
03/11/2013

1

EM and the Development Process

To what extent can techniques such as agile development and scripting
resolve the problems of meeting users' evolving requirements?

Can the demands of users of the web, mobile devices and embedded
systems for ways to customise applications flexibly in the stream-of-
thought be addressed within the conceptual framework of software

development as currently understood?

Observables

Observables are entities

• whose identity is established through

experience

• whose current status can be reliably captured

by experiment

Can be physical, scientific, private, abstract,

socially arbitrated, procedurally defined etc.

Dependency and Agency

• An agent is an observable (typically composed of
a family of co-existing observables) that is
construed to be responsible for changes to the
current status of observables

• A dependency is a relationship between
observables that - in the view of a state-changing
agent - expresses how changes to observables are
indivisibly linked in change

Agents

Agents are responsible for state-changes:
– meta-agents: e.g. the model builder
– agents determining model behaviour

Observables mediate agent actions/interactions

Use ‘LSD notation’ to specify perceptions
and protocol (= privileges) of agents

Examples

– meta-agent: software developer; architect
– agent: users, devices; room user, door

03/11/2013

2

Virtues of a definitive script

- represents view (cf spreadsheet)
- variables correspond to observables
- hides invisible activity
- can represent indivisibility in action

... when interpreted with agent protocol

- allows experimental basis of knowledge
- reflects different status of parameters

... supports open-ended incremental and

distributed development

Roles for modelling with definitive scripts

Definitive scripts support artefacts that help developers

- to identify reliable interactions with their environment

- to recognise when there is a working understanding

- enable complex co-operative behaviour

- to construe complex system behaviour as agent interaction

… a formal stance neglects the empirical basis for knowledge

of reliable systems that embraces all such activities

EM vs traditional modelling

• conflate concerns

• represent via metaphor

• support ambiguity

• encourage customisation

• expose empirical roots

• are shaped by construal

• separate concerns

• represent symbolically

• expect/impose precision

• promote standardisation

• hide empirical foundation

• discard explanation

… Key concept: Modelling based on ‘definitive scripts’

Two emphases

• Empirical Modelling encourages us to consider
programming in a holistic way, using similar
principles to deal with the entire process of
development from conception to
customisation and use

• It also has a means to represent the specific
activity that is captured by a traditional
program (a “pseudo-program”)

Traditional programming

Requirements
capture and
specification

Program design
implementation

maintenance

Use affordances
interface culture

Identifying agency
in the machine-like

components
and in the human

context for use

Framing goals
for the design
protocols for

interaction and
interpretation

e.g. devise UML

constructing
and programming
the machine-like

components

designing program
by identifying

objects and functions

technical interface
development

e.g. writing Java code

human factors
study

interface design

empirical studies

of use

prototyping

e.g. goals, operators,
methods (GOMS)

evaluation

specification

user interface

03/11/2013

3

Empirical Modelling

Requirements
capture and
specification

Program design
implementation

maintenance

Use affordances
interface culture

develop scripts
in isolation

as “furry blobs”
that represent

the observables
and dependencies

associated with
putative

machine-like
components

and
human interactions
and interpretations

identify and document
reliably

reproducible
sequences of
redefinition /

chains of “furry blobs”
that correspond to

programmable
automatable

machine behaviours
and ritualisable

human behaviours
and interfaces

exercise, explore,
customise, revise

and adapt
sequences of redefinition

and interpretation
to reflect emerging

and evolving patterns
of interaction and

interpretation;
extend and augment

observables to support
additional functionalities

combining scripts

Rethinking programming …

… formal specification from an
observation-oriented perspective

Programming from two perspectives

• a program is conceived with reference to how
its behaviour participates in a wider process
with functional objectives: states emerge as
the side-effects of behaviours

• a computer artefact is developed so as to
reflect the agency within an environment: the
artefact and environment evolve until
(possibly) program-like processes emerge

COMPUTER USER

PROCESS

Conventional programs as embedded in
processes of interaction with the world

Programs are understood in relation to
processes in their surrounding environment

ARTEFACT MODELLER

CONTEXT

Artefacts and their referents as sculpted out of
open interaction with the world

States of the referent and the artefact are
connected through experience of interacting
with the referent and the artefact

