Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 1 of 7

Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A. Wesley, 1995

Chapter 1—The Tar Pit

A program becomes a programming product when it becomes a product that can be run, tested, repaired and extended by
anybody. It musl be written in a generalized fashion and thoroughly tested. It must also be well documented. It costs
about 3 times as much as a debugged program with the same function. A program becomes a programming system when
it becomes a collection of interacting programs so that it becomes an entire facility. for large tasks. Every input and
output conforms 10 some syntax and semantics. It must also be thoroughly tested and debugged. It also costs al lcast 3
times as much as a standalone program with the same function. A programming product or & programming system can
become a programming systems product, which costs 9 times as much. It is the true uselul object of programming
efforts. The joys of the craft—the joy of making uscful and complex things, programming system and the joy ol Icarning.
The woes—need perfect performance, fulill other people's objectives, depend on others, testing and debugging can drag
on and then the product becomes obsolele too quick. The technological base on which one builds is always advancing.
Programming is both a tar pit and a creative activity.

Chapter2—The Mythical Man-Month (good cooking takes time)

Software is oflen delayed either because lack of good estimating techniques, confusing effort with progress,
uncertainties, poor monitoring of progress, and the natural response to add man power when behind schedule, All
programmers are oplimists because they build from pure thoughts, concepts and representations, but our ideas are faulty
(we have bugs) making our optimism unjustified. The assumption that things will go well in a single task has a
probabilistic effect on the schedule, No delay has a finite probability, which gets compounded when the programming
eflort consists of many tasks. The man-month as a unit of measurement for job size is a dangerous and deceptive myth. It
implies thal men and months are inlerchangeable. This is only possible when tasks can be partitioned among workers
with no communication among them. Perfectly partitionable and non-partitionable tasks are two extremes, with most
software projects falling somewhere in between. Communication effort needs to be added o less than perlectly
partitionable tasks, which consisis of training and intercommunication (n(n-1)/2). We also expect the number of bugs to
be smaller than they actually are, thus testing is the most mis-scheduled part. It is recommended: 1/3 planning, 1/6
coding, 1/4 component testing and 1/4 {inal testing (1/2 devoted to debugging and testing, coding is the shortest). Most
projects arc on schedule until testing. When bad news come late it delays the entire projectl. Brook's Law: Adding
manpower to a late software project makes it later. This is so because of the additional time needed [or training and
intercommunication. This demythologizes the man-month. The number of months depends on the lincar scquential
constraints. The number of people depend on the number of independent sub-tasks.

Chapter 3—The Surgical Team

There is a wide variation in programmer productivity, as much as 10 to 1 between best and worst. Thus, il a 200-person
project has 25 managers who are the most competent programmers, fire the other 175 and put the managers o program.
However, 25 programmers will not be sutficient for large projects. A dilema: for elficiency and conceptual integrity one

prelers a few good minds. For large systems one needs considerable manpower. The solution is similar 1o Mills’ surgical
{eam ideas. Have a few surgeons and enough manpower (o support the surgeons. Mills calls the surgeon the chief
programmer, who defines functional and performance specs, designs the program, codes it, lesls it and wriles its
documentation. The copilot is the chief programmer's aller ego who shares in the design as a thinker. Other stafl include
the administrator, the editor, two secretaries, and a program clerk who keeps all technical records, computer input, status
notebook, and chronological archives. Mills suggests converting all programming activities from private Lo public. In
addition, there is a toolsmith (constructs, maintains and upgrades special tools), a lester (who develops test cases [rom
functional specs), and a language lawyer. The system is the product of one mind, or two al most, and all diflerences of
judgement are settled by the surgeon. A large programming team can be divided inlo surgical teams ol 7 or so as
described here.

http://www.gsia.cmu.edﬁ/andrew/josee/www/qualifiers/qualbook_brooks.html (03/07/2002

. Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 2 of 7

Chapter 4—Aristocracy, Democracy, and System Design

Conceptual integrily is the most important consideration in system design. 1t is better to have an imperflcct design but one
sct of idcas, than having several independent and uncoordinated good ideas. The ultimate test of system design is its
function to complexity ratio. Neither function alone nor simplicity alone defines good design. That is, [or a given level of
[unction, the simplest and most straightforward system is the best. Simplicity alone is not enough, but simplicity and
straight forwardness proceed from conceptual integrity. Conceptual integrity in turn diclates that the design must proceed
[rom one mind or from a very small number ol agreeing minds. This is accomplished in larger projects by separating
architectural elfort from implementation. Architecture involves developing complete and detail specilications [or the
implementers. The aristocracy vested in the architects is necessary in order to achieve conceptual integrity. One concern
by implementers is that by allowing architects to do all the specs, the system may end up being too rich in function and
thus too coslly (this problem is addressed in the next chapter). The benelit is that widespread horizontal division of labor
has been replaced by vertical division of labor with simplified communication and improved conceptual integrity.

