
1

CS405 Intro to EM

Modelling with definitive scripts

Empirical Modelling as Empirical Modelling as ConstructionConstruction

Background and History

A definitive notation = a simple formal language in

which to express definitions

A set of definitions is called a definitive script

Definitive notations different according to

 types of the variables that appear on the LHS of

definitions and operators that can be used in

formulae on the RHS. These are termed the

underlying algebra for the notation.

The definitive notation concept

Todd relational algebra query language ISBL

Brian & Geoff Wyvill's interactive graphics languages

spreadsheets

style definition in word processors

The term "definitive notation“ first introduced by Beynon

“Modelling with Definitive Scripts” is fundamental to EM

[Rungrattanaubol’s PhD Thesis: A treatise on MWDS]

Related developments

spreadsheets with visualisation mechanisms

spreadsheet-style environments for end-user

programming (e.g. AgentSheets)

generalised spreadsheet principles in application-

builders (e.g. ACE), development tools (WPF)

“object-linked embedding" in Windows

What does definitive mean?

definition has a technical meaning in this module

 definitive means "definition-based"

"definitive" means

 more than informal use of a programming technique.

Definitive notations are

 a means to represent state by definitive scripts

and how scripts are interpreted is highly significant.

2

Significance of interpretation …

Miranda can be viewed as a definitive notation over an

underlying algebra of functions and constructors

BUT this interpretation emphasises

 program design as a state-based activity

rather than

 declarative techniques for program specification.

[cf. ‘admira’ application and contrast with KRC]

Definitive notations

The tkeden interpreter uses many definitive notations

eden: scalars, strings, lists

DoNaLD: for 2-d line drawing

SCOUT: displays, windows, screen locations, attributes

EDDI: relational tables and operators

ARCA: edge-coloured digraphs in n-space

ARCA

Donald

Scout

EDDI (relational tables) and Eden (scalars / strings / lists) underlie

Donald

DoNaLD: a definitive

notation for line-drawing

Donald = a definitive notation for 2-d line-drawing

underlying algebra has 6 primary data types:

integer, real, boolean, point, line, and shape

A shape = a set of points and lines

A point is represented by a pair of scalar values {x,y}.

Defining shapes in DoNaLD

Two kinds of shape variable in DoNaLD:

these are declared as shape and openshape

An openshape variable S is defined componentwise

as a collection of points, lines and subshapes

Other mode of definition of shape in DoNaLD is

 shape RSQ

 RSQ=rotate(SQ)

- illustrated in definition of vehicle in VCCS model.

3

Agents and semantics

Archetypal use of MWDS: human-computer interaction

“single-agent modelling”

Variables in a definitive script represent

- the values that the user can observe

- the parameters that the user can manipulate

- the way that these are linked indivisibly in change

definitive script can model physical experiments

[cf the role of spreadsheets in describing and predicting]

int width, length

point NW, NE, SW, SE

line N1, N2, S, E, W

openshape door

within door {

 point hinge, lock

 line door

 int width

 boolean open

}

openshape table

within table {

 int width, length

 point NW, NE, SW, SE

 line N, S, E, W

 openshape lamp

 within lamp {

 point centre

 int size, half

 circle base

 line L1, L2, L3, L4, L5, L6, L7, L8

 }

} roomYung1989

About Definitive Scripts

Modelling with different motivations

Script of

definitions
room.d “Room as EM

teaching

artefact”

“Room as

architectural

drawing”

“Room as physical

artefact with mass

in time and space”

Script with specific range of interactions

roomviewerYung1991

roomYung1989

Donald

Scout

room3dMacDonald1998

graphicspresHarfield2007

4

room3dsasamiCarter1999

About Definitive Scripts

Observables, Dependency, Agency

The observables, dependencies and agency

that are topical relate to the situation and the

way in which a script is being interpreted.

In the architectural drawing, don’t observe time.

In the physical room, observe mass, time, force.

In teaching EM, we observe the screen display

itself and seek to interpret “absurd” definitions

About Definitive Scripts

Observables

Observables are entities

whose identity is established through experience

whose current status can be reliably captured by

experiment

Can be physical, scientific, private, abstract,

socially arbitrated, procedurally defined etc.

