DEPARTMENT OF COMPUTER SCIENCE

—WAICK |
%?Moﬁa o Lot /)Y

Dﬁk’i r:taﬁm) Conerronk % "

71\4 = f° ‘-A) (x et J(/é\—{éél
/. e f (A .
A, dres ¥a DM ard L&D | ard pcis)

— . ,> /) + 4(_
,,«(’,x;x;,-w ,Mﬂ(;‘,\/4\ O /7,\.‘..."-!0'(.«9 e A 7\1 ’

£ GJGI TE—— #’ (= e fm;wﬁf(«)
(;)5,(_.@& &,‘wrwa(j\ o
C({um;\(\' ML&;

7‘}0 52 ot 7%7{61 oA y
| / P
T A /) A Allgont S /4

~ (L SE w0 O ,L{,;,C(@@A rartak /1 ek }L <
A, /{ZW, f«rw

Department of Computer Science ® University of Warwick * Coventry CV4 7AL « UK
Tel +44 1203 523193 « Fax +44 1203 525714

Definitive specification of concurrent systems
W M Beynon!, M T Norris?, R A Orr?, M D Slade’

!Department of Computer Science, University of Warwick, Coventry CV4 7AL
2British Telecom Research Laboratories, Martlesham Heath, Ipswich IP5 7RE

Abstract
A new approach to the modelling and simulation of concurrent systems,
characterised by the use of sets of definitions to represent states and
transitions, is described. The simulation of system behaviour is derived
from a specification of possible agent actions by taking account of relative
speeds of response and operation. A distinctive feature of the approach is
that the perceptions and capabilities of agents are explicitly modelled.

1. Introduction

As distributed computing systems become ever more sophisticated, the complexity of
their design continues to increase [11]. In response to this trend, many different
methods for specifying and analysing concurrent systems have been proposed [8].
Broadly speaking, two perspectives can be adopted when modelling a concurrent
system: the one "event—oriented" (in which the emphasis is upon describing the abstract
behaviour of the system as a whole), the other "interaction-oriented" or "activity-
oriented" [13] (where the objective is to describe the interactions between component
parts of the system). Both of these approaches are now well-developed [2,17] and can
provide valuable support in important aspects of design. Neither, however, provides a
complete picture.

In the systematic development of concurrent systems software, there is in general an
important need to bring both views to bear. Ideally we would like to reason about the
abstract behaviour of a system and at the same time describe precisely how system
components relate to each other.

This paper considers how these views might be combined. Our approach is particularly
suitable for modelling concurrent systems in which the specific form and disposition of
the principal agents is known. Its immediate application is to the preliminary phase of
the system design process, when the protocols for interaction between system
components, referred to here as agents, have to be developed.

The behaviour of a complex system is typically first conceived informally by the
designer in terms of the actions that agents can perform. To characterise the system
behaviour, the designer must specify the privileges of agents in a framework that
enables the consequences of actions to be faithfully represented. What is regarded as a

primitive action of an agent cannot be defined simply in terms of the state-transitions it
induces in the system. By way of illustration, entitling an agent to open a door may be
an open-ended privilege to change the state of the system, depending upon the context
in which the action is performed. It may be an entitlement to move - in a single atomic
action that incorporates opening the door - any piece of furniture that is adjacent to the
door. To maintain conceptual control over the design it is essential to avoid the need to
specify each context-dependent entitlement separately. This motivates a computational
model in which the transition associated with one and the same primitive action can
depend upon the frame of reference.

Following [3], a definitive (definition-based) representation for system state is adopted
(cf [8]). The values of the characteristic variables in the designer's model of the
concurrent system are specified implicitly, without cyclic definition, as functions of the
values of other variables. The redefinition of a variable in the context of a system of
interdependent definitions is an appropriate way to represent atomic actions in a
concurrent system whose effect is to change several features of the current state
simultaneously [4]. This is the essential principle underlying the spreadsheet. For
example, through expressing the profit as a function of the price and number of sales of
a product, it is possible to regard "changing the profit by side-effect when changing the
price" as one indivisible action.