Chapter 5—The Second System Effect

Architect and builder need to communicate thoroughly. When the architect is conlronted with a cost cstimate that is (00
high he needs 1o work with the builders (o bring estimates or design more in line with cach other. 1t is important for the
archilect to suggest, not diclale ways to implement product, and to be prepared to accept suggestions {rom the builder
that may meet the objectives as well. Afler the first system is finished, the most dangerous system a person cver designs
is the second system because of the tendency to over design the second system. There is also a lendency (o reline
techniques thal may have become obsolete by changes in basic system assumptions. The second system ellect can be
avoided by being extra careful and disciplined to avoid [unctional ornamentation and extrapolation thal arc obviated by
changes in assumplions and purposes. If the option is available, hire an archilect that has designed at lcast 2 systems.

Chapter 6—Passing the Word

The manual is the external specification of the product, which describes and prescribes every detail. It is the chicl
product of the architect. It must describe everything the user sees, but it must refrain [rom describing what the user
doesn't see. These descriptions must be complete and accurate. Formal definitions arc precise, bul are diflicult to
understand. Formal delinitions need to apply to the externals of the system and these must be carefully delincated.
Sometimes implementations are used as definitions (PC compatible, Windows based, etc.). Such definitions are precise
but may over-prescribe even the exlernals. Using implementation as delinition may lead to conlusion il formal
description is the standard. Another technique for disseminating and enforcing definition is to design the declaration of
passed parameters or shared storage and (o require implementers to include that declaration with %include-like
commands. Meclings are also necessary. Two types of meelings are usclul: a weekly half-day meeting ol all architects
and official representatives of the HW and SW implementers and market planners in which the chiel architect presides.
Proposals are distributed in writing before the meeting. Changes are adopted by consensus or by decision [rom the chiel
programmer. These meelings are fruitlul because of the information exchange, quick resolution ol problems and timely
decisions. Backlogs ol minor appeals and other issues that pile up are settled at annual supreme court session lasting
about 2 weceks, held just belore major [reeze dates for manuals. This is also a good Lorum to exchange idcas and getting
them acceptled.

Chapter 7—Why did the Tower of Babel Fail?

http://www.gsia.cmu.edu/andrew/josee/www/qualifiers/qualbook brooks.html 03/07/2002

Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 3 of 7

Most projects that fail had communication or coordination problems. Teams can communicale informally, through
mecetings or via a workbook. The project notebook needs 1o be started from the beginning. 1t contains the structure
imposed on the documents that the project will produce, including objectives, specifications, standards and
administrative memos. It also helps control the distribution of inlormation, not so much 1o restrict, bul to cnsure
cveryone receives the information they need to have. The need for struetured workbook increases with project and leam
size. Workbooks need Lo be updated frequently with relevant changes highlighted for quick assimilation. With clectronic
storage, work books should have FIFO change logs and flags. While Parnas recommends hiding interface design details
from those who don't need the details, Brooks warn that unless interface is perfect this may lead to problems. He prefers
open exposure Lo Interface errors to stimulate their correction. In large projects, the need to communicate to coordinate is
reduced through division of labor and specialization of {unction. Each sub-tree in the structure must have: a mission, a
producer, an archilect, a schedule, division of labor and interface definitions among the parts. The producer assembles
the team, divides the work and establishes the schedule. The architect provides conceptual integrity Lo the parl being
designed. The producer and architect can be one person in small projects. In large projects two scparate people are
needed and one of them must be the boss. The producer is in a best position 1o be the boss by releasing the architect from
having to communicate with the structure and thus concentrate on design issues.

Chapter 8—Calling the Shot

Coding represents only 1/6 of the estimation effort. Also, data for small programs are not applicable to more complex
programming systems. Planning, documentation, testing, system integration and training need 1o be added (o the
cstimate. Such ligures cannot be extrapolated linearly, unless there is no communication. Effort is a function ol some
power of program size. Portman's data show that the time beyond the linear relation is spent in non-development
activities. Aron's data show thal productivity rates [all as the number of expected interactions increase. Harr's data also
show declining productivity rates with increasing program size. Aron, Harr and 0S/360 data all confirm striking
differences in productivity based on task complexily, difficulty and size. Corbato’s data on the other hand suggests that
produclivity may be relatively stable in terms of instruction lines (not words) per person-year (line is a unit of though),
suggesting that high-level languages may have an impact on programmer's productivity.

