
An Introduction to  
CS405 “Introduction to Empirical Modelling” 

Theme for 2013-14 

Towards a new conceptual framework for 
software development 

Meurig Beynon 
Reader Emeritus in CS 



Orientation 

 To what extent have the problems that underlie 
the 'software crisis' been resolved? And can 
current principles and tools for software 
development meet the additional challenges 
that contemporary use of computers present? 

 The problems underlying the software crisis are 
unresolved. Current principles and tools for 
software development are inadequate to meet 
the challenges of contemporary use. 



Construals 

 Do we / why do we need a science of 
computing that is broader than 'computational 
thinking' supports? And what alternative core 
focus is there for computer science other than 
programming, logic and algorithms?  

 We need a science of computing that is broader 
than ‘computational thinking’ that supplies a 
better account of the experiential dimension 
and sense-making aspect of computing 



Empirical Modelling as Construction 



Sense-making in mathematics, in the physical world, social interactions and music ...   



Making construals 

 What principles and tools are best suited to 
making construals? What role can the computer 
play in their construction? 

 Construals are interactive digital artefacts that 
embody configurations of observables, 
dependencies and agency encountered in the 
situations to which they refer (cf. spreadsheets). 
Computer technology enables the essential 
visualisation / perceptualisation and interaction.  



Programming paradigms 

 Is every principled way to use the computer just 
a different style of programming a Turing 
machine? Is it possible to resolve the problems 
of software development by integrating 
different styles of programming, and  why has 
this proved to be so difficult? 

 There is more to computing than programming 
Turing machines. Programming paradigms fail 
to account for how computing is experienced. 



Formalism 

 What is the role and potential for formal 
specification and verification in software 
development? Is there any alternative basis 
on which the quality of software can be 
assured? 

 The role of formal methods cannot be 
dissociated from the identification of 
machine-like environments for computation. 
Quality assurance for software must in general 
rely on the practices observed in engineering. 



Formal specification from an observation-oriented perspective 



Development process 

 To what extent can techniques such as agile 
development and scripting resolve the problems of 
meeting users' evolving requirements? Can the 
demands of users of the web, mobile devices and 
embedded systems for ways to customise 
applications flexibly in the stream-of-thought be 
addressed within the conceptual framework of 
software development as currently understood? 

 The key issue is: how can we take account of the 
immediate experience of developers and users? 



Traditional programming  

      

Requirements 

capture and 

specification 

Program design 

implementation

maintenance 

Use 

affordances 

interface 

culture 

Identifying agency 

in the machine-like 

components 

and in the human 

context for use 

 

Framing goals 

for the design 

protocols for 

interaction and 

interpretation 

 

e.g. devise UML 

constructing 

and programming 

the machine-like 

components 

 

designing program 

by identifying 

objects and functions 

 

technical interface 

development 

 

e.g. writing Java code 

human factors 

study 

 

interface design 

 

empirical studies 

of use 

 

prototyping 

 

e.g. goals, operators, 

methods (GOMS) 

evaluation 

specification 

user interface 



Empirical Modelling 

      

Requirements 

capture and 

specification 

Program design 

implementation

maintenance 

Use 

affordances 

interface 

culture 

develop scripts 

in isolation 

as “furry blobs” 

that represent 

the observables 

and dependencies 

associated with 

putative 

machine-like 

components 

and 

human interactions 

and interpretations 

identify and document  

reliably 

reproducible 

sequences of 

redefinition /  

chains of “furry blobs” 

that correspond to 

programmable 

automatable 

machine behaviours 

and ritualisable 

human behaviours 

and interfaces 

exercise, explore, 

customise, revise 

and adapt 

sequences of redefinition 

and interpretation 

to reflect emerging 

and evolving patterns 

of interaction and 

interpretation; 

extend and augment 

observables to support 

additional functionalities 

combining scripts 



Learning 

 How well is current thinking about software 
development suited to the constructionist goal of 
establishing an intimate link between development 
and domain learning? What can be learned from 
parallel research in educational technology? 

  Procedural thinking within a computational 
framework is ill-suited to a constructionist stance, 
as is corroborated by problems encountered in 
developing effective educational technology. 



TEDC 2006 

An Experiential Framework for Learning (EFL) 

 

private experience / empirical / concrete 

interaction with artefacts: identification of persistent features and contexts 

practical knowledge: correlations between artefacts, acquisition of skills 

identification of dependencies and postulation of independent agency 

identification of generic patterns of interaction and stimulus-response mechanisms 

non-verbal communication through interaction in a common environment 

directly situated uses of language 

identification of common experience and objective knowledge 

symbolic representations and formal languages: public conventions for interpretation 

public knowledge / theoretical / formal 

 



Concurrency 

 How well do current software development 
techniques address the need to represent and 
reconcile the perspectives of all the state-
changing agents in a complex system? 

 Computational thinking is predicated on 
objective rational perspectives that are not in 
general appropriate. Dealing with subjectivity 
and inter-subjectivity demands radically 
different ways to conceive and represent state.  



Multi-agent development 

 How can we integrate the design activities of 
the many different participants in complex 
software system development? How can we 
achieve conceptual integrity? How can we 
best support distributed participatory design? 

 We need to  dissolve the dualities between 
designing, implementing and running 
software so that all the participants interact in 
what is conceptually the same environment.  



Developing educational software 

Student 

Developer 

Teacher 

uses 

implements specifies 



Empirical Modelling (EM) 

• Offers a set of principles for model building in any of the 
student, teacher and developer roles: 

Student 

Developer 

Teacher 

interacts 

model 



Retrospect and prospect 

 How far does the reconceptualisation of 
computing that making construals enables 
address the challenges of software 
development? What further development of 
the principles and tools is needed? 

 In principle, making construals has great 
promise and potential to change software 
development in a radical way. In practice, it 
needs much further exploration and 
investment building on proof-of-concept tools. 