Within a definitive computational framework, agent privileges are specified in the
special-purpose language LSD. A distinctive feature of LSD is that the perceptions and
capabilities of agents are explicitly modelled [5]. This is important in at least two
respects:

¢ it is possible to consider the implications of changing the perceptions of agents
(e.g. when designing protocols for a blind user of a telephone system), or their
capabilities (e.g. when assigning dialling privileges to users); 7

* it is possible to distinguish between synchronisation based upon an agent's
perception (as in "inserting coins when the display is flashing"), and synchronisation
based upon implicit assumptions about the speed with which protocols are executed (as
in "assuming that all digits are registered no matter how rapidly the user dials").

This paper develops the ideas introduced in [3], where the emphasis is upon illustrating
the problems of characterising system behaviour using LSD alone. A constructive
approach to the issues raised in [3] is adopted; the new computational model supplied
by the Abstract Definitive Machine (ADM) [6] is used to simulate behaviours associated
with an LSD specification. There are four sections: the background to our method of
systems modelling; an example to illustrate how LSD can be used to model a telephone
system; a description of the simulation framework; an appraisal of our present
progress.

2. Background to the method

In an event-oriented approach to modelling, a concurrent system is represented by its
possible behaviours, each defined by a sequence of events that can occur in simulation.
An appropriate model of the system might be a mathematical expression that represents
all possible behaviours. Whatever approach to modelling is used, some such formal
representation is essential for intellectual control over a design. It is otherwise
impossible to determine the characteristic properties of the system such as when a
deadlock or a critical violation can occur.

A comprehensive understanding of the system is needed to derive an adequate
behavioural model. When first conceiving a concurrent system, a designer typically
develops an informal interaction-oriented model based upon knowledge of how specific
agents can act in specific states. Event- and interaction-oriented frameworks are linked
via the concept of a comprehensive state-transition model of the system of which the
designer initially conceives fragments. It is the behaviour of this state-transition model
that has to be analysed and adapted by the system designer through modifying the
components of the system, whether by reprogramming an electronic device, prescribing
protocols for human users or identifying appropriate assumptions about the system
environment. This entails developing an abstract event-oriented model for the system
behaviour that can be understood in its relation to the perceived interaction-oriented
requirement. Only in this way is the designer able to relate the behavioural limitations of
a partial design to the perceived role of the participating agents, so that an iterative
process of validation and refinement of the model becomes feasible [2].

The concept of a comprehensive state-transition system model is elusive. To
characterise all possible state-transitions from an interaction-oriented perspective
presumes precise knowledge of what agents can act, when and how. This observation
is of seminal importance in our design method, in which the first objective is the
identification of the participating agents in a concurrent system and the privileges they
conditionally have to change the system state.

The state-transition model of a concurrent system is also vast. Many representations for
states and transitions have been developed as potential behavioural models [8]. Our
method exploits a new computational model in which states are represented by sets of
interdependent definitions of variables and transitions by sets of redefinitions to be
executed in parallel. Exceedingly complex state-transition models can be succintly
described using such definitive ("definition-based") representations [4] and they are
potentially good candidates for behavioural models of systems. Definitive
representations are well-suited to expressing the effects of agent actions as conceived
by the system designer. They also have a significant role in enabling information about
agent privileges to be effectively interpreted in state-transition terms.

In simulation programs, it is commonplace to introduce sets of characteristic variables
whose values are explicitly specified to represent features of the system being
modelled. Definitive representations also allow the values of characteristic variables to
be specified implicitly, without cyclic definition, in terms of other variables and
constants. In developing a model, the designer must confirm that the effect of possible
scenarios for agent action upon these values is consistent with observed or intended
patterns of behaviour. In a definitive framework, agent actions are modelled by
redefining variables. A redefinition, unlike a conventional assignment, can have
instantaneous side-effects upon the values of other variables.

The principles underlying our method will be illustrated with reference to a model of a
telephone system to be developed below. Characteristic variables for the telephone
system record conditions such as whether the phone is onhook or ringing, what tone is
emitted by the earpiece; they also include call-status variables such as isringing under
the control of the exchange. The boolean variable onhook is explicitly defined, ringing
is defined as onhook and isringing, and tong is implicitly defined in terms of call-status
variables. A typical action is represented by a redefinition e.g. replacing the receiver is
defining onhook to be false. This can have an immediate side-effect e.g. changing the
value of ringing. In one transition, two actions might be performed concurrently, as
when a user lifts the receiver to answer a call at the same instant that the caller puts the
phone down. In this case, two variables are redefined concurrently.