Chapter 9—Ten Pounds in a Five Pound Sack

Because size is a large part of the cost of programming system products, the builder must set size largets, control size and
devise size-reduction techniques. Size itself is not bad, unnecessary size is. For the project manager, size control is partly
a technical job and partly a managerial job. Systems need to be subdivided and cach component given a size larget.
Setting targets for the core is not enough. One needs to budget all aspects of size. Modules need (o be precisely defined
before size targets can be established. Care must be exercised so that in an effort lo optimize individual picees the whole
system may be negatively affected. In trading function for size a designer must decide how line-grained the user choice
of options will be. Space and speed also trade-off. Optimized subroutines need to be developed and made available for
queuing, searching, hashing and sorting. Two versions of each of these programs should be in the notebook, a [ast once
and a squeezed one.

Chapter 10—The Documentary Hypothesis

Documents [or a software project: objectives and specifications (what), schedule (when), budget (how much),
organization chart, and space allocations (where). Conway's law: "Organizations that design systems are constrained 1o
produce systems that are copies of the communication structures of these organizations". Writing is important because it
uncovers gaps. It also communicates the decisions of others and provides a database and checklist of important items. A
handful of critical documents is vital.

http://www.gsia.cmu.edu/andrew/josee/www/qualifiers/qualbook brooks.html 03/07/2002

Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 4 of 7

Chapter 11—Plan to Throw one Away

In most projects built the [irst one is almost unusable. One has to build a system (o throw away. In fact, you will throw
away the lirst system. The question is whether you plan to throw it away or give your customers a throwaway product.
As one plans a throwaway pilol one must accept the fact thal things will change. So, systems must be designed lor
throwaway pilots and for change. Techniques to do this include modularization, subroutine librarics, precise and
complele definitions ol module interlaces, and complete documentation of these. Quantization ol change, version
planning and version scheduling are also essential. Reluclance to document often comes from the recognition that things
will change. Structuring an organization [or change is harder than designing a system for change, bul management
structures may need Lo be changed as the system changes. The surgical team approach minimizes the effect of change
since it is designed Lo minimize the number of interfaces. A program doesn't stop changing when it is delivered Lo the
client. It will need to be maintained and updated periodically. It costs about 40% more 1o maintain a program than Lo
develop it. New errors are discovered as new users start working with the system. But a software [ix has a 20%-50%
probability of introducing another error somewhere else (2 steps forward, one back). This is why regression testing is
important (but costly). Lehman and Belady have found a linear relationship between new version releases and the
number of new modules added with potential for more errors and more difficulties for error lixing. They conclude that
"things are always better at the beginning”.

Chapter 12—Sharp Tools

Tools include a computer [acility, a language, utilities, debugging aids, tesi-case generators and text processing systems.,
One needs a target machine and a vehicle machine. Target machines need (o be scheduled. If the target machine is new
one needs a logical simulator for it. Programmers have their respective "playpen” areas where they have no restrictions
on what they can do with their programs. When a program is ready for integration it is moved into a system Integration
library. Once there, even the original programmer cannot change it, except with permission of the inlegration manager.
When a system version is ready for wider use it is then moved to the current version sub-library. This copy 1s sacred. The
idea is to have control and authority over sofiware versions by managers who can authorize change. It also allows for
formal separation and progression from playpen to release. Next, it is necessary to have tools, a documentation system
and a performance simulator. High level languages are also tools that improve productivity and debugging speed. Use of
high languages comes at the cost of less [lexibility and less speed, but it trades off with increased {unctionality and
development productivity.