REFERENT

03/11/2013

4

Objects and dependencies

• An object corresponds to a particular way of
associating observables: grouping together
observables according to whether they exist
concurrently

• A dependency links observables according to
how they are linked in change: whether
making a change to the value of one
observable necessarily entails changing others

Object model vs.
account of observation

 An account of observation is in some respects
a more primitive concept than an object
model: it entails fewer preconceptions about
what might be observed …

 “Definitive scripts are neutral

wrt agent's views & privileges”

Object model vs.
account of observation 2

 Definitive script expresses different agent views
and privileges to transform

 (cf. subject-oriented programming)

“What architect can do vs what user can do”

… highlights how the script affords views of and
access to possible transformations

Objects vs observations 1

A definitive script

 represents the atomic transformations of a
geometric symbol

 DoNaLD room can be transformed through
redefinition in ways that correspond ‘exactly’ to the
observed patterns of change associated with opening
a door, or moving a table

Objects vs observations 2

Thesis:

• set of atomic transformations of a symbol captures
its semantics [cf. Klein's view of a geometry as “the
study of properties invariant under a family of
transformations”]

• Illustration via a geometric pun (demo)

03/11/2013

5

Is the DoNaLD room an object in the class-
based OOP sense? 1

Can view each room transformation as a method for
the object

BUT

 definitive script is an object specification

only if

 set_of_transformations_performed_on_room is
circumscribed

Is the DoNaLD room an object in the class-
based OOP sense? 2

Circumscription creates objects

BUT

 a definitive script merely reflects observed latent
transformations

Comprehending / designing an object = knowing /
determining everything we can do with it

BUT

 definitive script doesn't circumscribe the family of
transformations that we can apply

From logic to experience

• the computer enables us to use logical
constructs to specify relationships that admit
reliable interpretations and support robust
physical realisations

• human skill and discretion plays a crucial role
in crafting ritualisable experiences

• NB classical computer science doesn’t take
explicit account of robust physical realisations
or ritualisable experience

From experience to logic?

• open-ended interaction with what is
experienced is a means to representing with a
high degree of realism and subtlety (cf. the
strained representation of observables in the
Miranda 3D OXO)

• mathematical concepts such as abstract lines
as “realised” in this fashion

linesBeynon1991

03/11/2013

6

The linesBeynon1991 script …
real sc,size
point O,Oa,Ob
O,Oa,Ob={500,500},O-{size,size},O+{size,size}
size,sc = 380.0,2*size
real a12,a23,a34,b12,b23,b34
point A1,A2,A3,A4,B1,B2,B3,B4
line l1,l2,l3,l4
a12 and b12 determine the distances between the L and R ends of lines 1 and 2
a12=1.0
a23=5.0
a34=2.0
b12=2.0
b23=5.0
b34=1.0
A1 and B1 are the left and right endpoints of line 1
A1=Oa
A2=Oa+{0, a12 div (a12+a23+a34)}*sc
A3=Oa+{0,(a12+a23) div (a12+a23+a34)}*sc
A4=Oa+{0,(a12+a23+a34) div (a12+a23+a34)}*sc
B1=Ob
B2=Ob-{0,(b12) div (b12+b23+b34)}*sc
B3=Ob-{0,(b12+b23) div (b12+b23+b34)}*sc
B4=Ob-{0,(b12+b23+b34) div (b12+b23+b34)}*sc
l1=[A1,B1]
l2=[A2,B2]
l3=[A3,B3]
l4=[A4,B4]

label j1,j2,j3,j4,k1,k2,k3,k4
j1 = label("1",A1)
j2 = label("2",A2)
j3 = label("3",A3)
j4 = label("4",A4)
k1 = label("1",B1)
k2 = label("2",B2)
k3 = label("3",B3)
k4 = label("4",B4)

this is the DoNaLD script that defines Figure 1(b) in the viewport "POSET"
viewport POSET