An agent's privileges are modelled with reference to which variables can be
conditionally redefined. The user can pick up the phone and so redefine onhook, but
has no control - for instance - over what tone the telephone emits when the callee
engaged signal is received and so cannot redefine tone. The definition of ringing
reflects the fact that redefining onhook has different implications for ringing status
according to context. The use of an immutable implicit definition for the variable tone
expresses the fact that the telephone tone is a characteristic of the device fixed by design
that stands in the same relationship to the signal received in every simulation state.

A definitive state-representation has several important characteristics. The effect of
redefining a variable may be to change many values in a conceptually indivisible
fashion. The implications of the same redefinition depend upon the context supplied by
the other definitions. Definitions can be introduced independently in any order. Adding
new definitions to a particular definitive representation of state resembles adding a
system of levers to a mechanical device, allowing indivisible propagation of state
change from one component of the system to another. These characteristics enable
definitive state representations to play a crucial technical role: mediating between an
interaction-oriented model based upon the identification of agent privileges that is
developed incrementally during the design process and a behavioural model that is
implicitly specified by the effects of potential agent actions.

3. An LSD specification for the telephone

The function of an LSD specification is to describe the roles that can be played by the
agents participating in a concurrent system. These roles are specified with reference to
those features of the system state to which the agent can respond and those which it can
conditionally change. The LSD specification is the basis for behavioural models of the
system that are expressible in definitive state-transition terms, but many aspects of
concurrent system behaviour cannot be faithfully captured by considering agents'
privileges in isolation.

The interface between each agent and the system is specified using techniques originally
applied to modelling the user-computer interface [7]. This interface is determined by the
user's knowledge of the current state of the system and by the privileges the user has to
change this state. The user's view can be modelled by a set of definitions of variables in
which the variables that are explicitly defined serve as parameters in the defining
expressions for implicitly defined variables. In general, the user can change only certain
parameters. By inspecting the set of definitions, the user can infer the current status of
the interaction and see the effect of changing a parameter. This mode of interaction is
most simply illustrated by the spreadsheet: the user may know (for instance) the profit
as a function of the price at which the final product is to be sold, the number of sales,
and the cost of components and services.

Developing the idea a little further, different classes of variables in the user's view can
be distinguished. There are those variables - such as the profit - that are implicitly
defined and are subject only to indirect changes of value; these will be called
derivates. Other variables, such as the cost of components, are subject to change
beyond the user's direct control; these will be called oracles. Finally, there are
variables that are conditionally under user control (such as the price at which the final
product is sold); these will be called the state variables.

The framework for specification in LSD is derived by regarding the user as an
archetypal agent i.e. as one participant in a concurrent system, having a particular view
of the system, and certain privileges to interact with the system. In LSD, a concurrent
system is modelled by a family of agents, each having its characteristic oracle, state and
derivate variables. A template for the specification of an LSD agent takes the form:

agent agent_name (parameter_list)

{
oracle list_of oracle variables
state list_of state_variables
derivate list _of derivates
protocol list of guarded commands

As in the Specification and Description Language SDL [19], such a specification may
correspond to one or more active instances within the concurrent system model, and
agent instances can be dynamically created and destroyed. In an agent specification, the
variables referenced by an agent are not necessarily, nor typically, bound to the agent.
Each derivate of an agent has a non-cyclic definition, and each guarded _command
takes the form of a guard together with an associated sequence of actions, each of
which either redefines a state variable, or invokes another agent instance. The guards
and definitions are expressed in terms of variables referenced by the agent.

In using LSD to model a concurrent system, the first step is the specification of an
appropriate set of abstract agents. For simulation purposes, certain agents must then be
instantiated. The principles will be illustrated with reference to the LSD specification of
a rudimentary telephone system shown below.

agent user(U,S) {

oracle (int) tone[S], (bool) ringing{S]

state (bool) onhook[S], (int) dialled[S]

protocol
—onhook[S] — onhook[S] = true; dialled[S] = @,
—onhook[S] A (tone[S] == D) — dialled[S]=dialled number,
—onhook[S] A (tone[S] == C) — speak,
onhook[S] A —ringing[S] — onhook[S] = false; dial(S),
onhook{S] A ringing[S] — onhook[S] = false; speak