Chapter 13—The Whole and the Parts

The most pernicious and sublle bugs are the ones arising {rom mismalched assumptions made by authors of various
components. Specilications are first handed to an outside testing group to be scrutinized {or completencess and clarily. In
top-down design (lormalized by Wirth) the procedure is to identify design as a sequence of relinement steps. Each
refinement becomes a more detailed algorithm. From this process one identifies modules whose further relinement can
proceed independent of other work. Good top-down design avoids bugs because of clarity of structure and representation
partitioning and independence of modules, suppression of delail in structure makes flaws more apparent and design can
be tested at each step of relinement. Top-down is a very important programming formalization. Another important
formalization is structured programming. Component debugging relies on on-machine debugging, memory dumps,
memory snapshots and interactive debugging. For each hour spent debugging, 1/2 hour should be spent planning the
debugging session and another 1/2 recording results. System debugging will always take longer than expected thus the
importance of proper planning. One common approach is to work with debugged components, or at least components
whose founds have not been fixed yet, but have been found and documented. Another approach is to build "scallolding"
components (dummy compenents) that consist of interfaces and perhaps some [ake dala or small test cases. Miniature
files, dummy liles and auxiliary programs are examples of scalfolding components. Component changes must be
controlled with copies stored away. Components should be added one al a time. Finally, updates must be numbered in
versions. Adding new versions of components should go through the same tesling as new components.

>

http://www.gsia.cmu.edu/andrew/josee/www/qualifiers/qualbook brooks.html 03/07/2002

.Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 5 of 7

Chapter 14—Hatching a Catastrophe

Termites do more destruction than tornadoes. Project milestones need to be concerete, specilic, measurable events and
well defined. Studies have shown that project underestimates don't surface until about 3 weeks before scheduled
completion. Good milestones help overcome this problem. Critical path charts help monitor these milestones. Managers
need two types of schedule information: exceptions to plan that require action and status picture for education. Line
managers may not have an incentive Lo share this information with the supervisor. Such a conflict can be reduced with
open communications or clear scheduling tools that don't lie. Then, only 2 questions need to be asked by the supervisor
to line managers: whether milestones have been sel or changed, and whether milestones have been met.

Chapter 15—The Other Face

Different levels of documentation are needed for the casual user, the user who depends on the program, and for the user
who must adap(a program. To use a program: purpose, environment, domain and range, functions and algorithms used,
input-output formats, operating instructions, options, running time, and accuracy and checking. To believe a program,
lest cases are necessary: mainline cases for commonly encountered data, barely legitimate data that probe the edges of
input data domain and all kinds of valid exceptions, and barely illegitimate cases Lo ensure thal invalid inputs raise proper
diagnostic messages. To modify a program much more information is necessary. A sharp and clear overview of the
internal structure is necessary: flow charts, algorithm descriptions, [ile layout explanations, overview ol pass structure,
and a discussion of modifications contemplated. Flow charts are the most oversold piece of program documentation. It
breaks down when chart exceeds a page. Detailed blow-by-blow flow charls are a nuisance suitable only to initiate
beginners into algorithmic thinking. Most flowcharts are prepared after the fact, often by automated tools, and not a
priori to guide code development. Self-documenting programs are very valuable since source program and
documentation are in one place. One place to document is when variables are declared by attaching explanatory labels.
Heavy commenting and use of format and blank spaces are other useful suggestions. Prose descriptions can be added 1o
procedure calls. If standard algorithms are used it is better to make reference 1o the original source than (o explain it in
the code. Declare all variables and mark initialization with labels. Label statements in groups and use indentations 1o
visually spot these groups and Lo show structure. Flow arrows can be marked at the right edge. Use line comments. Put
mulliple stalements on one line or one statement in multiple lines to match thought-grouping and algorithm description.

Chapter 16—No Silver Bullet—The Essence and Accident in Software Engineering

To address the essential parts of the software task concerned with structures ol great complexity, it is suggested: o avoid
constructing what can be bought, use rapid prototyping, grow software organically, and identily and develop conceptual
designers. There is no single bullet in the horizon in terms of technology or management technique, which by itsell
promises even one order of magnitude improvement in productivity, reliability and simplicity. There is an anomaly in
that software progress is very slow, but hardware process is very fast. There are two types of difficultics: essence and
accidents. Essence difficulties involve the correct specification, design and testing the conceptual construct, and not so
much the labor of representing it. Essence difficulties include complexity, conformity, changeability and invisibility.
Complexity stems from the fact thal no two parts are alike. If they are, we make them subroutines. Scaling up is not
merely a repetition of the same elements in larger size but an increase in the number of different clements that interact in
non-linear fashion. From this complexity comes the ditficulty of communication among team members that lead to
product flaws, costs overruns and schedule delays. Conformity has to do with the fact that software must "conlorm” 1o
other interfaces. Changeability makes things ditficult because the software entily is constantly under pressure [or change.
This is partly due to the {act that software can be changed (it is pure thought stuff). Change comes [rom two sources:
people try it in new cases al the edge and software survives the hardware platforms on which they are run. The soltware
product is embedded in a matrix of applications, users, laws and machines, which change continually. Software
invisibility is another source of difficulty. There are no geometric abstractions (o help visualize software products. As
soon as we starl diagramming we realize we need more than one diagram. Software technologies have solved mostly
accidental difficulties not essential ones. High-level languages embody constructs wanted in the abstract program and
avoid Jower ones, thus eliminating a whole level of complexity. Language development approaches arc approaching user
sophistication. Time-sharing preserves immediacy and enables us to maintain an overview of complexity by reducing
turnaround time. Unilied programming enyironments help overcome difficulties by providing integrated libraries, unified