r12 determines the LR position of the line 1,2 intersection
x12 is to be the crossing index of the line 1,2 intersection
eg this is 1 if lines 1 and 2 are the top pair at their pt of Xn
real r12,r23,r34,r13,r24,r14
int x12,x23,x34,x13,x24,x14
r12,r23,r34 = a12 div b12 , a23 div b23, a34 div b34
r13 = (a12+a23) div (b12+b23)
r24 = (a23+a34) div (b23+b34)
r14 = (a12+a23+a34) div (b12+b23+b34)

z123 = 1 if line 1 crosses line 2 before line 3 crosses line 2 in LR order
int z123,z124,z134,z234
int Z123,Z124,Z134,Z234
z123 = if r12<r23 then 1 else 0
z124 = if r12<r24 then 1 else 0
z134 = if r13<r34 then 1 else 0
z234 = if r23<r34 then 1 else 0
Z123 = if r13<r12 then 1 else 0
Z124 = if r14<r12 then 1 else 0
Z134 = if r14<r13 then 1 else 0
Z234 = if r24<r23 then 1 else 0

x12 calcs the crossing index for lines 1 and 2
"by default" this is 1 but is incremented if line 3 or 4 crosses line 1
before line 2 crosses line 1 in LR order
x12 = 1+Z123+Z124
x13 = 1+(1-Z123)+Z134
x14 = 1+(1-Z124)+(1-Z134)
x23 = 2-z123+Z234
x24 = 2-z124+(1-Z234)
x34 = 3-z134-z234

these are the points of the poset of intersections
v is a vertical, m a global magnification factor
int v,m
v,m=8,50
point orig,p12,p23,p34,p13,p24,p14
p12 = orig+{x12,r12*v}*m
p23 = orig+{x23,r23*v}*m
p24 = orig+{x24,r24*v}*m
p34 = orig+{x34,r34*v}*m
p14 = orig+{x14,r14*v}*m
p13 = orig+{x13,r13*v}*m
orig = {400,400}

Line l1213 occurs in the poset if the intersection of lines 1 and 2
and the intersection of lines 1 and 3 corresponds to a covering edge
Line l1213 is present if the parameter d1213 evaluates to 1
it otherwise contracts to the origin
line l1213,l1214,l1314,l2324,l1223,l1224,l1334,l2334,l1323,l1424,l2434,l1434
int d1213,d1214,d1314,d2324,d1223,d1224,d1334,d2334,d1323,d1424,d2434,d1434
l1214 = [p12*d1214,p14*d1214]
l1323 = [p13*d1323,p23*d1323]
l1224 = [p12*d1224,p24*d1224]
l1424 = [p14*d1424,p24*d1424]
l2324 = [p23*d2324,p24*d2324]
l1334 = [p13*d1334,p34*d1334]
l1213 = [p12*d1213,p13*d1213]
l1434 = [p14*d1434,p34*d1434]
l1314 = [p13*d1314,p14*d1314]
l1223 = [p12*d1223,p23*d1223]
l2434 = [p24*d2434,p34*d2434]
l2334 = [p23*d2334,p34*d2334]

d1213 is 1 if the crossing index of lines 1 and 2 differs from that of
lines 1 and 3 and line 4 doesn't cross line 1 between its points
of intersection with lines 2 and 3
d1334 = if !(x13==x34) && ((r23-r13)*(r23-r34)>0) then 1 else 0
d2334 = if !(x23==x34) && ((r13-r23)*(r13-r34)>0) then 1 else 0
d1224 = if !(x12==x24) && ((r23-r12)*(r23-r24)>0) then 1 else 0
d1223 = if !(x12==x23) && ((r24-r12)*(r24-r23)>0) then 1 else 0
d1323 = if !(x13==x23) && ((r34-r13)*(r34-r23)>0) then 1 else 0
d1424 = if !(x14==x24) && ((r34-r14)*(r34-r24)>0) then 1 else 0
d2434 = if !(x24==x34) && ((r14-r24)*(r14-r34)>0) then 1 else 0
d1434 = if !(x14==x34) && ((r24-r14)*(r24-r34)>0) then 1 else 0
d1213 = if !(x12==x13) && ((r14-r12)*(r14-r13)>0) then 1 else 0
d1214 = if !(x12==x14) && ((r13-r12)*(r13-r14)>0) then 1 else 0
d1314 = if !(x13==x14) && ((r12-r13)*(r12-r14)>0) then 1 else 0
d2324 = if !(x23==x24) && ((r12-r23)*(r12-r24)>0) then 1 else 0