agent telephone(S) {
oracle (bool) #onhook[S] = true,
(int) #dialled[S],
(bool) #dialling[S] = false,
(bool) #calling[S, dialled[S]] = false,
(bool) engaged|[S, dialled[S]],
(bool) isringing(S],
(bool) active[S]
derivate (char) #tone[S]= D if dialling(S]:
E if calling[S, dialled[S]] A engaged[S, dialled[S1]:
R if calling[S, dialled[S]] A —engaged[S, dialled[S]]:
C if active[S]:
@ otherwise,
(bool) #ringing[S] = onhook[S] and isringing[S]

agent exchange() {

oracle

derivate

}

agent dial(S)
oracle

state
derivate

protocol

}

(bool) onhook{T], ...
(bool) calling[S, T], ...
(bool) #connected[S,T] = false, ...
(bool) #answered[T] = false,
(bool) #isringing[T] = calling[?,T] A onhook[T] A —answered[T], ...
(bool) #engaged[S,T] = calling[S,T] A (ringing[T] v —onhook[T]), ...
(bool) #active[S] = connected[?,S] v connected[S,?], ...
(time) #Ty, = timeout_for_dialling,
(time) #T _,;, = timeout_for_calling

{

(int) dialled[S],

(time) Ty, time,

(bool) onhook[S],

(bool) calling[S,dialled[S]] = false

(time) #t = Itimel

(bool) dialling[S] = —onhook[S] A (time -t < Ty.1),
(bool) LIVE = dialling[S] A —calling(S, dialled[S]]
dialling{S] and valid(dialled[S]) — connect(S, dialled[S])

agent connect(S,T) {

oracle

state

derivate

protocol

(bool) onhook[S], onhook[T], ringing[T], engaged[S,T],
(time) T, time
(time) #t_,; = Itimel,
(bool) answered[T] = false,
(bool) connected[S,T] = false
(bool) calling[S,T] = —~connected[S,T],
(bool) LIVE = —onhook[S] A (

(calling[S,T] A (time -ty < Teqp)) v

ringing[T] v
(connected[S,T] A (—answered[T] v —onhook[T]))

—engaged[S,T] A —connected[S,T] — connected[S,T] = true,
—onhook[T] A —answered[S,T] A connected[S,T] — answered[T] = true,
engaged[S,T] — delete connect(S,T)

The permanently instantiated agents in the system are the exchange(), user() and
telephone() agents. The parameters for the user() are used for disambiguation: they
specify the identity of the user and the telephone and distinguish references to different
instances of the variables with the same name. In simulation, there is one instance of
the exchange() agent, but there are many users and telephones. The above specification
has been used to simulate a two user system, using telephones identified by their
numbers S and T. For simplicity, only the variables of interest when simulating a call
from S to T are explicitly represented in the specification of the exchange (). In the
process of simulating such a call, telephone(S) invokes a new agent dial(S) that in turn
invokes the agent connect(S,T).

The oracles for the user are variables bound to the telephone: a boolean to indicate
whether the telephone is ringing, and a variable with values to represent the various
tones emitted by the earpiece. The user can determine whether or not the telephone is
onhook, and can also enter a number into the dial register of the telephone. In the
specification, this is viewed as an atomic action.

The oracles for the telephone represent information about its current state: whether or
not it is onhook, the content of the dialling register, and other variables that record the
status of a call that is in process. A definition of an owned oracle such as

oracle #dialling[S] = false
indicates that the value of the variable is from time to time conditionally under the
- control of a transient agent — in this case dial(S) — and will revert to false when this
agent is no longer extant (cf the state-oracle of [3]).

In an agent specification the special variable LIVE indicates when the agent is extant.
The connect(S,T) agent is deleted when the condition engaged([S,T] is encountered; it is
otherwise extant whilst the connection between S and T is being established, whilst T is
ringing and whilst the connection has been made and telephone T has not yet been
answered or is offhook. The special variable time is used as a universal oracle
associated with a clock() agent whose protocol consists of a single guarded command:
time = ltimel+1,
where Itimel denotes the value of the variable time in the current context.