About Definitive Scripts

Dependency and Agency

 An agent is an observable (typically composed

of a family of co-existing observables) that is

construed to be responsible for changes to the

current status of observables

 A dependency is a relationship between

observables that - in the view of a state-

changing agent - expresses how changes to

observables are indivisibly linked in change

About Definitive Scripts

Single Agent modelling

 In the primary and most primitive form of
Empirical Modelling, the modeller is the only
state-changing agent – though they may act in
the role of different agents: e.g. room user or
designer, architect, Empirical Modelling lecturer.

 The dependencies between observables are
then those that are experienced by the modeller
acting in the situation: they express the way in
which changes to observables are connected.

About Definitive Scripts

Negotiated and evolving interpretations

The situation surrounding the interpretation of a

script is never completely closed or well-specified.

The modeller always has to exercise discretion to

achieve a degree of closure. Situations can blend.

Definitions stabilise as meanings are negotiated.

Stable definitions reflect established experience.

Skills and insights can give rise to new definitions.

5

About Definitive Scripts

Illustrative examples

Definitions stabilise as meanings are negotiated.

The model of the desk drawer gets improved.

Stable definitions reflect established experience.

The door location and mechanism gets fixed.

Skills and insights can give rise to new definitions.

We connect the door opening with the light coming

on, or learn to use a touch-sensitive switch.

Introduction to EDEN

From a practical perspective …

Background

EDEN interpreter due to Y W (Edward) Yung (1987)

Designed for UNIX/C environment

 EDEN = evaluator for definitive notations

"hybrid" tool = definitive + procedural paradigms

… essential to drive UNIX utilities and hw devices

Extensions by Y P (Simon) Yung, Pi-Hwa Sun,
Ashley Ward, Eric Chan and Ant Harfield

The EDEN interpreter as an engine /evaluator for definitive notations

Line

drawing

Screen

layout

Relational

tables

Geometric

modelling

ARCA

Angel

The use of the word “definitive”

definitive = definition-based

a definitive notation = a notation within which

definitions of variables can be made

a definitive script = a set of definitions

expressed in one or more definitive notations

6

eden

scout donald

SCRIPT

INTERNAL AND EXTERNAL STATE

The basic architecture of the EDEN interpreter Interpreting the eden notation

The input window

%eden, %donald, %scout radio buttons

The “feedback” window

The “feedback” window

- detachable via the View menu

Accept

The input window

Basic EDEN interaction

Use the File option to include scripts and to save

the history of interaction

Use the View option to inspect the current contents

of the script and the command history

Use the Help option to get quick reference

information for eden, donald and scout

Use the Accept button (or alt-a) to process script in

the input window

Use shortcuts (alt-p, alt-n) to recall previous input

Basic characteristics of EDEN 1

The eden notation uses C-like

• syntactic conventions and data types

• basic programming constructs:

 for, while, if and switch

Types: float, integer, string, list.

Lists can be recursive and need not be

homogeneous in type. Comments are

prefaced by ## or enclosed in /* */.

Basic characteristics of EDEN 2

Two sorts of variables in eden:

 formula and value variables.

Formula variables are definitive variables.

Value variables are procedural variables.

The type of an eden variable is determined

dynamically and can be changed by

assignment or redefinition.

7

Programming / modelling in EDEN

The three primary concepts in EDEN are:

 definition

 function

 action

Informally

 definition ~ spreadsheet definition

 function ~ operator on values

 action ~ triggered procedure

Definitions in eden

A formula variable v can be defined via

 v is f(a,b,c);

EDEN maintains the values of definitive

variables automatically and records all the

dependency information in a definitive script.

Yellow text indicates eden keywords

Functions in eden

Functions can be defined via

func F

/* function to compute result = F(a,b,...,c) */

{

 para a, b, ..., c /* pars for the function */

 auto result, x, y, …, z /* local variables */

 <sequence of assignments and constructs>

 return result

}

Actions in eden

Actions can be defined via

proc P : r, s, …, t

/* proc triggered by variables r, s, …, t */

{

 auto x, y, …, z /* local variables */

 <sequence of assignments and definitions>

}

Action P is triggered whenever one of its triggering
variables r, s, … , t is updated / touched

Basic concepts of EDEN 1

Definitions are used to develop a definitive

script to describe the current state: change of

state is by adding a definition or redefining.

Functions are introduced to extend the range

of operators used in definitions.

Actions are introduced to automate patterns

of redefinition where this is appropriate.