http://www.gsia.cmu.edu/andrew/josee/www/qualifiers/qualbook brooks.html 03/07/2002

. Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 6 of 7

file formats, pipes and filters. Tool benches [urther complement this.

Hopes for the silver. (1) Ada and other high level languages with sophisticated [eatures, modular philosophy, abstract
data types and hierarchical structuring. (2) OO programming with abstract data types, hierarchical types (classes) and
hidden operations. This allows removal of higher order difficulty by allowing high order expression ol design. (3)
Artificial intelligence—2 delinitions: Al-1 is the use ol computers Lo solve problems that previously could only be solved
applying human intelligence. Al-2 is the use of a specilic set of programming techniques known as heuristics or rule
based programming, which has been applicd to expert systems. (4) Expert systems 1s a program conlaining a generalized
inference engine and a rule base constructed form human expert knowledge. The power of these programs comes [rom
the knowledge extracted from experts, but many difficultics remain both to apply the proper rule to a casc and 1o [ind
articulate experts from which knowledge can be extracted (and finding ways to extract that knowledge). (5) Automatic
programming using code generators. (6) Graphical programming is somewhat more difficult because it is hard Lo
visualize software. (7) Soltware verification does not scem to have the magic bullet either. (8) Environments and tools
offer some promise with the use of integrated databases, but returns so [ar have been marginal. (9) Workstations will
improve productivity but no magical enhancements. If the conceptual components ol the task are the ones taking most of
the time, then no amount of improvement on task components that are just expressions of these concepls can give large
productivily gains. One possibility is to buy components and not construct at all. This is becoming more [casible and we
should expect Lo sec market places for individual modules. This is cheaper and has better documentation, but its
applicability to the application is a challenge. Sophisticated applications can now be modeled with simple spreadsheet
and similar tools. Rapid prototyping tools may also ofler substantial productivity improvements because clients generally
arc not entirely sure of what they want or need. Also, growing software incrementally rather than building it may also
improve productivity. Starl with a simple running program and keep adding to it. Great designers (and managers) arc the
final source of big productivity improvements. The dilferences between the great and the average arc an order of
magnitude apart.

Chapter 17—No Silver Bullet Refired—9 years later

NSB argues thal much software progress has been the removal of negative factors by accidental (not by accident, but
incidental) construction of artifacts and that real productivity improvements will come [rom getting at the essential
aspects of software productivily improvement. Essential difficulties are inherent in the conceptual complexity of
software functions to be designed by any method. This complexity exists by levels and it is often related to the
complexities of the applications being built. But much of the complexity in a software construct is due to the
implementation itsell. NSB udvocates thal progress can be made to attack this complexity by adding the complexity: (1)
hierarchically by layered modules or objects and (2) incrementally, so that the system always work. NSB is bascd on the
believe that sources ol produclivily improvement need to be sharply divided into essence and accident and that this
division guides what kinds of altacks to make. Consistent with Harel, the invisibility argument related 1o the absence of
geomelrical abstraction means that several diagrams will be needed and that some aspects of soltware development don't
diagram well. Jones has argued that by [ocusing on quality that productivity will {follow and that most ol the
unproductive activities have 1o do with defect removal and repairs. Bohem, however suggest that productivity drops
again when one pursues extreme quality. One prediction that seems to be coming true is that the development of the mass
market is the most prolound (rend in software engincering. Another promising technology is OO programming in which
modularily, encapsulation, inherilance, hierarchical structure of classes and strong abstract data-typing are all provided in
one multi-vitamin pill, which is a promising concept. OO has grown slowly [or a variety of reasons, from changing
paradigms to the use of a varicty of complex languages. It seems like developers have taken OO as a tool not as a
development paradigm. Brooks believes that its adoption has been slow because of substantial up-front costs, mainly in
re-training programmers, bul the benefits pay-off during successor building. The promisc of casy reuse of classes with
easy customization via inheritance is one of the strongest attractions of OO techniques. Barriers to reusc are not on the
producer side but on the consumer side. If the perceived cost of finding the right object is higher than building one most
developers choose Lo build. Reuse is very popular in mathematics where the cost to reconstruct a mathematical soltware
component is high but to reuse it is inexpensive. Real reuse is just beginning. One barrier has to do with how (o access
thousands of components each with 10 or 20 parameters and option variables.