The protocols of agents are readily interpreted in cognitive and informal operational
terms, subject to important qualifications to be discussed below. For instance, when the
phone is onhook the user can lift the receiver. If the phone is not ringing, this results in
an invocation of the dial() agent. Whilst the phone is offhook and the timeout for
dialling has not lapsed, the status of the variable dialling[S] is specified by the derivate
in dial() and the dialling tone is emitted by the phone. This entitles the user to enter a
number into the dialling register. If this number is valid, the dial() agent invokes the
connect() agent, and so on.

oy

Useful as these operational interpretations are, it is wrong to suppose that the LSD
specification of agent privileges completely constrains the system behaviour. Any idea
that the LSD specification has an authentic behavioural interpretation is an illusion
arising from the fact that additional cognitive input is unconsciously introduced by the
intelligent reader. In interpreting the user protocol, we do not assume that the user
necessarily answers a ringing phone promptly - if at all. In contrast, for appropriate
behaviour of the system, the dial() and connect() agents must be assumed to be
relatively fast and predictable in execution and response. The telephone specification is
no less consistent with pathological behaviours associated with scenarios such as the
user frenetically lifting and replacing the receiver whilst dialling numbers at the speed of
light, but these are not typically conceived by the designer (cf [3]). Methods of deriving
appropriate simulations are the subject of the next section.

4. Simulating behaviour in the ADM

The primary role of an LSD specification is to describe the interaction between agents in
a concurrent system in terms of their privileges to perform actions. As explained in
section 1, the fact that these are to be interpreted in the context of definitive
state—transition models is crucial, since it enables the same action to have different
effects upon the state of the system in different contexts. This is the first step towards
establishing a comprehensible relationship between the behaviour of the system and the
concurrent execution of atomic actions by agents.

In practice, the relationship between an LSD specification and the simulation of system
behaviour is nonetheless very complex. Determining agent privileges is not enough to
characterise possible agent interactions, for a variety of reasons. In general, an LSD
specification can be given many behavioural interpretations, most of which are
inappropriate. The relevant issues are discussed at length in [3] and will be briefly
reviewed here with reference to a framework within which an LSD specification can be
given an appropriate behavioural interpretation.

Every behavioural interpretation of an LSD specification is based upon the behaviour of
individual agents, as specified by the agent protocols. Informally, agent behaviour can
be conceived in anthropomorphic terms. Each agent acts sequentially, and at any point
in a simulation is either "in transition" — in the process of sequentially executing the
actions in one of the guarded commands specified in its protocol, or in a "waiting" state
pending commitment to the execution of any particular command whose guard is
presently true. In guard evaluation, an agent refers to the values of referenced variables
"as they are perceived". The choice between guarded commands whose guard is
presently true is non-deterministic, and the rate of execution of the associated sequence
of actions is unspecified. The motivating idea is that an LSD specification identifies the

characteristics of the system behaviour that depend upon the interrelated capabilities and
perceptions of its participating agents, but that a precise description of system
behaviour requires additional assumptions.

Behavioural interpretations of an LSD specification can also be described in more
precise - if more prosaic - computational terms. For this purpose, a state-transition
model is used. The current state of a simulation is represented by a set of definitions in
which each agent has a private copy of the variables it references, and the derivates
supply implicitly defined variables. The private copies of variables are used to record
the perceived values of variables; the redefinition of a state variable during the execution
of a protocol assigns a new definition to the authentic occurrence of the variable, viz.
that associated with the agent to which it is bound. The computational interpretation is
rendered complete by introducing appropriate mechanisms to model the communication
of the authentic value of a variable to the other agents that reference it.

The definitive state-transition model described above provides a generic framework for
simulating the behaviour of a system in which the agents act according to specified
protocols under appropriate assumptions about speeds of operation and the nature of
communication. Consideration of the telephone specification above readily proves that
devising a simulation from an LSD specification requires essential application-specific
input from the designer that is based upon cognitive considerations. It is reasonable for
instance to suppose that dialled serves as a shared variable for the telephone() and
dial() agents, so that the perceived value can be defined to be equal to the authentic
“value. It would not be so reasonable to suppose that the lifting of the receiver was
instantaneously detected by the exchange. An appropriate simulation must take account
of unpredictable behaviour on the part of the user, such as picking up or replacing the
receiver at any time. The dial() agent on the other hand should respond promptly and
consistently when the user lifts the receiver.

The computational framework in which the designer must operate in developing an
interaction-oriented specification can be conveniently described in terms of an
appropriate machine model for context-sensitive parallel redefinition — the abstract
definitive machine (ADM) [4,6]. In the ADM, the computational state is represented by
a set of definitions D that is dynamically modified through redefinition of variables and
the creation or deletion of definitions. The transitions to be performed in executing an
ADM program are specified by a set of guarded actions A to be executed in parallel as
and when the guards allow. Each action is a sequence of instructions that either
redefines a variable, or leads to the instantiation or deletion of an entity comprising a set
of definitions and actions. The ADM gives output by redefining variables whose values
model the state of an output device.

