback

The Miranda interpreter evaluates F ("executes the program F") using lazy evaluation

How a "3D OXO" game is represented as a function:

The name of the functional program is "oxo". The function oxo is built up out of transactions,

each of which is a function that transforms a string that represents the entire history of the

game so far into a string that represents the history of the game so far after a single move has

been made (if legal) or ventured (if illegal)

The mechanism for constructing oxo from the constituent transaction functions is explained

in more detail in the italicised text added to the full listing of oxo.m as a "literate program".

Some key ideas regarding FP in relation to definitive programming (as in oxoJoy1994 for

instance) are:

• The string that represents the history of the game so far includes as sub-segments

representations of all the board positions to date by strings of characters, separated

by messages such as prompts, error and game status messages ... this approach

abstracts away what - from an EM perspective - are very significant distinctions

between observables such as board positions and error messages, and also abstracts

away state change and agency.

• The difficulty of understanding the connection between the symbolic data references

in the code and commonsense human-readable concepts (such as "who is the current

player?") is ... illustrated [by the fact that t]here are several examples of symbols in

the program code and in the comments on the program that don't relate closely to

their nearest external counterparts: e.g. 'squares' for 'cells', 'rows' for 'lines of cells',

or inputdatum for tokens that only sometimes originate as direct player input (cf.

quickmove which is generated "by the computer player"). The casual way in which

terms of reference are framed is symptomatic of the mathematical mindset that

functional programming invokes. It reflects the fact that almost all the nuances about

the meanings of observables are dissolved in this style of programming, and the

simple observables that we associate with a game get to be smeared into their traces

when subjected to the standard and circumscribed behaviour in which they

participate.

Reflections

• Are similarities between definitive programming and FP: functional programs can be

viewed as definitive scripts

• Script construction is linked with emerging program comprehension

• Difficult to see variables in the FP script as associated with observables in actual

OXO game:

Highly artificial modes of observation relying on ritualised patterns of interaction

o No sense of the open-ness to non-standard interaction that every day observables have

• Poor connection between components of functional program and familiar everyday

observables undermines readability

Concluding thought

A formal specification of state, however sophisticated, is not as expressive as an

appropriately constructed interactive artefact where the detailed understanding or

experiencing of a specific situation is concerned.