Chapter 18—Propositions of the Mythical Man-Month: True or False?

http://www.gsia.cmu.edu/andrew/josee/www/qualifiers/qualbook brooks.html 03/07/2002

- Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering, A Page 7 of 7

Summary chapler--see chapter bullets.

Chapter 19—The Mythical Man-Month After 20 Years

What was right when original book was written. (1) Conceptual Integrity and the Architect (central argument).
Conceptual Integrity—the inherent difficulty of developing large software has to do with necding many minds [or the
design. The Architect—someone responsible for the conceptual integrity of the project. Separation of Architecture from
Implementation—there is a clear boundary between the two. Recursion of Architects—neced to partition the system into
subsystems with an architect assigned to cach. (2) The Second-System Effect: Fegturitis and Frequency Guessing.
Designing for Large User Sets—it is more difficult to build a program for generalized use. Featuritis—tendency to
overload the product with too many [eatures of marginal utility to most, but it helps mass market the product. Delining
the User Set—the larger and more amorphous the user set the more necessary it is 1o define it explicitly. Frequencies—
the archilect needs Lo estimate attributes of the user set (better to be explicit and wrong than vague). (3) The Triumph of
the WIMP (windows, icons, menus, pointing) Interface. Conceptual Integrity via a Metaphor—adoption of a familiar
desk metaphor. User Power vs. Ease of Use—need (o provide both. Incremental Transition from Novice (0 Power User—
smooth transition via short cuts. Device for Enforcing Architecture—uniformity and cross-application conceptual
integrity (Mac). (4) Build One to Throw Away. This is OK if one assumes the waterfall model. But waterlall concept is
wrong because it assumes that the system is built at once. It needs an upstream flow. (5) An Incremental-Build Model is
Better. Build an End-t0-End Skeleton—start with a functional dull system and add modules by having a running system
al every pass. Parnas Families—design software as a family of products with features least likely to change at the root of
the tree. (6) Information Hiding is Better. As suggested by Parnas, programmers are more efficient if shiclded from
details of modules they don’t own. This concepl was upgraded into an abstract data type {from which many objects could
be derived. In addition, the powerful concept of inheritance is also a great contribution. Finally, classes designed and
tested for reuse are useful.

Barry Bohem's work—conlirms the lack of linear relation between persons and months. He {inds a cost-optimum
schedule T=2.5(MM)'”. Brooks Law—some evidence may suggest that adding people to a late project makes it more
costly and not necessarily more expensive. It all depends on the kind of people added. But the warning remains. Bochm's
COCOMO {inds that the quality of the team is by far the largest factor in its success, much more than the tools. DeMarco
and Lister make a similar argument for Peopleware: Productive Projects and Teams and team {usion (moving projects).
The Power of Giving up Power—Schumacher's Principle of Subsidiary Function (Small is Beautiful) that the center will
gain in authority and effectiveness if the freedom and responsibility of the lower formations are preserved. Evidence with
many small startup firms are confirming this. The Biggest Surprise—millions of computers in people’s hands. It has
brought {luidity to many fields, which can bring order of magnitudes in qualitative improvements. The microcomputer
revolution has changed how everyone builds software. Many of the relaled accidental difficulties have been climinated.
PC's provide the computing engine and the network provides the shared access to files. Client/server make shared access
even simpler. Shrink-Wrapped Software—from 4GL tools to multi-platform O/S's. The economics of this seclor have
changed. Schedule and {unction dominate development cost nowadays. A promising trend is the components shrink-
wrapped market and meta-programming. 4 levels of users of shrink-wrapped software: as-is user who uses product as is;
meta-programmer who builds templates; external function writer; and meta-programmer who uses several components in
a larger system (uses MPI—melta-programming interface).

http://www.gsia.cmu.edu/andrew/josee/www/qualifiers/qualbook brooks.html] 03/07/2002