An ADM program consists of a set of abstractly specified entities. Execution is initiated
by instantiating appropriate entities. On each machine cycle the guards associated with

actions in A are evaluated in the context specified by the definitions in D. If there is no
interference, those actions that are associated with true guards are then executed in
parallel. Evaluation required in a redefinition — as in interpreting an action such as:

time = Itimel+1
— is performed in the same context as guard evaluation. Autonomous computation
terminates when no action in A has a true guard.

An LSD specification can be transformed into several ADM programs, each associated
with a different scenario for agent action. The parameters used in the transformation
process reflect assumptions about the relative speeds at which agents operate and how
closely the perceived value of a variable is linked to its authentic value. In practical
implementation of a system, these assumptions in turn reflect physical and engineering
considerations, such as "How fast can the user dial a number?".

Each LSD agent specification is transformed into an ADM entity description in which
the actions are annotated to take account of the speed of an agent's response and
execution. These annotations take the form of control parameters for the ADM
simulation program to be chosen by the designer. In the present prototype, these
parameters serve to assign a probability of selection to each guarded command and to
introduce an element of random delay into its execution. The propagation of values
from one agent to another is controlled by a similar technique. The result is a faithful
computational image of a family of agents executing asynchronously, as informally
described in anthropomorphic terms above.

The ADM computational model has several unusual features [6]. It allows the designer
to interact fully with a simulation. In execution, an ADM program resembles an
environment with an autonomous behaviour in which the designer is in principle
privileged to intervene in an arbitrary fashion. Such intervention is feasible because the
current state of the execution is recorded by stored definitions and pending actions that
can be readily interpreted by the designer. The parameters supplied for the
transformation of LSD specification can be dynamically changed during simulation. It
is also possible for the designer to take the part of the user agent, or indeed of any
participating agent.

The precise representation of data dependency in the ADM has important implications
for the detection of interference [6]. This is particularly significant in a modelling
context, where the designer may not wish to prescribe solutions for potential conflicts
such as two users fighting over the onhook status of a telephone receiver. Actions can
interfere in several ways. The same variable may be redefined independently in
concurrent actions, or the set of parallel redefinitions may introduce cyclic dependency.
Such interference is detected during computation and the execution is suspended. In
one possible mode of execution of the ADM, the designer can act as an auxiliary agent

to resolve conflicts as they arise. By exploiting the graceful treatment of undefined
values in the ADM, a similar technique can be used to handle user input. The value of a
variable is only required when it is encountered in a guard or an evaluated sub-
expression in a defining formula. The ADM can either be programmed for default
action in these circumstances, or request input from the user.

5. Evaluation and comparison

The approach described in this paper has been successfully applied to obtain
simulations of the LSD specification of the telephone. At this stage of development, our
methods serve best as an informal design aid, helping the designer to clarify the roles
that agents play in influencing system behaviour. It is possible to show the implications
of changing the user profile to increase the average length of calls for instance. For our
approach to be fully effective, it is essential to move beyond simulation to methods of
proving properties of the system behaviour subject to assumptions about the activity of
agents. Without such methods, there can be no guarantee that the behaviour of the
system meets the requirements of the designer.

Our approach nonetheless has several attractive features. The virtues of definitive
representations for specifying transitions in a concurrent programming system have
been discussed in detail elsewhere [4]. They include explicit representations of data
dependency that can assist the identification of interference and expressive techniques
for representing the synchronised propagation of state-changes through a system. As is
in part illustrated by the telephone example, these techniques may be used as a means to
replace a complex component of a system (such as the telephone exchange) by a
simpler model with invisible internal behaviour. This can mean that a conceptually
complex system of actions is represented as an atomic action at a higher level of
abstraction, so that, for instance: "the telephone starts to ring at the moment that the
connection is made". In the design context, this is an important method of enabling the
decomposition of the system into component parts.

The use of definitive representations in conjunction with LSD is interesting in cognitive
terms. Existing software systems supply empirical evidence that sets of interrelated
definitions are well-suited both for representing data relationships in business
applications and for modelling the movement of objects [12]. Knowledge that provides
the basis for "commonsense reasoning” about the consequences of actions in our
environment has to be conveniently represented in terms that take account of the
context-dependent nature of action (the frame problem) and admit universal statements
about possible states and transitions [9]: the ideas explored in this paper are clearly
directly relevant. The use of LSD to represent a user protocol — when the concept of
modelling perceptions and capabilities is quite legitimate — makes it possible to interpret
cognitive considerations in computational terms, as advocated by Pylyshyn in [14].