int numcovedge
numcovedge = d1213+d1223+d1224+d1214+d1314+d1334+d1323+d2324+d2334+d2434+d1434+d1424

int g1213,g1214,g1314,g2324,g1223,g1224,g1334,g2334,g1323,g1424,g2434,g1434
g1213 = if (((p12.1-p13.1)*(p12.2-p13.2)) < 0) then 0 else 1
g1214 = if (((p12.1-p14.1)*(p12.2-p14.2)) < 0) then 0 else 1
g1314 = if (((p13.1-p14.1)*(p13.2-p14.2)) < 0) then 0 else 1
g2324 = if (((p23.1-p24.1)*(p23.2-p24.2)) < 0) then 0 else 1
g1223 = if (((p12.1-p23.1)*(p12.2-p23.2)) < 0) then 0 else 1
g1224 = if (((p12.1-p24.1)*(p12.2-p24.2)) < 0) then 0 else 1
g1334 = if (((p13.1-p34.1)*(p13.2-p34.2)) < 0) then 0 else 1
g2334 = if (((p23.1-p34.1)*(p23.2-p34.2)) < 0) then 0 else 1
g1323 = if (((p13.1-p23.1)*(p13.2-p23.2)) < 0) then 0 else 1
g1424 = if (((p14.1-p24.1)*(p14.2-p24.2)) < 0) then 0 else 1
g2434 = if (((p24.1-p34.1)*(p24.2-p34.2)) < 0) then 0 else 1
g1434 = if (((p14.1-p34.1)*(p14.2-p34.2)) < 0) then 0 else 1

int r1213,r1214,r1314,r2324,r1223,r1224,r1334,r2334,r1323,r1424,r2434,r1434
r1213 = if ((r12-r13) < 0) then 0 else 1
r1214 = if ((r12-r14) < 0) then 0 else 1
r1314 = if ((r13-r14) < 0) then 0 else 1
r2324 = if ((r23-r24) < 0) then 0 else 1
r1223 = if ((r12-r23) < 0) then 0 else 1
r1224 = if ((r12-r24) < 0) then 0 else 1
r1334 = if ((r13-r34) < 0) then 0 else 1
r2334 = if ((r23-r34) < 0) then 0 else 1
r1323 = if ((r13-r23) < 0) then 0 else 1
r1424 = if ((r14-r24) < 0) then 0 else 1
r2434 = if ((r24-r34) < 0) then 0 else 1
r1434 = if ((r14-r34) < 0) then 0 else 1

int U1213,U1214,U1314,U2324,U1223,U1224,U1334,U2334,U1323,U1424,U2434,U1434
U1213 = g1213 * r1213 * d1213
U1214 = g1214 * r1214 * d1214
U1314 = g1314 * r1314 * d1314
U2324 = g2324 * r2324 * d2324
U1223 = g1223 * r1223 * d1223
U1224 = g1224 * r1224 * d1224
U1334 = g1334 * r1334 * d1334
U2334 = g2334 * r2334 * d2334
U1323 = g1323 * r1323 * d1323
U1424 = g1424 * r1424 * d1424
U1434 = g1434 * r1434 * d1434
U2434 = g2434 * r2434 * d2434

int u1213,u1214,u1314,u2324,u1223,u1224,u1334,u2334,u1323,u1424,u2434,u1434
u1213 = g1213 * (1-r1213) * d1213
u1214 = g1214 * (1-r1214) * d1214
u1314 = g1314 * (1-r1314) * d1314
u2324 = g2324 * (1-r2324) * d2324
u1223 = g1223 * (1-r1223) * d1223
u1224 = g1224 * (1-r1224) * d1224
u1334 = g1334 * (1-r1334) * d1334
u2334 = g2334 * (1-r2334) * d2334
u1323 = g1323 * (1-r1323) * d1323
u1424 = g1424 * (1-r1424) * d1424
u1434 = g1434 * (1-r1434) * d1434
u2434 = g2434 * (1-r2434) * d2434

