Agenda suggested by Lab 1 ...

Making a multi-paradigm programming environment
coherent is a fundamental unresolved research problem.

Dealing with the relationship between the operational state-
based semantics and the declarative denotational semantics
is a challenge for classical programming.

The emphasis in classical computer science is on how
meanings can be made formal and non-negotiable ... in
contrast modern practices demand ways of thinking about
computing that acknowledge its dependence on specific
environments and human interpreters.

Empirical Modelling as Construction

ENVIRONMENT Context

MODELLER

i
Understanding !

correlated
experiment and observation
involving construal and referent

Construal Referent

ICOMPUTER DOMAIN

10/23/2013

Turing’s machine model

Machine models of a computer always have
* means to store data

—e.g objects in Java, files and variables in UNIX
* means to manipulate data

— e.g. methods in Java, processes in UNIX
* ways to program data manipulation

—e.g. JAVA programs, UNIX shell scripts

... contrast this with

"The classical answer” to What is a program?

A program is a recipe for action that computes
an input-output relationship

The Turing Machine model (1936)

* store is represented by an unbounded tape
* processor is represented by a read/write head
* program is represented by a set of rules

Suzanne Skinner (1996) / Britton (2011)
Java applet simulator at:
http://ironphoenix.org/tril/tm/

ATuring computation in progress ... recognising a odd length palindromes

State: 11

o) (o] resme| ow| seslome v

< 7T Talelels[a alelsls[a] T T T T I

Load new program Palindrome Detector v
Machine name Palindrome Detector
Initial tape position < > 0

Initial characters on tape | BABBBAABBBAB

Programming Clear Program Install Pragram

11 nar-blank characters on tape

Clear Message Bax

10/23/2013

ATuring computation in the halt state ... rejecting a non-palindromic string

State: H

start stop Resume step Spesd Slow v
< (Il TTTTTTTTITTIP

Load new program Palindrome Detector v

Mathine name Falindrome Detector
Initial tape position < > il

Initial characters ontape | BABBBA

Programming Clear Frogram Install Program

Leave one blank space before the string

Running,

Machine halted:
Halt state reached
17 fotal ransitions
2 non-blank characters on tape

Clear Message Box

The Church-Turing thesis

There is no computational model that is in principle
more powerful than the Turing machine ...

... all algorithmic data processing is equivalent to
Turing computation

... by this criterion, very simple notations can define
“a full programming language”

A procedural program explicitly expresses a recipe
as a sequence of actions ...

A problem with procedural programs ...
Procedural variable
- has a value that can be elusive e.g. when debugging

- always changing, possibly in ways that are hard to track

Procedural version of isprime

func factors {
para n;
auto r, result;
result = [];
for (r=1; r<=n/2; r++)
if (n % r == 0) result = result // [r];
return result;

}

func isprime {
para n;
return ((factors[n])# == 1);

Program (e.g.) by specifying the required input-
output relation in a mathematical form:
out = f(in)

This is called functional programming ("FP").

FP exploits a special-purpose interpreter that can
compute the function f

FP uses very powerful operators ("A - calculus") in order
to frame the function f

Functional programming (FP)
A “functional” program to compute prime numbers:

factors n = [r | r<-[1..n div 2]; n mod r = 0]
isprime q = (# factors q) = 1

functional = based on specifying functions
The functions in this context are

factors() and isprime()

The programming language is Miranda

Procedural version of isprime

func factors { factors n = [r | r<-[1..n div 2]; n mod r = 0]
paran;
auto r, result;
result = [];
for (r=1; r<=n/2; r++)
if (n % r == 0) result = result // [r];
return result;

}

func isprime { isprime q = (# factors q) = 1
paran;
return ((factors[n])# == 1);

Key virtues of declarative programming ...

it hides internal states of the computation
have referential transparency

frame computational problems in terms of the external
domain, not the computer

10/23/2013

Legacy of the TM concept of computation:
a highly abstract conception of programming

Not well-suited to “emerging computing”

- diverse and rich contexts for computer use
- non-standard devices, modes of interaction
- reactive systems
- real-time, distributed computing, concurrency

- new challenges for software development ...

BUT issues for declarative programming ...

Makes interaction tricky
‘lazy evaluation’ / dataflow as potential solutions

Supporting rich input-output challenging cf. oxo.m

Legacy of the TM concept of computation:
a highly abstract conception of programming

Not well-suited to “emerging computing”

- new challenges for software development ...
- computer + devices + human
- team work, user participation in design
- computer as instrument

Need software that is comprehensible and
manipulable even by the non-specialist / even
whilst its being constructed

Techniques to help address these goals ...

object-orientation

agent-based analysis and conception of systems
design patterns

service-oriented architecture

spreadsheet principles

10/23/2013

Going beyond classical programming

Characteristics of tools to be introduced in the module ...
they are concerned with modelling in which we

* observe meaningful things
* adopt a constructivist stance

« exploit an empirical approach

that we wish to reconcile / can be reconciled with the
more abstract, rationalist, theoretical framework that
characterises classical computer science

Reconceptualise by introducing the human dimension ... key
shift in emphasis towards questions such as:

? what is the experience of the people engaging with Turing
computation, procedural programs, functional programs etc.

Consider people's experience ('programmers', 'users', 'modellers’
or 'analysts' etc.) with reference to

* What are the significant things that they observe?
* How are they able to interact and manipulate?
* What is the context for their interaction and interpretation?

when they are engaged in some variety of programming / model-
building activity.

EM as an experience of construction

ENVIRONMENT

Context

MODELLER

|
Understanding }

EVOLVING OVER TIME

Construal

ICOMPUTER

Referent

[DOMAIN

EM as construction of an experience

ENVIRONMENT Context

MODELLER

i
Understanding !

GRASPED IN THE MOMENT

Construal Referent

ICOMPUTER DOMAIN

The word experience is a key word in Empirical Modelling, and is
being used in a very distinctive way e.g. the financial modeller

experiences the current financial situation
“Phwor! | might be about to make a lot of £££s here ...”

experiences the numerical patterns in the cells of the spreadsheet
“ ... that number looks a bit big for that cell”

experiences the current context
“...now | can buy my boyfriend a Ferrari ... “

experiences the connection between all these experiences
“figures on screen / money in world / boyfriend ecstatic”