Future research will be aimed at extending our present prototype system, essentially
based upon an interpreter for the ADM, into a computer-aided system for concurrent
systems modelling and simulation. Within such a framework, the designer will be able
to specify the privileges for action of individual agents, then construct scenarios in
which to simulate concurrent action of the entire system. Whether or not it proves
possible to perform formal analyses of behaviour on our models, some significant
advantages can be expected. The relationship between the behaviour of the system and
the components of the specification can be readily interpreted by the designer.
Synchronisation based upon interaction between agents and on timing considerations
can be treated as separate concerns. The ADM model potentially supports exceptionally
rich interaction in a design environment, effectively giving the designer the privileges to
act as an omniscient omnipotent agent within a simulation. The techniques for
animation of the simulation within a definitive computational paradigm are already well-
developed [7].

Our limited experience with present tools so far confirms expectations. When analysing
the output from a simulation, inappropriate behaviour can be linked either to a flaw in
the LSD specification, or to an unsatisfactory choice of parameters for its
transformation into an ADM program. Both types of defect can be interpreted in
cognitive terms. In the telephone specification, for example, we are led to consider
issues such as: "is there any purpose in not replacing the receiver when the engaged
signal is obtained?" — an issue for clarification in the LSD specification, or "when
making a connection does it matter if the fact that the line is engaged is not immediately
detected?" — an issue concerning the speed at which values are communicated to and
from the exchange.

Because of the cognitive input required when interpreting an LSD specification in
operational terms, its conversion to an ADM program can never be fully automated. It
is realistic to generate a skeletal model automatically, however, so that the process of
introducing assumptions about speeds of execution and communication can be reduced
to substitution of parameters. Alternative approaches to prescribing the behavioural
interpretation of an LSD specification are mentioned in [3]. The introduction of flags to
constrain the interaction between agents, as in Numerical Petri Nets [18] involves no
essential operational extension of LSD, but does disrupt the cognitive framework. The
introduction of an environment variable time can be accommodated within the ADM in
arestricted sense (see for example the ADM simulation of a systolic array in [7]), but
true real-time concerns raise many difficult issues beyond the scope of our present
methods.

Our approach can be contrasted with an event-oriented approach. CSP [10] typifies the
abstract behavioural perspective on concurrent systems. The philosophy behind the
notatiqn is that, where the behavioural view of a system is concerned ([10] p24): "....

there is no need to make a distinction between events which are initiated by the object
and those which are initiated by some agent outside the object. The avoidance of the
concept of causality leads to considerable simplification in the theory and its
application." Our approach is consistent with this point of view in that the abstract
computational model used for simulation has no agent concept. From our perspective,
the role of the agent abstraction in system design and modelling is on the other hand
essential. :

CSP permits the representation of system behaviour as a family of traces, each
comprising a sequence of interleaved events. Our behavioural interpretations of an LSD
specification are expressed in terms of a non-interleaving concurrency model
resembling asynchronous transition systems. Much work on the semantics of the ADM
will be required before there can be any prospect of developing concurrent programs
from an abstract specification of behaviour in our framework.

It is perhaps more appropriate to compare LSD with the archetypal interaction-oriented
approach to simulation, viz that based upon an object-oriented programming paradigm
(OQPP) [15]. The basic concepts of the OOPP - that the internal structure of an object
is hidden from other objects, and that the only way in which one object can act to
change the state of another object is by sending it a message - are clearly well-adapted
for programming in a totally distributed system. It does not seem that an OOPP serves
the function of modelling real-world interactions as effectively as LSD however. It is
surely appropriate to assert that the telephone user acts directly to take the telephone
- offhook for instance, rather than sends a message to the telephone telling it to pick up
its receiver. Specifying the side-effects of actions through derivates also has some
advantages - cf [16], where the limitations of the OOPP as a medium for specifying
geometrical relationships between the components of a robot arm are exposed.