Evaluator for DEfinitive Notations

Definitions are used to develop a definitive script to

describe the current state: change of state is by

adding a definition or redefining.

Functions are built-in for the operators in the

underlying algebra of a definitive notation.

Actions are introduced to maintain the state

of the graphical/perceptual entities specified

by the definitive notation.

8

Basic concepts of EDEN 2

In model-building using EDEN, the key idea is
to first build up definitive scripts to represent
the current ‘state-as-experienced’.

You then refine the script through observation
and experiment, and rehearse meaningful
patterns of redefinition you can perform.

Automating patterns of redefinition creates
‘programs’ within the modelling environment

Standard techniques in EDEN

Interrogating values and current definitions

of variables in eden. To display:

• the current value of an eden variable v,

invoke the procedure call

 writeln(v)

• the defining formulae & dependency

status of v, invoke the query

 ?v;

Typical EDEN model development

Edit a model in one window (e.g. using Textpad)

and simultaneously execute EDEN in another

Cut-and-paste from editor window into

interpreter window.

In development process, useful to be able to

undo design actions: restore scripts of

definitions by re-entering the original definitions.

To record the development history comment out

old fragments of scripts in the edited file.

Managing EDEN files

Useful to build up a model in stages using

different files.

Can include files using

 include("filename.e");

or via the menu options in the input window.

Can consult / save entire history of interaction.

System also saves recent interaction histories.

About Definitive Scripts

Modelling with Definitive Scripts

9

About Definitive Scripts

Definitive scripts

Use scripts of definitions to represent state

Use redefinition to specify change of state

Scripts make use of definitive notations:

• DoNaLD - line drawing

• SCOUT - window layout

• ARCA - combinatorial graphs

Each notation is oriented towards a different metaphor

About Definitive Scripts

Definitive notations

Definitive notations are simple languages within which

it is possible to formulate definitions for variables

(“observables”) of a particular type.

A definitive notation is defined by

• an underlying set of data types and operators

• a syntax for defining observables of these types.

Review/illustrate key features of DoNaLD and SCOUT

About Definitive Scripts

DoNaLD data types

Donald is a definitive notation for 2-d line-drawing

Its underlying algebra has 6 primary data types:

integer, real, boolean, point, line, and shape

A shape = a set of points and lines

A point is represented by a pair of scalar values {x,y}.

Points can be treated as position vectors: they can be

added (p+q) and multiplied by a scalar factor (p*k)

A line [p,q] is a line segment joining points p and q

About Definitive Scripts

DoNaLD operators

The DoNaLD operators include:

 arithmetic operators:

 + * div float() trunc() if ... then ... else ...

 basic geometric operators:

 .1 .2 .x .y {,} [,] + *

 dist() intersects() intersect()

 translate() rot() scale()

 label() circle() ellipse()

A DoNaLD file should begin with a "%donald"

About Definitive Scripts

declaring (NB) and defining points and lines

point o, p, q, m
line l

l = [p,q]

m = (p+q) div 2

line om

new declarations can be introduced at any stage

o = {0,0}

om = [o,m]

.....

DoNaLD syntax – points and lines

p

q

o = {0,0}

l = [p,q]

om = [o,m]
m

About Definitive Scripts

openshape S

within S {
 int m # this is equivalent to declaring int S/m outside S

 point p, q

 openshape T

 p = {m, 2*m}

 within T {

 point p, q # this point has the identifier S/T/p

 p, q = ~/q, ~/p

 # a multiple definition: p = ~/q and q=~/p

 # ~/... refers to the enclosing context for T

 # viz. S, so that ~/p refers to the variable S/p
.....

}

...

}

DoNaLD syntax – shapes

10

About Definitive Scripts

Can define shapes in another way also: e.g.

 shape rotsquare = rotate(SQ,….)

where SQ is defined to be a square

The “within X { …” context is reflected in the input
window in EDEN

A syntax error in a ‘within’ context resets to the root
context …

… there are NO SEMI-COLONS (;) in DoNaLD !!!

DoNaLD extras

About Definitive Scripts

SCOUT types

SCOUT is a definitive notation for screen layout

Its primary data type is the window

Other types include: display (collection of
windows, ordered according top to bottom);

integer, point and string.

Windows are generally used to display text or
DoNaLD pictures.