int v1213,v1214,v1314,v2324,v1223,v1224,v1334,v2334,v1323,v1424,v2434,v1434
v1213 = (1-g1213) * (1-r1213) * d1213
v1214 = (1-g1214) * (1-r1214) * d1214
v1314 = (1-g1314) * (1-r1314) * d1314
v2324 = (1-g2324) * (1-r2324) * d2324
v1223 = (1-g1223) * (1-r1223) * d1223
v1224 = (1-g1224) * (1-r1224) * d1224
v1334 = (1-g1334) * (1-r1334) * d1334
v2334 = (1-g2334) * (1-r2334) * d2334
v1323 = (1-g1323) * (1-r1323) * d1323
v1424 = (1-g1424) * (1-r1424) * d1424
v1434 = (1-g1434) * (1-r1434) * d1434
v2434 = (1-g2434) * (1-r2434) * d2434

int V1213,V1214,V1314,V2324,V1223,V1224,V1334,V2334,V1323,V1424,V2434,V1434
V1213 = (1-g1213) * r1213 * d1213
V1214 = (1-g1214) * r1214 * d1214
V1314 = (1-g1314) * r1314 * d1314
V2324 = (1-g2324) * r2324 * d2324
V1223 = (1-g1223) * r1223 * d1223
V1224 = (1-g1224) * r1224 * d1224
V1334 = (1-g1334) * r1334 * d1334
V2334 = (1-g2334) * r2334 * d2334
V1323 = (1-g1323) * r1323 * d1323
V1424 = (1-g1424) * r1424 * d1424
V1434 = (1-g1434) * r1434 * d1434
V2434 = (1-g2434) * r2434 * d2434

%donald
int in12, in23, in24, in34, in14, in13
in13 = U1314+U1334+U1323+u1213+v1213+V1334+V1323+V1314
in23 = U2324+U2334+u1223+u1323+v1323+v1223+V2324+V2334
in24 = U2434+u2324+u1224+u1424+V2434+v2324+v1224+v1424
in34 = u1334+u2334+u1434+u2434+v1334+v2334+v1434+v2434
in14 = U1424+U1434+u1214+u1314+V1424+V1434+v1214+v1314
in12 = U1213+U1214+U1223+U1224+V1224+V1223+V1213+V1214

int V1213,V1214,V1314,V2324,V1223,V1224,V1334,V2334,V1323,V1424,V2434,V1434
V1213 = (1-g1213) * r1213 * d1213
V1214 = (1-g1214) * r1214 * d1214
V1314 = (1-g1314) * r1314 * d1314
V2324 = (1-g2324) * r2324 * d2324
V1223 = (1-g1223) * r1223 * d1223
V1224 = (1-g1224) * r1224 * d1224
V1334 = (1-g1334) * r1334 * d1334
V2334 = (1-g2334) * r2334 * d2334
V1323 = (1-g1323) * r1323 * d1323
V1424 = (1-g1424) * r1424 * d1424
V1434 = (1-g1434) * r1434 * d1434
V2434 = (1-g2434) * r2434 * d2434

%donald
int in12, in23, in24, in34, in14, in13
in13 = U1314+U1334+U1323+u1213+v1213+V1334+V1323+V1314
in23 = U2324+U2334+u1223+u1323+v1323+v1223+V2324+V2334
in24 = U2434+u2324+u1224+u1424+V2434+v2324+v1224+v1424
in34 = u1334+u2334+u1434+u2434+v1334+v2334+v1434+v2434
in14 = U1424+U1434+u1214+u1314+V1424+V1434+v1214+v1314
in12 = U1213+U1214+U1223+U1224+V1224+V1223+V1213+V1214

Interesting comparisons …

• the lines script as not object-oriented – most
of its core observables are associated with
relationships that cannot be identified with
any single object

• the lines script as resembling a functional
programming script in its homogeneity (“all
definitions”), but associated with directly
accessible external observables …

Features of the lines model …

• directly accessible external observables:
 z123 = 1 means that line 1 crosses line 2
 before line 3 crosses line 2 in L-to-R order

• the ideal geometry as associated with a mode of
interaction with the model (subject to being able
to enhance the accuracy of arithmetic indefinitely
on-the-fly)