It can be argued that most concurrent systems are effectively "totally distributed” at a
sufficiently low level of abstraction. That is to say, most systems are built up from
digital components that communicate across channels that are physically short but
nevertheless introduce problems of synchronisation. An LSD specification for such a
system must closely resemble a specification based upon the OOPP: the only way in
which one agent can change the state of another is by first changing the value of a
variable known as an oracle to that agent, causing it to respond according to its private
protocol. The synchronisation issues involved in transforming an LSD specification
into an ADM program are similar to those that arise in studying the semantics of the
parallel OOPP [1].

It may appear superficially that definitive specification methods are inappropriate when
definitive state representations are absent from the final computational model. In fact,
our design method seems well-suited to the incremental development of a complex
specification by a process of refinement. For this purpose, we first construct a model in

which some components and communication in a system are abstractly represented by
derivate and state-oracle pairs, as in the specification of the exchange() agent above. In
the refinement process, these derivates and state-oracle pairs can then be replaced by
communication channels and protocols to derive a specification at a lower level of
abstraction. Such a use of functional abstraction as a simplifying device is a common
informal design technique.

Conclusion

This paper has described substantial progress towards understanding the problems of
relating the interaction-oriented and event-oriented perspectives on concurrent systems
modelling, as they are identifed in the context of a definitive approach to programming
in [3]. The solutions proposed here are not yet sufficiently well-developed to meet the
ultimate objective of relating the abstract behaviour of a system to the roles played by
the participating agents as perceived by the designer. They have nevertheless already
provided the basis for prototype systems that can assist the designer in the analysis of
requirements and the development of a formal specification,

More research into abstract programming within the ADM and practical experience of
the proposed design method is required to inform future work on tools. Parallel
investigation into the semantics of LSD and the scope for generic methods of deriving
ADM behavioural interpretations of an LSD specification is also essential before more
practically useful design environments can be developed.

Acknowledgements

The authors would like to acknowledge the Director of Communications Systems
Technology, Research and Technology, British Telecom for permission to publish this
paper. They would also like to thank the many friends and colleagues who contributed
to this work.

References

[1]1 P America, OOP: a theoretician's introduction EATCS Bull 29, 1986, 69-84
[2] R Balzer, N Goldman, Principles of good software specification and their
implications for specification languages Software Specification Techniques,
International CS Series, Addison-Wesley 1985, 25-39

[3] W M Beynon, M Norris, M D Slade, Definitions for modelling and simulating
concurrent systems Proc IASTED conference ASM'88, Acta Press 1988, 456-468
[4] W M Beynon, Parallelism in a definitive programming framework Proc Parallel
Computing '89, Leiden, Sept 1989, (to appear)

[51 W M Beynon, M Norris, Comparison of SDL and LSD SDL'87: State of the Art
and Future Trends, North-Holland 1987, 201-209

[6] W M Beynon, M D Slade, Y W Yung, Parallel computation in definitive models
CONPAR'88, British Computer Society Workshop Series, CUP 1989, 359-367

[71 W M Beynon, Evaluating definitive principles for interactive graphics New
Advances in Computer Graphics, Springer-Verlag 1989, 294-303

[8] A Davis, A comparison of techniques for the specification of external system
behaviour Comm ACM Vol 31(9), 1988

[9] Ginsberg M L, Smith D E, Reasoning about Action I & II Artificial Intelligence 35,
1988, 165-195 & 311-342

[10] C A R Hoare, Communicating Sequential Processes Prentice-Hall 1985

[11] A A Kaposi, L A Jackson, A systems approach to complexity management in
designing information systems BT Technology Journal Vol 4 no , 1986

[12] C Lewis, Using the NoPumpG primitive Dept of CS & Cog Sci, Univ of Boulder
[13] R E Nance, The time and state relationships in simulation modelling CACM
24(4), 1981, 173-179

(14] Z W Pylyshyn, Computation and Cognition MIT Press, 1984

[15] M Stefik, D G Bobrow, OOP: themes and variations A1 Mag 6(4), 40-62

[16] T Tomiyama, Object-oriented programming for intelligent CAD systems in
Intelligent CAD systems 2: Implementation Issues, Springer-Verlag, 1989, 3-16

[17]1 K Turner, A constraint-oriented style of specification in LOTOS Proc FORTE'8S,
Stirling, Sept 1988

[18] G R Wheeler, Numerical Petri Nets - A Definition, Telecom Australia Res Labs

- Rep #7780

[19] Functional Specification & Description Lang., SDL CCITT Standard Z100, 1988