About Definitive Scripts

SCOUT screen definition

Overall concept

 a SCOUT script defines the current computer screen state

 screen is a special variable of type display

 the display is made up out of windows

Simplest definition of screen has the form

 screen = < win1 / win2 / win3 / win4 / win5 / >

where ordering of windows determines how they overlay

Alternatively can define screen as union of displays

 screen = disp1 & disp2 & disp3 & disp4 &

About Definitive Scripts

SCOUT window definitions

A SCOUT window definition takes the form

 window X = {

 fieldname1: …

 fieldname2: …

 …

 }

where the choice of fieldnames depends on the

nature of the window content.

About Definitive Scripts

Defining a

window to

hold a

DoNaLD

picture

About Definitive Scripts

point p1 = {25, 100};

point q1 = {225, 300};

window don1 = {

 box: [p1, q1],

 pict: "view",

 type: DONALD,

 border: 1

 bgcolor: “green”

 sensitive: ON

};

locations of points are in pixels from top left of screen

coordinates of DONALD picture {0,0} to {1000, 1000}

A simple SCOUT DONALD-window

p1 = {25,100}

q1 = {225, 300}

Window is sensitive to clicks

It is 200 pixels by 200 pixels

Picture as

defined in

DoNaLD

viewport

11

About Definitive Scripts

window don2 = {

 box: [p1, q1],

 pict: "view",

 type: DONALD,

 xmin: zoomPos.1 - zoomSize/2,

 ymin: zoomPos.2 - zoomSize/2,

 xmax: zoomPos.1 + zoomSize/2,

 ymax: zoomPos.2 + zoomSize/2,

 border: 1

 sensitive: ON

}

Another SCOUT DONALD-window

p1 = {25,100}

q1 = {225, 300}

Picture as

defined in

DoNaLD

viewport

p1 = {25,100}

q1 = {225, 300}

Picture as

defined in

DoNaLD

viewport

Display picture in the region

{xmin, ymin} to {xmax, ymax}

About Definitive Scripts

Defining a

window to

hold text

About Definitive Scripts

A simple SCOUT TEXT-window

window doorButton = {

 frame: ([doorButtonPos, 1, strlen(doorMenu)]),

 string: doorMenu,

 border: 1

 sensitive: ON

};

string doorMenu = if _door_open then "Close

Door" else "Open Door" endif;

About Definitive Scripts

SCOUT extras

When aspects of the screen are undefined by
the SCOUT script, it will not be drawn / redrawn

Sensitive SCOUT windows generate definitions
of associated mouseButton variables: they
supply information about the mouse state and
location & can be used to trigger EDEN actions

Mouse clicks show up in the command history

About Definitive Scripts

SCOUT & DoNaLD extras

By default, a DoNaLD picture is displayed in a
system generated SCOUT window, and has
coordinates between {0,0} and {1000,1000}

SCOUT observables can be accessed in EDEN
by the same names

A DoNaLD observable X/t can be accessed in
EDEN and SCOUT by _X_t etc.

About Definitive Scripts

eden

scout donald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating donald to eden

point SW

SW = {100,100}

NE = SW + {width, length}

_SW is cart(100,100)

… = [‘C’,100,100]

proc P_SW : _SW {

 redraw point SW

}

A_SW is “attributes”;

12

About Definitive Scripts

eden

scout donald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating donald to eden

point SW

SW = {100,100}

NE = SW + {width, length}

_SW is cart(100,100)

_NE is vector_add (

_SW, cart(width, length)

);

About Definitive Scripts

eden

scout donald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating donald to eden

within table {

 point SW

 SW = {10,10}

_table_SW is cart(10,10)

proc P_table_SW: … {…};

A_table_SW is “…”;

About Definitive Scripts

eden

scout donald

SCRIPT

INTERNAL AND EXTERNAL STATE

Translating scout to eden

display basicScreen =
<tblHeader / tblUp / …>;

window tblUp;

basicScreen

is [tblHeader, tblUp, …];

tblUp is […];

About Definitive Scripts

Examples of definitive notations

Notation

eden

donald

scout

arca

sasami

eddi

Basis for underlying algebra

scalars, recursive lists, strings

points, lines, shapes

windows, displays

(window = template + content)

diagrams, vertices, incidences

polygonal meshes, renderings

relational database tables and views

Each notation is adapted to the metaphorical

representation of different kinds of observable

